Skip to main content

Leaf Vasculature and the Upper Limit of Photosynthesis

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Summary

The foliar vascular network is responsible for (1) structural support of the lamina as a platform for absorbing photons of light to drive photosynthesis, (2) transfer of information carriers like hormones and other signaling molecules between the leaf and other parts of the plant, (3) distribution of water and nutrients to leaf tissues via the xylem, and (4) movement of photosynthetic products, as well as chemical components remobilized during senescence, from mesophyll tissue into the phloem, and from source leaves to the plant’s many sinks. Foliar venation is thus central to the leaf’s primary role as a photosynthetic organ. Positive relationships between hydraulic conductance of the xylem, foliar vein density, and photosynthesis have been studied, and close links between foliar phloem capacity and intrinsic photosynthetic capacity were identified more recently. In this chapter, the relationship between various features of the foliar vasculature and photosynthetic capacity in mesophytic species with high rates of photosynthesis is explored. These metrics include foliar vein density, numbers and/or cross-sectional areas of xylem, phloem, and companion (including intermediary) cells, tracheary and sieve elements, and expansion of cell membrane area due to cell wall ingrowths in phloem transfer cells. Total xylem conduit volume per leaf area (the product of vein density and xylem cell metrics) of minor foliar veins exhibited a strong positive relationship with photosynthetic capacity per leaf area among multiple summer annuals. In the winter annual Arabidopsis thaliana, acclimation to contrasting growth temperatures involves differential acclimation of photosynthesis versus transpiration and is matched by similar differential acclimation of phloem versus xylem features. Photosynthetic capacity was positively correlated with various phloem metrics among all species and conditions examined, including summer annuals, winter annuals, and biennial species under various temperature and light conditions during growth. Given the essential role of vasculature in leaf functioning, it is not surprising that foliar vascular metrics are adjusted in response to environmental conditions (temperature, light levels, etc.). The vascular grid of the leaf and its xylem and phloem components thus underlies efficient leaf and plant functioning by facilitating the exchange of water, nutrients, and energy and information carriers between photosynthetic and non-photosynthetic parts of the plant. Recognition of this centrality of the foliar vasculature is critical to the effective selection, breeding, and engineering of crop plants to meet the nutritional, energy, fiber, material, and pharmaceutical needs of an expanding human population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CBF:

C-repeat binding factor (a transcription factor)

CC:

companion cell

IC:

intermediary cell

PC:

phloem parenchyma cell

SE:

sieve element

TE:

tracheary element

VD:

vein density (vein length per leaf area)

XC:

xylem parenchyma cell

References

  • Adams WW III, Hoehn A, Demmig-Adams B (1995) Chilling temperatures and the xanthophyll cycle. A comparison of warm-grown and overwintering spinach. Aust J Plant Physiol 22: 75–85

    Google Scholar 

  • Adams WW III, Demmig-Adams B, Rosenstiel TN, Ebbert V, Brightwell AK, Barker DH, Zarter CR (2001a) Photosynthesis, xanthophylls, and D1 phosphorylation under winter stress. In: PS2001, Vol 3, Number 1. Proceedings of the 12th International Congress on Photosynthesis. CSIRO Publishing, Melbourne, Australia. https://doi.org/10.1071/SA0403060.; http://www.publish.csiro.au/sa/pdf/SA0403060

  • Adams WW III, Demmig-Adams B, Rosenstiel RN, Ebbert V (2001b) Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter. Photosynth Res 67:51–62

    Article  CAS  PubMed  Google Scholar 

  • Adams WW III, Demmig-Adams B, Rosenstiel TN, Brightwell AK, Ebbert V (2002) Photosynthesis and photoprotection in overwintering plants. Plant Biol 4:545–557

    Article  Google Scholar 

  • Adams WW III, Zarter CF, Ebbert V, Demmig-Adams B (2004) Photoprotective strategies of overwintering evergreens. Bioscience 54:41–49

    Article  Google Scholar 

  • Adams WW III, Amiard VSE, Mueh KE, Turgeon R, Demmig-Adams B (2005) Phloem loading type and photosynthetic acclimation to light. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives. Allen Press, Lawrence, pp 814–816

    Google Scholar 

  • Adams WW III, Watson AM, Mueh KE, Amiard V, Turgeon R, Ebbert V, Logan BA, Combs AF, Demmig-Adams B (2007) Photosynthetic acclimation in the context of structural constraints to carbon export from leaves. Photosynth Res 94:455–466

    Article  CAS  PubMed  Google Scholar 

  • Adams WW III, Cohu CM, Muller O, Demmig-Adams B (2013a) Foliar phloem infrastructure in support of photosynthesis. Front Plant Sci 4:194

    PubMed  PubMed Central  Google Scholar 

  • Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2013b) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117:31–44

    Article  CAS  PubMed  Google Scholar 

  • Adams WW III, Cohu CM, Amiard V, Demmig-Adams B (2014a) Associations between phloem-cell wall ingrowths in minor veins and maximal photosynthesis rate. Front Plant Sci 5:24

    Google Scholar 

  • Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2014b) Photosystem II efficiency and non-photochemical quenching in the context of source-sink balance. In: Demmig-Adams B, Garab G, Adams WW III, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration, vol 40. Springer, Dordrecht, pp 503–529

    Google Scholar 

  • Adams WW III, Stewart JJ, Cohu CM, Muller O, Demmig-Adams B (2016) Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature. Front Plant Sci 7:1026

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martinez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139:1304–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiard V, Mueh KE, Demmig-Adams B, Ebbert V, Turgeon R, Adams WW III (2005) Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading. Proc Natl Acad Sci U S A 102:12968–12973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiard V, Demmig-Adams B, Mueh KE, Turgeon R, Combs AF, Adams WW III (2007) Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development. New Phytol 173:722–731

    Article  CAS  PubMed  Google Scholar 

  • Bailey IW, Sinnott EW (1916) The climatic distribution of certain types of angiosperm leaves. Am J Bot 3:24–39

    Article  Google Scholar 

  • Beerling DJ, Franks PJ (2010) The hidden cost of transpiration. Nature 464:495–496

    Article  CAS  PubMed  Google Scholar 

  • Blonder B, Violle C, Bentley LP, Enquist BJ (2011) Venation networks and the origin of the leaf economics spectrum. Ecol Lett 14:91–100

    Article  PubMed  Google Scholar 

  • Boersma L, Lindstrom FT, Childs SW (1991) Model for steady-state coupled transport in xylem and phloem. Agron J 83:401–408

    Article  Google Scholar 

  • Boese SR, Huner NPA (1990) Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis. Plant Physiol 94:1830–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botha CEJ (1992) Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta 187:348–358

    CAS  PubMed  Google Scholar 

  • Bower FO (1884) On the comparative morphology of the leaf in the vascular cryptogams and gymnosperms. Phil Trans R Soc Lond 175:565–615

    Article  Google Scholar 

  • Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc R Soc B-Biol Sci 276:1771–1776

    Article  Google Scholar 

  • Brodribb TJ, Feild TS (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13:175–183

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B (2005) Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol 165:839–846

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37:488–498

    Article  Google Scholar 

  • Buckley TN, Sack L, Gilbert ME (2011) The role of bundle sheath extensions and life form in stomatal responses to leaf water status. Plant Physiol 156:962–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrita P, Thorpe M, Huber G (2013) Hydrodynamics of steady state phloem transport with radial leakage of solute. Front Plant Sci 4:531

    Article  PubMed  PubMed Central  Google Scholar 

  • Canny MJ (1993) The transpiration stream in the leaf apoplast: water and solutes. Phil Trans R Soc Lond B 341:87–100

    Article  Google Scholar 

  • Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  CAS  PubMed  Google Scholar 

  • Cohu CM, Muller O, Demmig-Adams B, Adams WW III (2013a) Minor loading vein acclimation for three Arabidopsis thaliana ecotypes in response to growth under different temperature and light regimes. Front Plant Sci 4:240

    PubMed  PubMed Central  Google Scholar 

  • Cohu CM, Muller O, Stewart JJ, Demmig-Adams B, Adams WWIII (2013b) Association between minor loading vein architecture and light- and CO2-saturated photosynthetic oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes. Front Plant Sci 4:264

    PubMed  PubMed Central  Google Scholar 

  • Cohu CM, Muller O, Adams WW III, Demmig-Adams B (2014) Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus two summer annuals. Physiol Plant 152:164–173

    Article  CAS  PubMed  Google Scholar 

  • Dahal K, Gadapati W, Savitch LV, Singh J, Hüner NPA (2012) Cold acclimation and BnCBF17-over-expression enhance photosynthetic performance and energy conversion efficiency during long-term growth of Brassica napus under elevated CO2 conditions. Planta 236:1639–1652

    Article  CAS  PubMed  Google Scholar 

  • Davidson A, Keller F, Turgeon R (2011) Phloem loading, plant growth form, and climate. Protoplasma 248:153–163

    Article  CAS  PubMed  Google Scholar 

  • Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot 86:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Duan Z, Homma A, Kobayashi M, Nagata N, Kaneko Y, Fujiki Y, Nishida I (2014) Photoassimilation, assimilate translocation and plasmodesmal biogenesis in the source leaves of Arabidopsis thaliana grown under an increased atmospheric CO2 concentration. Plant Cell Physiol 55:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumlao MR, Darehshouri A, Cohu CM, Muller O, Mathias J, Adams WW III, Demmig-Adams B (2012) Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type. Photosynth Res 113:181–189

    Article  CAS  PubMed  Google Scholar 

  • Efroni I, Eshed Y, Lifschitz E (2010) Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22:1019–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eom J-S, Chen L-Q, Sosso D, Julius BT, Lin IW, Qu X-Q, Braun DM, Frommer WB (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Cur Opin Plant Biol 25:53–62

    Article  CAS  Google Scholar 

  • Esau K (1934) Ontogeny of phloem in the sugar beet (Beta vulgaris L.). Am J Bot 21:632–644

    Article  Google Scholar 

  • Esau K (1967) Minor veins in Beta leaves: structure related to function. Proc Am Phil Soc 111:219–233

    Google Scholar 

  • Esau K, Cheadle VI (1958) Wall thickening in sieve elements. Proc Natl Acad Sci U S A 44:546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falhof J, Pedersen JT, Fuglsang AT, Palmgren M (2016) Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol Plant 9:323–337

    Article  CAS  PubMed  Google Scholar 

  • Fatichi S, Leuzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Fischer A (1884) Untersuchungen über das Siebröhren-System der Cucurbitaceen. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Fischer A (1885) Studien über die Siebröhren der Dikotylenblätter. Ber Verhanl Kön Sächsische Gesell der Wiss Leipzig. Math Phys Cl 37:245–290

    Google Scholar 

  • Foster AS (1936) Leaf differentiation in angiosperms. Bot Rev 2:349–372

    Article  Google Scholar 

  • Franks PJ (2006) Higher rates of leaf gas exchange area associated with higher leaf hydrodynamic pressure gradients. Plant Cell Environ 29:584–592

    Article  PubMed  Google Scholar 

  • Fu Q, Cheng L, Guo Y, Turgeon R (2011) Phloem loading strategies and water relations in trees and herbaceous plants. Plant Physiol 157:1518–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamalei YV (1989) Structure and function of leaf minor veins in trees and herbs. A taxonimical review. Trees 3:96–110

    Article  Google Scholar 

  • Gamalei YV, Pakhomova MV, Syutkina AV, Voitsekhovskaja OV (2000) Compartmentation of assimilate fluxes in leaves I. Ultrastructural response of mesophyll and companion cells to the alteration of assimilate export. Plant Biol 2:98–106

    Article  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Gehan MA, Park S, Gilmour SJ, An C, Lee C-M, Thomashow MF (2015) Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant J 84:682–693

    Article  CAS  PubMed  Google Scholar 

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning, and yield. Ann Rev Plant Physiol 32:485–509

    Article  CAS  Google Scholar 

  • Gifford RM, Thorne JH, Hitz WD, Giaquinta RT (1984) Crop productivity and photoassimilate partitioning. Science 225:801–808

    Article  CAS  PubMed  Google Scholar 

  • Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE (2013) Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (genus Oryza). Plant Physiol 162:1632–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Gorsuch PA, Pandey S, Atkin OK (2010) Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant Cell Environ 33:244–258

    Article  CAS  PubMed  Google Scholar 

  • Gray A (1848) A manual of the botany of the Northern United States: from New England to Wisconsin and South to Ohio and Pennsylvania inclusive, (the mosses and liverworts by Wm. S. Sullivant), arranged according to the natural system. James Munroe, Boston

    Google Scholar 

  • Gunning BES, Pate JS (1969) “Transfer cells” plant cells with wall ingrowths, specialized in relation to short distance transport of solutes – their occurrence, structure, and development. Protoplasma 68:107–133

    Article  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115

    Article  Google Scholar 

  • Hacke UG, Jacobsen AL, Pratt RB (2009) Xylem function in arid-land shrubs from California, USA: an ecological and evolutionary analysis. Plant Cell Environ 32:1324–1333

    Article  CAS  PubMed  Google Scholar 

  • Hargrave KR, Kolb KJ, Ewers FW, Davis SD (1994) Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytol 126:695–705

    Article  Google Scholar 

  • Haritatos E, Turgeon R (1995) Symplastic phloem loading by polymer trapping. In: Pontis HG, Salemo GL, Echeverria EJ (eds) Sucrose metabolism, biochemistry, physiology and molecular biology, current topics in plant physiology, vol 14. American Society of Plant Physiologists, Rockville, pp 216–224

    Google Scholar 

  • Holaday AS, Martindale W, Alred W, Brooks AL, Leedgood RC (1992) Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol 98:1105–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hölttä T, Nikinmaa E (2013) Modelling the effect of xylem and phloem transport on leaf gas exchange. Acta Hortic (991):351–358

    Google Scholar 

  • Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees 20:67–78

    Article  Google Scholar 

  • Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24:113–121

    Article  Google Scholar 

  • Hüner NPA, Bode R, Dahal K, Hollis L, Rosso D, Krol M, Ivanov AG (2012) Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited. Front Plant Sci 3:255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hüner NPA, Dahal K, Bode R, Kurepin LV, Ivanov AG (2016) Photosynthetic acclimation, vernalization, crop productivity and “the grand design of photosynthesis”. J Plant Physiol 203:29–43

    Article  PubMed  CAS  Google Scholar 

  • Jarvis AJ, Davies WJ (1998) The coupled response of stomatal conductance to photosynthesis and transpiration. J Exp Bot 49:399–406

    Article  Google Scholar 

  • Jensen KH, Berg-Sørensen K, Bruus H, Holbrook NM, Liesche J, Schulz A, Zwieniecki MA, Bohr T (2016) Sap flow and sugar transport in plants. Rev Mod Phys 88:035007

    Article  Google Scholar 

  • Jones HG (1998) Stomatal control of photosynthesis and transpiration. J Exp Bot 49:387–398

    Article  Google Scholar 

  • Kang J, Zhang H, Sun T, Shi Y, Want J, Zhang B, Want Z, Zhou Y, Gu H (2013) Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China. New Phytol 199:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Karabourniotis G, Booman JF, Nikolopoulos D (2000) A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant Cell Environ 23:423–430

    Article  Google Scholar 

  • Keller BA (1933) Über den anatomischen Bau dürre- und hitzeresistenter Blätter. Ber Deut Bot Ges 51:514–522

    Google Scholar 

  • Körner C (2013) Growth controls photosynthesis – mostly. Nova Acta Leopold 114:273–283

    Google Scholar 

  • Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta 195:313–323

    Article  CAS  Google Scholar 

  • Krapp A, Hofmann B, Schäfer C, Stitt M (1993) Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ‘sink regulation’ of photosynthesis? Plant J 3:817–828

    Article  CAS  Google Scholar 

  • Kühn C (2003) A comparison of the sucrose transporter systems of different plant species. Plant Biol 5:215–232

    Article  Google Scholar 

  • Kurepin LV, Dahal KP, Savitch LV, Singh J, Bode R, Ivanov AG, Hurry V, Hüner NPA (2013) Role of CBFs as integrators of chloroplast redox, phytochrome, and plant hormone signaling during cold acclimation. Int J Mol Sci 14:12729–12763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langan SJ, Ewers FW, Davis SD (1997) Xylem dysfunction caused by water stress and freezing in two species of co-occurring chaparral shrubs. Plant Cell Environ 20:425–437

    Article  Google Scholar 

  • Lebedincev E (1927) Physiologische une anatomische Besonderheiten der in trockener und feuchter Luft gezogenen Pflanzen. Ber Deut Bot Ges 45:83–96

    Google Scholar 

  • Maherali H, Sherrard ME, Clifford MH, Latta RG (2008) Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass. New Phytol 180:240–247

    Article  CAS  PubMed  Google Scholar 

  • Martindale W, Leegood RC (1997) Acclimation of photosynthesis to low temperature in Spinacia oleracea L. I. Effects of acclimation on CO2-assimilation and carbon partitioning. J Exp Bot 48:1865–1872

    Article  CAS  Google Scholar 

  • McKown AD, Cochard H, Sack L (2010) Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am Nat 175:447–460

    Article  PubMed  Google Scholar 

  • Melville R (1969) Leaf venation patterns and the origin of angiosperms. Nature 224:121–125

    Article  Google Scholar 

  • Monroe JG, McGovern C, Lasky JR, Grogan K, Beck J, McKay JK (2016) Adaptation to warmer climates by parallel functional evolution of CBF genes in Arabidopsis thaliana. Mol Evol 25:3632–3644

    CAS  Google Scholar 

  • Muller O, Cohu CM, Stewart JJ, Protheroe JA, Demmig-Adams B, Adams WW III (2014a) Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes. Physiol Plant 152:174–183

    Article  CAS  PubMed  Google Scholar 

  • Muller O, Stewart JJ, Cohu CM, Polutchko SK, Demmig-Adams B, Adams WW III (2014b) Leaf architectural, vascular, and photosynthetic acclimation to temperature in two biennials. Physiol Plant 152:763–772

    Article  CAS  PubMed  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  • Nardini A, Gortan E, Salleo S (2005) Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species. Funct Plant Biol 32:953–961

    Article  PubMed  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    Article  CAS  PubMed  Google Scholar 

  • Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T (2013) Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environ 36:655–669

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics. The University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (1999) A mechanical perspective on foliage leaf form and function. New Phytol 143:19–31

    Article  Google Scholar 

  • Niklas KJ (2009) Functional adaptation and phenotypic plasticity at the cellular and whole plant level. J Biosci 34:613–620

    Article  PubMed  Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology, 4th edn. Academic, Amsterdam

    Google Scholar 

  • Oakley CG, Ågren J, Atchinson RA, Schemske DW (2014) QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol Ecol 23:4304–4315

    Article  PubMed  Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    Article  CAS  PubMed  Google Scholar 

  • Palacio-López K, Beckage B, Scheiner S, Molofsky J (2015) The ubiquity of phenotypic plasticity in plants: a synthesis. Ecol Evol 5:3389–3400

    Article  PubMed  PubMed Central  Google Scholar 

  • Pate JS, Gunning BES (1969) Vascular transfer cells in angiosperm leaves. A taxonomic and morphological survey. Protoplasma 68:135–156

    Article  Google Scholar 

  • Pate JS, Gunning BES (1972) Transfer cells. Annu Rev Plant Physiol 23:173–196

    Article  Google Scholar 

  • Patrick JW, Zhang WH, Tyerman SD, Offler CE, Walker NA (2001) Role of membrane transport in phloem translocation of assimilates and water. Aust J Plant Physiol 28:695–707

    CAS  Google Scholar 

  • Pino M-T, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen THH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31:393–406

    Article  CAS  PubMed  Google Scholar 

  • Polutchko SK, Stewart JJ, Demmig-Adams B, Adams WW III (2018) Evaluating the link between photosynthetic capacity and leaf vascular organization with principal component analysis. Photosynthetica 56:392–403

    Article  CAS  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Pray TR (1954) Foliar venation of angiosperms. 1. Mature venation of Liriodendron. Am J Bot 41:663–670

    Article  Google Scholar 

  • Pray TR (1955) Foliar venation of angiosperms. 3. Pattern and histology of the venation of Hosta. Am J Bot 42:611–618

    Article  Google Scholar 

  • Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci U S A 106:14162–14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rishmawi L, Bühler J, Jaegle B, Hülskamp M, Koornneef M (2017) Quantitative trait loci controlling leaf venation in Arabidopsis. Plant Cell Environ 40:1429–1441

    Google Scholar 

  • Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001) Evolution and function of leaf venation architecture: a review. Ann Bot 87:553–566

    Article  Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:983–1000

    Article  PubMed  Google Scholar 

  • Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543–550

    Article  CAS  PubMed  Google Scholar 

  • Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539

    Article  CAS  PubMed  Google Scholar 

  • Schuster W (1908) Die Blattaderung des Dicotylenblattes und ihre Abhängigkeit von äußeren Einflüssen. Ber Deut Bot Ges 26:194–237

    Google Scholar 

  • Sevanto S, Hölttä T, Holbrook NM (2011) Effects of hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant Cell Environ 34:690–703

    Article  CAS  PubMed  Google Scholar 

  • Slewinski TL, Zhang C, Turgeon R (2013) Structural and functional heterogeneity in phloem loading and transport. Front Plant Sci 4:244

    PubMed  PubMed Central  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava AC, Ganesan S, Ismail IO, Ayre BG (2008) Functional characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol 148:200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterck FJ, Martínez-Vilalta J, Mencuccini M, Cochard H, Gerrits P, Zweifel R, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R, Ripullone F, Sass-Klaassen U (2012) Understanding trait interactions and their impacts on growth in scots pine branches across Europe. Funct Ecol 26:541–549

    Article  Google Scholar 

  • Stewart JJ, Demmig-Adams B, Cohu CM, Wenzl CA, Muller O, Adams WW III (2016) Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe. Plant Cell Environ 39:1549–1558

    Article  CAS  PubMed  Google Scholar 

  • Stewart JJ, Polutchko SK, Adams WW III, Cohu CM, Wenzl CA, Demmig-Adams B (2017a) Light, temperature, and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana. Physiol Plant 160:98–110

    Google Scholar 

  • Stewart JJ, Polutchko SK, Adams WW III, Demmig-Adams B (2017b) Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity. Photosynth Res 134:215–229

    Google Scholar 

  • Strand Å, Hurry V, Gustafsson P, Gardeström P (1997) Development of Arabidopsis thaliana leaves at low temperature releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J 12:605–614

    Article  CAS  PubMed  Google Scholar 

  • Strand Å, Hurry VM, Henkes S, Huner NPA, Gustafsson P, Gardeström P, Stitt M (1999) Acclimation of Arabidopsis leaves developing at low temperature: increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol 119:1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasburger E (1891) Über den Bau und die Berrichtunger der Leitungsbahnen in den Pflanzen. Hitsologische Beiträge 3:1–1000

    Google Scholar 

  • Strasburger E (1894) Lehrbuch der Botanik für Hochschulen. Fischer, Jena (currently in its 37th edition as Lehrbuch der Pflanzenwissenschaften)

    Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:527–542

    Article  Google Scholar 

  • Terashima I, Miyazawa SI, Hanba YT (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105

    Article  CAS  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold-response pathway. Plant Physiol 154:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgeon R (2010) The role of phloem loading reconsidered. Plant Physiol 152:1817–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgeon R, Medville R, Nixon KC (2001) The evolution of minor vein phloem and phloem loading. Am J Bot 88:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Tuzet A, Perrier A, Leuning R (2003) A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ 26:1097–1116

    Article  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  PubMed  Google Scholar 

  • Verhoeven AS, Adams WW III, Demmig-Adams B (1999) The xanthophyll cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress. Oecologia 118:277–287

    Article  CAS  PubMed  Google Scholar 

  • Vogel S (1989) Drag and reconfiguration of broad leaves in high winds. J Exp Bot 40:941–948

    Article  Google Scholar 

  • von Ettingshausen G (1861) Die Blatt-Skelete der Dikotyledonen. Staatsdruckerei Wien, Vienna

    Google Scholar 

  • Walls RL (2011) Angiosperm leaf vein patterns are linked to leaf functions in global-scale data set. Am J Bot 98:244–253

    Article  PubMed  Google Scholar 

  • Wardlaw IF (1990) The control of carbon partitioning in plants. New Phytol 116:341–381

    Article  CAS  PubMed  Google Scholar 

  • Wimmers LW, Turgeon R (1991) Transfer cells and solute uptake in minor veins of Pisum sativum leaves. Planta 186:2–12

    Article  CAS  PubMed  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Article  Google Scholar 

  • Wylie RB (1951) Principles of foliar organization shown by sun-shade leaves from ten species of deciduous dicotyledonous trees. Am J Bot 38:355–361

    Article  Google Scholar 

  • Wylie RB (1952) The bundle sheath extension in leaves of dicotyledons. Am J Bot 39:645–651

    Article  Google Scholar 

  • Zalenski W (1902) Über die Ausbildung der Nervation bei verschiedenen Pflanzen. Ber Deut Bot Ges 20:433–440

    Google Scholar 

  • Zalenski W (1904) Materials for the study of the quantitative anatomy of different leaves of the same plant. Memoires de l'Institut Polytechnique de Kiev 4:1–203

    Google Scholar 

  • Zhu S-D, Song J-J, Li R-H, Ye Q (2013) Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant Cell Environ 36:879–891

    Article  CAS  PubMed  Google Scholar 

  • Zhu JQ, van der Werf W, Anten NPR, Vos J, Evers JB (2015) The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol 207:1213–1222

    Article  PubMed  Google Scholar 

  • Zsögön A, Alves Negrini AC, Pereira Peres LE, Nguyen HT, Ball MC (2015) A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum). New Phytol 205:618–626

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research of BD-A and WWA was supported by the National Science Foundation (Award Numbers IOS-0841546 and DEB-1022236) and the University of Colorado at Boulder. We remain indebted to Profs. D. Schemske and J. Ågren for the invitation to study the Swedish and Italian ecotypes of Arabidopsis thaliana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Adams III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adams, W.W., Stewart, J.J., Polutchko, S.K., Demmig-Adams, B. (2018). Leaf Vasculature and the Upper Limit of Photosynthesis. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_2

Download citation

Publish with us

Policies and ethics