Skip to main content

Leaf Water Transport: A Core System in the Evolution and Physiology of Photosynthesis

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 44))

Summary

In most terrestrial ecosystems, water availability is the principal governor of primary productivity. Vascular plants can only sustain high rates of photosynthetic activity by transporting enormous quantities of water from reserves in the soil to the sites of gas exchange in leaves to prevent desiccation of photosynthetic tissues. This demand for water requires plants to invest in a vascular system that begins as a simple pipe system in roots and branches and terminates in a sophisticated network of veins in the leaf. This chapter will examine the tight linkage between photosynthesis and the efficiency of water transport in leaves, explaining how plants use a non-living network of xylem to deliver water under high tension to evaporating cells. We explore how plants achieve high efficiency in water delivery by developing an intricately branched system of leaf veins as a means of piping water close to the stomatal layer, and how evolution has shaped the venation of higher plant species as densely reticulated networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

∆ψ :

difference in water potential

ABA:

abscisic acid

F :

flux rate of water

K :

hydraulic conductance

K leaf :

hydraulic conductance of the leaf

K ox :

Definition

K x :

Definition

MPa:

megapascals

ψ :

water potential

References

  • Aasamaa K, Sober A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust J Plant Physiol 28:765–774

    Google Scholar 

  • Aasamaa K, Niinemets U, Sober A (2005) Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny. Tree Physiol 25:1409–1418

    Article  PubMed  Google Scholar 

  • Adams WW III, Watson AM, Mueh KE, Amiard V, Turgeon R, Ebbert V, Demmig-Adams B (2007) Photosynthetic acclimation in the context of structural constraints to carbon export from leaves. Photosynth Res 94:455–466

    Article  CAS  PubMed  Google Scholar 

  • Andrade LJ, Meinzer CF, Goldstein G, Holbrook MN, Cavelier J, Jackson P, Silvera K (1998) Regulation of water flux through trunks, branches, and leaves in trees of a lowland tropical forest. Oecologia 115:463–471

    Article  PubMed  Google Scholar 

  • Angeles G, Bond B, Boyer J, Brodribb T, Brooks J, Burns M, Comstock J (2004) The cohesion-tension theory. New Phytol 163:451–452

    Article  Google Scholar 

  • Bartlett MK, Scoffoni C, Sack L (2012) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 15:393–405

    Article  PubMed  Google Scholar 

  • Blackman CJ, Brodribb TJ, Jordan GJ (2010) Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol 188:1113–1123

    Article  PubMed  Google Scholar 

  • Blackman CJ, Brodribb TJ (2011) Two measures of leaf capacitance: insights into the water transport pathway and hydraulic conductance in leaves. Funct Plant Biol 38:118–126

    Article  PubMed  Google Scholar 

  • Blonder B, Violle C, Bentley LP, Enquist BJ (2011) Venation networks and the origin of the leaf economics spectrum. Ecol Lett 14:91–100

    Article  PubMed  Google Scholar 

  • Blonder B, Violle C, Enquist BJ (2013) Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. J Ecol 101:981–989

    Article  Google Scholar 

  • Boyce CK, Cody GD, Fogel ML, Hazen RM, Alexander CMD, Knoll AH (2003) Chemical evidence for cell wall lignification and the evolution of tracheids in early Devonian plants. Intl J Plant Sci 164:691–702

    Article  CAS  Google Scholar 

  • Boyce CK (2005) Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies. Paleobiology 31:117–140

    Article  Google Scholar 

  • Boyce CK (2008) How green was Cooksonia? The importance of size in understanding the early evolution of physiology in the vascular plant lineage. Paleobiology 34:179–194

    Article  Google Scholar 

  • Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. P Roy Soc Lond Series B Bio 276:1771–1776

    Article  Google Scholar 

  • Boyce CK, Zwieniecki MA (2012) Leaf fossil record suggests limited influence of atmospheric CO2 on terrestrial productivity prior to angiosperm evolution. Proc Natl Acad Sci U S A 109:10403–10408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb T, Feild T, Jordan G (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, Hill RS (1999) The importance of xylem constraints in the distribution of conifer species. New Phytol 143:365–372

    Article  Google Scholar 

  • Brodribb TJ, Feild TS (2000) Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant Cell Environ 23:1381–1388

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132:2166–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, Holbrook NM (2005) Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer. Plant Physiol 137:1139–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B (2005) Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol 165:839–846

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Holbrook NM (2006) Declining hydraulic efficiency as transpiring leaves desiccate: two types of response. Plant Cell Environ 29:2205–2215

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. Plant Sci 177:245–251

    Article  CAS  Google Scholar 

  • Brodribb TJ, Feild TS (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13:175–183

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Jordan GJ (2011) Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytol 192:437–448

    Article  PubMed  Google Scholar 

  • Brodribb TJ, McAdam SAM (2011) Passive origins of stomatal control in vascular plants. Science 331:582–585

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Jordan GJ, Carpenter RJ (2013) Unified changes in cell size permit coordinated leaf evolution. New Phytol 199:559–570

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Skelton RP, McAdam SA, Bienaimé D, Lucani CJ, Marmottant P (2016) Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol 209:1403–1409

    Article  PubMed  Google Scholar 

  • Buckley TN, Sack L, Gilbert ME (2011) The role of bundle sheath extensions and life form in stomatal responses to leaf water status. Plant Physiol 156:962–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley TN (2015) The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant Cell Environ 38:7–22

    Article  PubMed  Google Scholar 

  • Carafa A, Duckett JG, Knox JP, Ligrone R (2005) Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants. New Phytol 168:231–240

    Article  CAS  PubMed  Google Scholar 

  • Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Holbrook NM (2005) The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant Cell Environ 28:1082–1089

    Article  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, . . . Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 7426: 752--755, 491

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Coll L, Le Roux X, Ameglio T (2002) Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiol 128:282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutard C (2004a) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochard H, Nardini A, Coll L (2004b) Hydraulic architecture of leaf blades: where is the main resistance? Plant Cell Environ 27:1257–1267

    Article  Google Scholar 

  • Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Sakr S (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol 143:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. Symp Soc Exp Biol 31:471–505

    CAS  PubMed  Google Scholar 

  • Darwin F (1898) Observations on stomata. P Roy Soc Lond Series B Biol 63:413–417

    Google Scholar 

  • Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010) Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc Natl Acad Sci U S A 107:5738–5743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon HH, Joly J (1895) On the ascent of sap. Philos T Roy Soc Lond 186:563–576

    Article  Google Scholar 

  • Edwards D (2003) Xylem in early tracheophytes. Plant Cell Environ 26:57–72

    Article  Google Scholar 

  • Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ (2004) Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30:82–107

    Article  Google Scholar 

  • Feild TS, Upchurch GR, Chatelet DS, Brodribb TJ, Grubbs KC, Samain MS, Wanke S (2011) Fossil evidence for low gas exchange capacities for early cretaceous angiosperm leaves. Paleobiology 37:195–213

    Article  Google Scholar 

  • Feild TS, Brodribb TJ (2013) Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks. New Phytol 199:720–726

    Article  CAS  PubMed  Google Scholar 

  • Fiorin L, Brodribb TJ, Anfodillo T (2015) Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. New Phytol 209:216–227

    Article  PubMed  Google Scholar 

  • Franks PJ (2006) Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients. Plant Cell Environ 29:584–592

    Article  PubMed  Google Scholar 

  • Franks PJ, Leitch IJ, Ruszala EM, Hetherington AM, Beerling DJ (2012) Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations. Philos T Ro Soc Lond B 367:537–546

    Article  CAS  Google Scholar 

  • Givnish T (1986) Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, New York, pp 171–214

    Google Scholar 

  • Hao G-Y, Hoffmann WA, Scholz FG, Bucci SJ, Meinzer FC, Franco AC, Goldstein G (2007) Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia 155:405–415

    Article  PubMed  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 60:2971–2985

    Article  CAS  PubMed  Google Scholar 

  • Henzler T, Waterhouse NR, Smyth JA, Carvajal M, Cooke TD, Schäffner RA, Clarkson TD (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210:50–60

    Article  CAS  PubMed  Google Scholar 

  • Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24:113–121

    Article  Google Scholar 

  • Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612

    Article  Google Scholar 

  • Katifori E, SzöllÅ‘si GJ, Magnasco MO (2010) Damage and fluctuations induce loops in optimal transport networks. Phys Rev Lett 104:048704

    Article  PubMed  CAS  Google Scholar 

  • Kim YX, Steudle E (2007) Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib of leaves of Zea mays. J Exp Bot 58:4119–4129

    Article  CAS  PubMed  Google Scholar 

  • Knipfer T, Eustis A, Brodersen C, Walker AM, McElrone AJ (2015) Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. Plant Cell Environ 38:1503–1513

    Article  PubMed  Google Scholar 

  • Komatsu K, Suzuki N, Kuwamura M, Nishikawa Y, Nakatani M, Ohtawa H, Sakata Y (2013) Group a PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nat Commun 4:2219

    Article  PubMed  CAS  Google Scholar 

  • Körner C, Farquhar GD, Roksandic Z (1988) A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 74:623–632

    Article  PubMed  Google Scholar 

  • Lehmann P, Or D (2015) Effects of stomata clustering on leaf gas exchange. New Phytol 207:1015–1025

    Article  PubMed  Google Scholar 

  • Li L, McCormack ML, Ma C, Kong D, Zhang Q, Chen X, Guo D (2015) Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecol Lett 18:899–906

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang Y-J, Sack L, Scoffoni C, Ishida A, Chen Y-J, Cao K-F (2013) The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza. PLoS One 8:e66016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ligrone R, Vaughn KC, Renzaglia KS, Knox PJ, Duckett JG (2002) Diversity in the distribution of polysaccharide and glycoprotein epitopes in the cell walls of bryophytes: new evidence for the multiple evolution of water-conducting cells. New Phytol 156:491–508

    Article  CAS  PubMed  Google Scholar 

  • Ligrone R, Duckett JG, Renzaglia KS (2012) Major transitions in the evolution of early land plants: a bryological perspective. Ann Bot 109:851–871

    Article  PubMed  PubMed Central  Google Scholar 

  • Maherali H, Sherrard ME, Clifford MH, Latta RG (2008) Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass. New Phytol 180:240–247

    Article  CAS  PubMed  Google Scholar 

  • McAdam SAM, Brodribb TJ (2012) Fern and lycophyte guard cells do not respond to endogenous abscisic acid. Plant Cell 24:1510–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAdam SA, Brodribb TJ (2015) The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiol 167: 833—843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinzer FC, Grantz DA (1990) Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity. Plant Cell Environ 13:383–388

    Article  Google Scholar 

  • Muller O, Cohu CM, Stewart JJ, Protheroe JA, Demmig-Adams B, Adams WW III (2014) Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes. Physiol Plant 152:174–183

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Salleo S (2000) Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15:14–24

    Article  Google Scholar 

  • Nardini A, Tyree MT, Salleo S (2001) Xylem cavitation in the leaf of Prunus laurocerasus L. and its impact on leaf hydraulics. Plant Physiol 125:1700–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardini A, Salleo S, Andri S (2005) Circadian regulation of leaf hydraulic conductance in sunflower (Helianthus annuus). Plant Cell Environ 28:750–759

    Article  CAS  Google Scholar 

  • Noblin X, Mahadevan L, Coomaraswamy IA, Weitz DA, Holbrook NM, Zwieniecki MA (2008) Optimal vein density in artificial and real leaves. Proc Natl Acad Sci U S A 105:9140–9144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolf M, Creek D, Duursma R, Holtum J, Mayr S, Choat B (2015) Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant Cell Environ 38:2652–2661

    Article  CAS  PubMed  Google Scholar 

  • Oren R, Sperry JS, Katul G, Pataki DE, Ewers BE, Phillips N, Schäfer KVR (1999) Survey and synthesis of intra- and inter specific variation in stomatal sensitivity to vapor pressure deficit. Plant Cell Environ 22:1515–1526

    Article  Google Scholar 

  • Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149:2000–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peak D, Mott KA (2011) A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant Cell Environ 34:162–178

    Article  PubMed  Google Scholar 

  • Pressel S, Goral T, Duckett JG (2014) Stomatal differentiation and abnormal stomata in hornworts. J Bryol 36:87–103

    Article  Google Scholar 

  • Raschke K, Resemann A (1986) The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity. Planta 168:546–558

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1977) Evolution of vascular land plants in relation to supracellular transport processes. Adv Bot Res 5:153–219

    Article  CAS  Google Scholar 

  • Reich PB (2014) The worldwide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Rockwell FE, Holbrook NM, Stroock AD (2014) The competition between liquid and vapor transport in transpiring leaves. Plant Physiol 164:1741–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sack L, Melcher PJ, Zwieniecki MA, Holbrook NM (2002) The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. J Exp Bot 53:2177–2184

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Streeter C, Holbrook NM (2004) Hydraulic analysis of water flow through sugar maple and red oak. Plant Physiol 134:1824–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sack L, Tyree MT, Holbrook NM (2005) Leaf hydraulic architecture correlates with regenreration irradiance in tropical rainforest trees. New Phytol 167:403–413

    Article  PubMed  Google Scholar 

  • Sack L, Frole K (2006) Leaf structural diversity is related to hydraulic capacity in tropical rainforest trees. Ecology 87:483–491

    Article  PubMed  Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Physiol Mol Biol 57:361–381

    Article  CAS  Google Scholar 

  • Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:983–1000

    Article  PubMed  Google Scholar 

  • Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013) How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. J Exp Bot 64:4053–4080

    Article  CAS  PubMed  Google Scholar 

  • Saliendra N, Sperry J, Comstock J (1995) Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta 196:357–366

    Article  CAS  Google Scholar 

  • Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011) Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156:832–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoffoni C, Vuong C, Diep S, Cochard H, Sack L (2014) Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. Plant Physiol 164:1772–1788

    Article  CAS  PubMed  Google Scholar 

  • Skelton RP, Brodribb TJ, Choat B (2017) Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol 214:561–569

    Article  CAS  PubMed  Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359

    Article  Google Scholar 

  • Tyree MT, Cruiziat P, Benis M, Lo Gullo MA, Salleo S (1981) The kinetics of rehydration of detached sunflower leaves from different initial water deficits. Plant Cell Environ 4:309–317

    Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–38

    Article  Google Scholar 

  • Tyree MT, Sinclair B, Lu P, Granier A (1993) Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter. Ann Forest Sci 50:417–423

    Article  Google Scholar 

  • Tyree MT, Sobrado MA, Stratton LJ, Becker P (1999) Diversity of hydraulic conductance in leaves of temperate and tropical species: possible causes and consequences. J Trop For Sci 11:47–60

    Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

  • Wan X, Steudle E, Hartung W (2004) Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. J Exp Bot 55:411–422

    Article  CAS  PubMed  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Article  Google Scholar 

  • Zhang Y-J, Rockwell FE, Wheeler JK, Holbrook NM (2014) Reversible deformation of transfusion tracheids in Taxus baccata is associated with a reversible decrease in leaf hydraulic conductance. Plant Physiol 165:1557–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Schraut D, Hartung W, Schäffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

  • Zwieniecki MA, Brodribb TJ, Holbrook NM (2007) Hydraulic design of leaves: insights from rehydration kinetics. Plant Cell Environ 30:910–921

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the support of the Australian Research Council who supported TJB with a Future Fellowship during the period of writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Brodribb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brodribb, T.J., Buckley, T.N. (2018). Leaf Water Transport: A Core System in the Evolution and Physiology of Photosynthesis. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_4

Download citation

Publish with us

Policies and ethics