Skip to main content

Coordination Between Photosynthesis and Stomatal Behavior

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 44))

Summary

Stomata open and close in response to internal and external signals to balance CO2 uptake for photosynthesis and water loss through transpiration. For a plant to function efficiently, this balance is essential to ensure adequate CO2 uptake for mesophyll demands and sufficient water loss to maintain transpiration and optimal leaf temperature from evaporative cooling for maximal photosynthetic performance, while also ensuring an appropriate whole plant water status. Both stomata and mesophyll respond to external and internal cues and there is a close synchrony between stomata movements and mesophyll photosynthesis. However, the mechanism(s) that co-ordinate these two responses are unknown. Here we examine evidence for a mesophyll driven signal and discuss possible candidates for such a signal. We also provide a brief review of some of the experimental approaches adopted for exploring mesophyll-stomatal interactions. We discuss a possible role for guard cell chloroplasts and guard cell photosynthesis as a mechanism for this co-ordination. Finally, we show that stomatal responses are different on adaxial and abaxial leaf surfaces, raising further questions regarding mesophyll driven signals co-ordinating behavior. We conclude that despite numerous studies, the mesophyll signal remains to be elucidated, and that further research is needed to determine the mechanisms and signal transduction pathways that facilitate the well observed correlation between mesophyll photosynthetic rates and stomatal conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

rate of photosynthetic CO2 uptake

ABA:

abscisic acid

ATP:

adenosine triphosphate

C a :

concentration of CO2 in the atmosphere surrounding a leaf

C i :

concentration of CO2 internal to the leaf tissue

DCMU:

3,4-dichlorophenyl-1,1 –dimethylurea

Dw:

diffusivity of water vapor in air at 25 °C

GCAC1:

an anion-release channel in the plasma membrane of guard cells

\( {g}_{\mathrm{max}} \) :

maximum stomatal conductance

g s :

stomatal conductance

HXK:

hexokinase

H+-ATPase:

proton transporter that spans the cell membrane

min:

minutes

NADPH:

nicotinamide adenine dinucleotide phosphate

pa max :

maximum stomatal pore area

pd. :

stomatal pore depth

PHOT:

phototropin

SD :

stomatal density

SLAC1:

a guard cell S-type anion channel

TCA:

tricarboxylic acid

v :

molar volume of air

VPD:

vapor pressure deficit between the inside of the leaf and the atmosphere

WUE:

water use efficiency

WT:

wild type

References

  • Araújo WL, Fernie AR, Nunes-Nesi A (2011) Control of stomatal aperture. Plant Signal Behav 6:1305–1311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Araújo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T, Martinoia E, Jordana X, DaMatta FM, Fernie AR (2012) Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. Plant Cell 23:600–627

    Article  CAS  Google Scholar 

  • Araújo WL, Nunes-Nesi A, Fernie AR (2013) On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions. Photosynth Res 119:141–156

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9:345–375

    Article  CAS  PubMed  Google Scholar 

  • Azoulay-Shemer T, Palomares A, Bagheri A, Israelsson-Nordstrom M, Engineer CB, Bargmann BO, Stephan AB, Schroeder JI (2015) Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2- and ABA-induced stomatal closing. Plant J 83:567–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball TJ, Berry JA (1982) C i/C s ratio: a basis for predicting stomatal control of photosynthesis. Carnegie Inst Wash Year Book 81:88–92

    Google Scholar 

  • Baroli I, Price GD, Badger MR, von Caemmerer S (2008) The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol 146:737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates GW, Rosenthal DM, Sun J, Chattopadhyay M, Peffer E, Yang J, Ort DR, Jones AM (2012) A comprative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. PLoS One 7:e49641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowling DJF (1987) Measurement of the apoplastic activity of K+ and Cl− in the leaf epidermis of Commelina communis in relation to stomatal activity. J Exp Bot 38:1351–1355

    Article  CAS  Google Scholar 

  • Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc R Soc London B 276:1771–1776

    Article  Google Scholar 

  • Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley TN, Mott KA (2013) Modeling stomatal conductance in response to environmental factors. Plant Cell Environ 36:1691–1699

    Article  PubMed  Google Scholar 

  • Buckley TN, Mott KA, Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26:1767–1785

    Article  CAS  Google Scholar 

  • Busch FA (2014) Opinion: The red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain. Photosynth Res 119:131–140

    Article  CAS  PubMed  Google Scholar 

  • Büssis D, von Groll U, Fisahn J, Altmann TA (2006) Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Funct Plant Biol 33:1037–1043

    Article  PubMed  Google Scholar 

  • Cockburn W, Ting IP, Sternberg LO (1979) Relationships between stomatal behavior and internal carbon dioxide concentration in Crassulacean acid metabolism plants. Plant Physiol 63:1029–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale JE (1961) Investigations into the stomatal physiology of upland cotton. I. The effects of hour of day, solar radiation, temperature and leaf water-content on stomatal behaviour. Ann Bot 25:39–52

    Article  Google Scholar 

  • Daloso DM, Antunes WC, Pinheiro DP, Waquim JP, Araújo WL, Loureiro ME, Fernie AR, Williams TC (2015) Tobacco guard cells fix CO2 by both Rubisco and PEPcase while sucrose acts as a substrate during light-induced stomatal opening. Plant Cell Env 38:2353–2371

    Article  CAS  Google Scholar 

  • Daloso DM, Anjos L, Fernie AR (2016) Roles of sucrose in guard cell regulation. New Phytol 211:809–818

    Article  CAS  PubMed  Google Scholar 

  • Darwin F (1898) Observations on stomata. Philos T Roy Soc B 190:531–621

    Article  Google Scholar 

  • de Boer HJ, Price CA, Wagner-Cremer F, Dekker SC, Franks PJ, Veneklaas EJ (2016) Optimal allocation of leaf epidermal area for gas exchange. New Phytol 210:1219–1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos T Roy Soc B 367:547–555

    Article  CAS  Google Scholar 

  • Dow GJ, Berry JA, Bergmann DC (2014) The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana. New Phytol 201:1205–1217

    Article  CAS  PubMed  Google Scholar 

  • Edwards MC, Smith GN, Bowling DJF (1988) Guard cells extrude protons prior to stomatal opening – A study using fluorescence microscopy and pH micro-electrodes. J Exp Bot 39:1541–1547

    Article  Google Scholar 

  • Ewert MS, Outlaw WH Jr, Zhang S, Aghoram K, Riddle KA (2000) Accumulation of an apoplastic solute in the guard-cell wall is sufficient to exert a significant effect on transpiration in Vicia faba leaflets. Plant Cell Env 23:195–203

    Article  Google Scholar 

  • Farquhar GD, Raschke K (1978) On the resistance to transpiration of the sites of evaporation within the leaf. Plant Physiol 61:1000–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD, Wong SC (1984) An empirical model of stomatal conductance. Aust J Plant Physiol 11:191–210

    Article  CAS  Google Scholar 

  • Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochemistry 70:828–832

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  • Franks PJ, Beerling DJ (2009a) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. P Natl Acad Sci USA 106:10343–10347

    Article  CAS  Google Scholar 

  • Franks PJ, Beerling DJ (2009b) CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the Phanerozoic. Geobiology 7:227–236

    Article  CAS  PubMed  Google Scholar 

  • Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 86:700–705

    Google Scholar 

  • Franks PJ, Doheny-Adams T, Britton-Harper ZJ, Gray JE (2015) Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol 207:188–195

    Article  CAS  PubMed  Google Scholar 

  • Frechilla S, Talbott L, Bogomoln R, Zeiger E (2000) Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol 41:171–176

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Noguchi K, Terashima I (2013) Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. New Phytol 199:395–406

    Article  CAS  PubMed  Google Scholar 

  • Goh CH, Oku T, Shimazaki K-i (1995) Properties of proton pumping in response to blue light and fusicoccin in guard cell protoplasts isolated from adaxial epidermis of Vicia leaves. Plant Physiol 109:187–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh CH, Oku T, Shimazaki K-i (1997) Photosynthetic properties of adaxial guard cells from Vicia leaves. Plant Sci 127:149–159

    Article  CAS  Google Scholar 

  • Goh CH, Dietrich P, Steinmeyer R, Schreiber U, Nam HG, Hedrich R (2002) Parallel recordings of photosynthetic electron transport and K+-channel activity in single guard cells. Plant J 32:623–630

    Article  CAS  PubMed  Google Scholar 

  • Granot D, David-Schwartz R, Kelly G (2013) Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci 4: Article 44(1--17)

    Google Scholar 

  • Grantz DA, Schwartz A (1988) Guard cells of Commelina communis L. do not respond metabolically to osmotic stress in isolated epidermis: Implications for stomatal responses to drought and humidity. Planta 174:166–173

    Article  CAS  PubMed  Google Scholar 

  • Heath OVS (1949) Studies in stomatal behaviour. II. Role of starch in the light response of stomata. Part I. Review of the literature and experiments on the relation bewtween aperture and starch content in the stomata of Perlargonium zonale. New Phytol 48:186–209

    Article  CAS  Google Scholar 

  • Hedrich R, Marten I (1993) Malate-induced feedback regulation of plasma mambrane anion channels could provide a CO2 sensor to guard cells. EMBO J 12:897–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt HW (1994) Malate sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. Plant J 6:741–748

    Article  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Horrer D, Flütsch S, Pazmino D, Matthews JSA, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D (2016) Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Current Biol 26:362–370

    Article  CAS  Google Scholar 

  • Hosler JP, Yocum CF (1987) Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport. Effect pf DCMU and the NADPH/NADP+ ratio. Plant Physiol 83:965–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jones HG (1987) Breeding for stomatal characters, Stanford. Stanford University Press

    Google Scholar 

  • Kang YUN, Outlaw WH Jr, Andersen PC, Fiore GB (2007) Guard-cell apoplastic sucrose concentration–a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. Plant Cell Env. 30:551–558

    Article  CAS  Google Scholar 

  • Kelly G, David-Schwartz R, Sade N, Moshelion M, Levi A, Alchanatis V, Granot D (2012) The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinase 1-dependent sugar signaling from exogenous sugar. Plant Physiol 159:47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D (2013) Hexokinase mediates stomatal closure. Plant J 75:977–988

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Dowe M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum MUF, Gross LJ, Pearcy RW (1988) Observed and modeled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant Cell Env 11:111–121

    Google Scholar 

  • Kuiper P (1964) Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio odoris. Plant Physiol 39:952–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson T (2009) Guard cell photosynthesis and stomatal function. New Phytol 181:13–34

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Blatt M (2014) Stomatal size, speed and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson T, McElwain JC (2016) Evolutionary trade-offs in stomatal spacing. New Phytol 210:1149–1151

    Article  PubMed  Google Scholar 

  • Lawson T, Morison JI (2004) Stomatal function and physiology. In: Hemsley AR, Poole I (eds) The evolution of plant physiology: from whole plants to ecosystem. Elsevier Academic Press, Cambridge, pp 217–242

    Chapter  Google Scholar 

  • Lawson T, Weyer JDB (1999) Spatial and temporal variation in gas exchange over the lower surface of Phaseolus vulgaris L. primary leaves. J Exp Bot 50:1381–1391

    Article  CAS  Google Scholar 

  • Lawson T, Lefebvre S, Baker NR, Morison JI, Raines CA (2008) Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J Exp Bot 59:3609–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson T, von Caemmerer S, Baroli I (2010) Photosynthesis and stomatal behaviour. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, vol 72. Springer, Berlin/Heidelberg, pp 265–304

    Google Scholar 

  • Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Current Opin Biotechnol 23:215–220

    Article  CAS  Google Scholar 

  • Lee J, Bowling DJF (1992) Effect of the mesophyll on stomatal opening in Commelina communis. J Exp Bot 43:951–957

    Article  Google Scholar 

  • Lee J, Bowling DJF (1993) The effect of a msophyll factor on the swellilng of guard cell protoplasts of Commelina communis L. J Plant Physiol 142:203–207

    Article  CAS  Google Scholar 

  • Lee J, Bowling DJF (1995) Influence of the mesophyll on stomatal opening. Aust J Plant Physiol 22:357–363

    Article  CAS  Google Scholar 

  • Lee M, Burla B, Kim YY, Jeon B, aeshima M, Yoo JY, Martinoia E, Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10:1217–1223

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Outlaw WK Jr, Riddle K (1995) Sucrose: a solute that accumulates in the guard-cell apoplast and guard-cell symplast of open stomata. FEBS Lett 10:219–223

    Google Scholar 

  • Lu P, Ourlaw WH Jr, Smith BG, Freed GA (1997) A new mechanism for the regulation of stomatal aperture size in intact leaves: Accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba. Plant Physiol 114:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Pearcy RG, Qualset CO, Zeiger E (1998) Stomatal conductance predicts yield in irrigated Pima cotton and bread wheat grown at high temperatures. J Exp Bot 49:453–460

    Article  Google Scholar 

  • Mansfield T, Hetherington A, Atkinson C (1990) Some current aspects of stomatal physiology. Annu Rev Plant Biol 41:55–75

    Article  CAS  Google Scholar 

  • Marten H, Hyun T, Gomi K, Seo S, Hedrich R, Roelfsema MRG (2008) Silencing of NtMPK4 impairs CO2-induced stomatal closure, activation of anion channels and cytosolic Ca2+ signals in Nicotiana tabacum guard cells. Plant J 55:698–708

    Article  CAS  PubMed  Google Scholar 

  • Mawson BT (1993) Regulation of blue-light-induced proton pumping by Vicia faba L. guard-cell protoplasts: Energetic contributions by chloroplastic and mitochondrial activities. Planta 191:293–301

    Article  CAS  Google Scholar 

  • McAusland L, Vialet-Chabrand S, Matthews J, Lawson T (2015) Spatial and temporal responses in stomatal behaviour, photosynthesis and implications for water-use efficiency. In: Mancuso S, Shabala S (eds) Rhythms in plants. Springer, Heidelberg/New York/Dordrecht/London, pp 97–119

    Chapter  Google Scholar 

  • McAusland L, Vialet-Chabrand S, Davey PA, Baker NR, Brendel O, Lawson T (2016) Effects of kinetics of light-induced stomatal responses on photosynthesis and water use efficiency. New Phytol 211:1209–1220

    Article  PubMed  PubMed Central  Google Scholar 

  • McElwain JC, Yiotis C, Lawson T (2016) Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytol 209:94–103

    Article  CAS  PubMed  Google Scholar 

  • Messinger SM, Buckley TN, Mott KA (2006) Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol 140:771–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Mott KA (1988) Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol 86:200–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott KA, Sibbernsen ED, Shope JC (2008) The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Env 31:1299–1306

    Article  CAS  Google Scholar 

  • Mott KA, Berg DG, Hunt SM, Peak D (2014) Is the signal from the mesophyll to the guard cells a vapour-phase ion? Plant Cell Env 37:1184–1191

    Article  CAS  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    Article  CAS  PubMed  Google Scholar 

  • Nelson SD, Mayo JM (1975) The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum spp. Can J Bot 53:1–7

    Article  Google Scholar 

  • Nunes-Nesi A, Sulpice R, Gibon Y, Fernie AR (2008) The enigmatic contribution of mitochondrial function in photosynthesis. J Exp Bot 59:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. P Natl Acad Sci USA 101:2223–2228

    Article  CAS  Google Scholar 

  • Olsen RL, Pratt RB, Gump P, Kemper A, Tallman G (2002) Red light activates a chloroplast-dependent ion uptake mechanism for stomatal opening under reduced CO2 concentrations in Vicia spp. New Phytol 153:497–508

    Article  CAS  PubMed  Google Scholar 

  • Outlaw WH Jr (2003) Integration of cellular and physiological functions of guard cells. Critic Rev Plant Sci 22:503–529

    Article  Google Scholar 

  • Outlaw WH Jr, De Vlieghere-He X (2001) Transpiration rate, an important factor controllong the sucrose content of the guard cell apoplast of broad bean. Plant Physiol 126:1716–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parlange JY, Waggoner PE (1970) Stomatal dimensions and resistance to diffusion. Plant Physiol 46:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pemadasa MA (1979) Movement of abaxial and adaxial stomata. New Phytol 82:69–80

    Article  CAS  Google Scholar 

  • Pemadasa MA (1982) Abaxial and adaxial stomatal responses to light of different wavelengths and to phenylacetic acid on isolated epidermis of Commelina communis L. J Exp Bot 33:92–99

    Article  CAS  Google Scholar 

  • Radin JW, Hartung W, Kimball BA, Mauney JR (1988) Correlation of stomatal conductance with photosynthetic capacity of cotton only in a CO2-enriched atmosphere: mediation by abscisic acid? Plant Physiol 88:1058–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26:309–340

    Article  CAS  Google Scholar 

  • Roelfsema MRG, Steinmeyer R, Staal M, Hedrich R (2001) Single guard cell recordings in intact plants: light-induced hyperpolarization of the plasma membrane. Plant J 26:1–13

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema MRG, Hanstein S, Felle HH, Hedrich R (2002) CO2 provides an intermediate link in the red light response of guard cells. Plant J 32:65–75

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema M, Konrad KR, Marten H, Psaras GK, Hartung W, Hedrich R (2006a) Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO2 and abscisic acid. Plant Cell Env 29:1595–1605

    Article  CAS  Google Scholar 

  • Roelfsema MRG, Steinmeyer R, Staal M, Hedrich R (2006b) Single guard cell recordings in intact plants: light-induced hypoerpolarization of the plasma membrane. Plant Cell 7:1655–1666

    Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Schwartz A, Zeiger Z (1984) Metabolic energy for stomatal opening. Roles of photophosphorylation and oxidative phosphorylation. Planta 161:129–136

    Article  CAS  PubMed  Google Scholar 

  • Serrano EE, Zeiger E, Hagiwara S (1988) Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. P Natl Acad Sci USA 85:436–440

    Article  CAS  Google Scholar 

  • Sharkey TD, Raschke K (1981a) Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. Plant Physiol 68:1170–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Raschke K (1981b) Separation and measurement of direct and indirect effects of light on stomata. Plant Physiol 68:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazaki K-i, Zeiger E (1985) Cyclic and noncyclic photophosphorylation in isolated guard cell chloroplasts from Vicia faba L. Plant Physiol 78:211–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazaki K-i, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247

    Article  CAS  PubMed  Google Scholar 

  • Sibbernsen E, Mott KA (2010) Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cell. Plant Physiol 153:1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler R, Bu M, Ache P, Hedrich R, Ivashikina N, Melzer M, Shearson SM, Smith SM, Sauer N, Germany RS (2003) Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. Plant Physiol 133:528–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinitz B, Ren Z, Poff KL (1985) Blue and green light-induced phototropism in Arabidopsis thaliana and Lactuca sativa L. seedlings. Plant physiol 77:248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JD, Nishio JN, Vogelmann TC (1998) Green light drives CO2 fixation deep within leaves. Plant Cell Physiol 39:1020–1026

    Article  CAS  Google Scholar 

  • Talbott L, Nikolova G, Ortiz A, Shmayevich I, Zeiger E (2002) Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. Amer J Bot 89:366–368

    Article  Google Scholar 

  • Talbott L, Hammad J, Harn L, Nguyen V, Patel J, Zeiger E (2006) Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement. Plant Cell Physiol 47:332–339

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sugano SS, Shimada T, Hara-Nishimura I (2013) Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol 198:757–764

    Article  CAS  PubMed  Google Scholar 

  • Taylor A, Assmann SM (2001) Apparent absence of a redox requirement for blue light activation of pump current in broad bean guard cells. Plant Physiol 125:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima I, Hikosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Env 18:1111–1128

    Article  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  CAS  PubMed  Google Scholar 

  • Tinoco-Ojanguren C, Pearcy R (1993) Stomatal dynamics and its importance to carbon gain in two rain forest Piper species. I. VPD Effects on the transient stomatal response to light flecks. Oecologia 94:388–394

    Article  PubMed  Google Scholar 

  • Tominaga M, Kinoshita T, Shimazaki K-i (2001) Guard-cell chloroplasts provide ATP required for H+ pumping in the plasma membrane and stomatal opening. Plant Cell Physiol 42:795–802

    Article  CAS  PubMed  Google Scholar 

  • Travis AJ, Mansfield TA (1981) Light saturation of stomatal opening on the adaxial and abaxial epidermis of Commelina communis. J Exp Bot 32:1169–1179

    Article  Google Scholar 

  • Turner NC (1970) Repsonse of adaxial and abaxial stomata to light. New Phytol 69:647–653

    Article  Google Scholar 

  • Vahisalu T, Kollist H, Wang Y-F, Nishimura N, Chan W-Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165:665–682

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S, Lawson T, Oxborough K, Baker NR, Andrews TJ, Raines CA (2004) Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J Exp Bot 55:1157–1166

    Article  CAS  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytologist 178:703–718

    Article  CAS  Google Scholar 

  • Wang Y, Noguchi K, Terashima I (2008) Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant Cell Env. 31:1307–1316

    Article  CAS  Google Scholar 

  • Wang Y, Noguchi K, Terashima I (2011) Photosynthesis-dependent and -independent responses of stomata to blue, red and green monochromtic light: differences bewteen the normally oriented and inverted leaves of sunflower. Plant Cell Physiol 652:479–489

    Article  CAS  Google Scholar 

  • Weise A, Lalonde S, Kühn C, Frommer WB, Ward JM (2008) Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells. Plant Mol Biol 68:251–262

    Article  CAS  PubMed  Google Scholar 

  • Weyers JDB, Lawson T (1997) Heterogeneity in stomatal characteristics. Adv Bot Res 26:317–352

    Article  Google Scholar 

  • Weyers JDB, Meidner H (1990) Methods in Stomatal Research. Longman, Harlow

    Google Scholar 

  • Willmer C, Fricker M (1996) Stomata. Chapman & Hall. In: London

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Plant Physiol 78:830–834

    Article  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1985a) Leaf conductance in relation to rate of CO2 assimilation I. Influcence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny. Plant Physiol 78:821–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1985b) Leaf conductance in relation to rate of CO2 assimilation II. Effects of short-term exposures to different photon flux densities. Plant Physiol 78:826–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1985c) Leaf conductance in relation to rate of CO2 assimilation III. Influences of water stress and photoinhibition. Plant Physiol 78:830–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Assmann SM (1993) Photosynthesis by guard cell chloroplasts of Vicia faba L.: effects of factors associated with stomatal movements. Plant Cell Physiol 34:1015–1022

    CAS  Google Scholar 

  • Zeiger E, Zhu J (1998) Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells. J Exp Bot 49:433–442

    Article  Google Scholar 

  • Zeiger E, Talbott LD, Frechilla S, Srivastava A, Zhu J (2002) The guard cell chloroplast: a perspective for the twenty-first century. New Phytol 153:415–424

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Maruhnich SA, Folta KM (2011) Green light induces shade avoidance symptoms. Plant Physiol 157:1528–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like BBSRC grant no.BB/L001187/1 & BB/N021061/1 for support for T.L along with the School of Biological Sciences, University of Essex; a Sasagawa scientific research grant from The Japan Science Society and a grant-in-aid for JSPS Fellows (no. 12 J08951) for T.F; a MEXT Grant-in-Aid for Scientific Research on Innovative Areas (no. 21114007) from and JSPS Grants-in-Aid for Exploratory Studies (nos. 23657029 and 15 K14537) for I.T; and a JSPS research fellowship for young scientists (no. 2010431) for Y.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy Lawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lawson, T., Terashima, I., Fujita, T., Wang, Y. (2018). Coordination Between Photosynthesis and Stomatal Behavior. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_6

Download citation

Publish with us

Policies and ethics