Advertisement

Solving Multiobjective Knapsack Problem Using Scalarizing Function Based Local Search

  • Imen Ben MansourEmail author
  • Ines Alaya
  • Moncef Tagina
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 868)

Abstract

Multiobjective optimization has grown to become an active research area since almost all real-world problems have multiple, usually conflicting, objectives. In this paper, we focus on the multiobjective knapsack problem, we solve instances with two, three and four objectives from the literature. We define an iterated local search algorithm in which a Tchebycheff function is used as a selection process to generate a good approximation of the efficient set. The proposed algorithm, Min-Max TLS, designs an efficient neighborhood function based on a permutation process. Min-Max TLS is compared with state-of-the-art approaches such as 2PPLS and MOTGA. Results show that our algorithm can achieve a good balance between exploitation and exploration during the search process.

Keywords

Multiobjective knapsack problem Iterated local search Scalarization functions Tchebycheff functions 

Notes

Acknowlegment

This is an extended and revised version of a conference paper that was presented in ICSOFT 2017 [21].

References

  1. 1.
    Shih, H.: Fuzzy approach to multilevel knapsack problems. Comput. Math. Appl. 49, 1157–1176 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Penn, M., Hasson, D., Avriel, M.: Solving the 0/1 proportional knapsack problem by sampling. J. Optim. Theory Appl. 80, 261–272 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Smeraldi, F., Malacaria, P.: How to spend it: optimal investment for cyber security. In: Proceedings of the 1st International Workshop on Agents and CyberSecurity (2014)Google Scholar
  4. 4.
    Ehrgott, M., Ryan, D.M.: Constructing robust crew schedules with bicriteria optimization. J. Multi-Criteria Decis. Anal. 11, 139–150 (2002)CrossRefGoogle Scholar
  5. 5.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), International Center for Numerical Methods in Engineering (CIMNE), vol. 1, pp. 95–100 (2002)Google Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 181–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Lust, T., Teghem, J.: Memots: a memetic algorithm integrating tabu search for combinatorial multiobjective optimization. RAIRO - Oper. Res. 42, 3–33 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective optimization problems. In: 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), vol. 1, pp. 450–457 (2007)Google Scholar
  9. 9.
    Ben Mansour, I., Alaya, I.: Indicator based ant colony optimization for multi-objective knapsack problem. In: 19th Annual Conference Knowledge-Based and Intelligent Information & Engineering Systems, vol. 60, pp. 448–457 (2015)CrossRefGoogle Scholar
  10. 10.
    Alsheddy, A., Tsang, E.: Guided Pareto local search and its application to the 0/1 multi-objective knapsack problems. In: Proceedings of the Eighth Metaheuristic International Conference (MIC 2009) (2009)Google Scholar
  11. 11.
    Vianna, D.S., Dianin, M.F.: Local search based heuristics for the multiobjective multidimensional knapsack problem. Prod. J. 1, 478–487 (2013)Google Scholar
  12. 12.
    Liefooghe, A., Paquete, L., Figueira, J.: On local search for bi-objective knapsack problems. Evol. Comput. 21, 179–196 (2013)CrossRefGoogle Scholar
  13. 13.
    Ehrgott, M., Gandibleux, X.: Approximative solution methods for multiobjective combinatorial optimization. Top 12, 1–63 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. Int. Trans. Oper. Res. 19, 495–520 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Alves, M.J., Almeida, M.: MOTGA: a multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem. Comput. OR 34, 3458–3470 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ke, L., Zhang, Q., Battiti, R.: A simple yet efficient multiobjective combinatorial optimization method using decomposition and Pareto local search. IEEE Trans. Cybern. (2014)Google Scholar
  17. 17.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)CrossRefGoogle Scholar
  18. 18.
    Bowman, V.J.: On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In: Thieriez, H., Zionts, S. (eds.) Multiple Criteria Decision Making, vo. 1, pp. 76–85 (1976)Google Scholar
  19. 19.
    Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26(3), 326–344 (1983)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation and Application. Wiley, New York (1986)zbMATHGoogle Scholar
  21. 21.
    Ben Mansour, I., Alaya, I., Tagina, M.: A min-max Tchebycheff based local search approach for MOMKP. In: Proceedings of the 12th International Conference on Software Technologies, ICSOFT, INSTICC, vol. 1, pp. 140–150. SciTePress (2017)Google Scholar
  22. 22.
    Alaya, I., Solnon, C., Ghédira, K.: Ant algorithm for the multi-dimensional knapsack problem. Proc. Int. Conf. Bioinspir. Optim. Methods Appl. (BIOMA) 1, 63–72 (2004)Google Scholar
  23. 23.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1, 257–271 (1999)CrossRefGoogle Scholar
  24. 24.
    Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastive multiobjective optimizers. Technical report TIK-Report (2005)Google Scholar
  25. 25.
    Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 213–225. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44719-9_15CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National School of Computer SciencesUniversity of ManoubaManoubaTunisia

Personalised recommendations