Genrih, a Runtime State Analysis System for Deciding the Applicability of Dynamic Software Updates

  • Oleg ŠelajevEmail author
  • Allan Raundahl GregersenEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 868)


Dynamic Software updating (DSU) systems enable applications to be upgraded without service interruption. However, the implications of changed program assumptions may result in unwanted runtime phenomena after the dynamic update if the momentary state of the application does not satisfy those changed assumptions. Hence, in order to enable dynamic updates in a safe manner, the updating mechanism needs to reason about the runtime state at update time.

We present a runtime state analysis system, Genrih, that enhances an existing dynamic update system with the ability to take automated informed decisions concerning the safety of a particular program update. Genrih will determine if the automated default state transformations of the underlying DSU system are sufficient for the given update. In Genrih the atomic changes that constitute the update patch are analyzed in combination with the present runtime state of the application. Based on that analysis Genrih determines whether updating the system will lead to observable unwanted runtime phenomena.

While Genrih is powerful enough to block updates until the runtime state satisfies the update to allow for a safe update, for practical purposes it observes the runtime state and produces notifications for enhanced analysis and crash management. The practical evaluation shows that the designed system imposes acceptable overhead and can help educate developers about runtime phenomena.


Dynamic software update Runtime phenomena State analysis Reliability Availability 


  1. 1.
    Gupta, D., Jalote, P., Barua, G.: A formal framework for on-line software version change. IEEE Trans. Softw. Eng. 22, 120–131 (1996)CrossRefGoogle Scholar
  2. 2.
    Hayden, C.M., Saur, K., Hicks, M., Foster, J.S.: A study of dynamic software update quiescence for multithreaded programs. In: Proceedings of the 4th International Workshop on Hot Topics in Software Upgrades (HotSWUp), pp. 6–10. IEEE Press, Piscataway (2012)Google Scholar
  3. 3.
    Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic software updates: a VM-centric approach. SIGPLAN Not. 44, 1–12 (2009)CrossRefGoogle Scholar
  4. 4.
    Kabanov, J., Vene, V.: A thousand years of productivity: the JRebel story. Softw.: Pract. Exper. 44, 105–127 (2014)Google Scholar
  5. 5.
    Pina, L., Veiga, L., Hicks, M.: Rubah: DSU for Java on a stock JVM. In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages and Applications, (OOPSLA 2014), pp. 103–119. ACM, New York (2014).
  6. 6.
    Hayden, C.M., Magill, S., Hicks, M., Foster, N., Foster, J.S.: Specifying and verifying the correctness of dynamic software updates. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 278–293. Springer, Heidelberg (2012). Scholar
  7. 7.
    Hayden, C.M., Smith, E.K., Hardisty, E.A., Hicks, M., Foster, J.S.: Evaluating dynamic software update safety using systematic testing. IEEE Trans. Softw. Eng. 38, 1340–1354 (2012)CrossRefGoogle Scholar
  8. 8.
    Hayden, C.M.: Clear, correct, and efficient dynamic software updates. Ph 3543 (2012)Google Scholar
  9. 9.
    Arnold, J., Kaashoek, M.F.: Ksplice: automatic rebootless kernel updates. In: Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys 2009, (Nuremberg, Germany, April 2009), pp. 187–198. ACM, New York (2009)Google Scholar
  10. 10.
    Erlang: Erlang reloading documentation (2017). Accessed 17 May 2017
  11. 11.
    Würthinger, T., Wimmer, C., Stadler, L.: Dynamic code evolution for Java. In: Proceedings of the 8th International Conference on the Principles and Practice of Programming in Java, PPPJ, pp. 10–19. ACM, New York (2010)Google Scholar
  12. 12.
    Gregersen, A.R., Jørgensen, B.N.: Dynamic update of Java applications - balancing change flexibility vs. programming transparency. J. Softw. Maint. Evol. 21, 81–112 (2009)CrossRefGoogle Scholar
  13. 13.
    Zhao, Z., Ma, X., Xu, C., Yang, W.: Automated recommendation of dynamic software update points: an exploratory study. In: Proceedings of the 6th Asia-Pacific Symposium on Internetware (INTERNETWARE 2014), pp. 136–144. ACM, New York (2014).
  14. 14.
    Gregersen, A.R., Jørgensen, B.N.: Run-time phenomena in dynamic software updating: causes and effects. In: Proceedings of the 12th International Workshop on Principles of Software Evolution and the 7th Annual ERCIM Workshop on Software Evolution (IWPSE-EVOL 2011), pp. 6–15. ACM, New York (2011).
  15. 15.
    Šelajev, O., Gregersen, A.: Using runtime state analysis to decide applicability of dynamic software updates. In: Proceedings of the 12th International Conference on Software Technologies, pp. 38–49 (2017)Google Scholar
  16. 16.
    Gregersen, A.R.: Implications of modular systems on dynamic updating. In: Proceedings of the 14th International ACM Sigsoft Symposium on Component Based Software Engineering, (CBSE 2011), pp. 169–178. ACM, New York (2011).
  17. 17.
    Šelajev, O., Raudjärv, R., Kabanov, J.: Static analysis for dynamic updates. In: Proceedings of the 9th Central and Eastern European Software Engineering Conference in Russia, (CEE-SECR 2013). ACM, New York (2013)Google Scholar
  18. 18.
    Oracle: JVMTI documentation (2017). Accessed 18 May 2017
  19. 19.
    Pina, L.: Rubah source code (2014). Accessed 22 Nov 2017
  20. 20.
    Shipilev, A.: Java microbenchmark harness (2017). Accessed 17 May 2017
  21. 21.
    Bazzi, R.A., Makris, K., Nayeri, P., Shen, J.: Dynamic software updates: the state mapping problem. In: Proceedings of the 2nd International Workshop on Hot Topics in Software Upgrades, (HotSWUp 2009), Article no. 7, 2 p. ACM, New York (2009)Google Scholar
  22. 22.
    Giuffrida, C., Iorgulescu, C., Kuijsten, A., Tanenbaum, A.S.: Back to the future: fault-tolerant live update with time-traveling state transfer. In: Proceedings of the 27th USENIX Conference on Large Installation System Administration (LISA 2013), pp. 89–104. USENIX Association, Berkeley (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of TartuTartuEstonia
  2. 2.ZeroTurnaroundTartuEstonia

Personalised recommendations