Skip to main content

Photosynthetic and Photosynthesis-Related Responses of Japanese Native Trees to CO2: Results from Phytotrons, Open-Top Chambers, Natural CO2 Springs, and Free-Air CO2 Enrichment

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 44))

Summary

We explore the effects of elevated CO2, in relation to other environmental factors, on leaf photosynthesis, the functioning of other organs, and the plant as a unit, primarily in tree species and herbs common to cool temperate forests in northeast Asia. First, results of a series of chlorophyll fluorescence and gas exchange studies using white birch as a model tree species are discussed. Excess energy appears to be suppressed by enhancing photosynthetic capacity or thermal dissipation, depending on the availability of nitrogen in both current and elevated CO2 levels. Next, evidence suggests adaptation of wild plants to CO2 near springs. If some adaptation occurs, plants will not necessarily respond like current plants to future environmental change. Finally, physiological ecology of woody plants grown in open top chambers and Free-Air CO2 Enrichment (FACE) is summarized in relation to the changing environment. This summary emphasizes that effects of future environments on plants should be examined by paying attention not only to CO2 but also to various environmental components, such as soil types, nutrient availability, herbivores, mycorrhizae, ground level O3, and methane emission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BF:

brown forest soil

Ci :

intercellular concentration of CO2

D:

thermal energy dissipation

E:

excess energy

ECM:

ectomycorrhizal

ETR:

electron transport rate

FACE:

free-air CO2 enrichment

Fm (Fm′):

maximum fluorescence level (in actinic light)

FM:

larch-forest soil with multiple species of ectomycorrhizal fungi

Fo (Fo’):

minimum fluorescence level (in actinic light)

Fv (Fv’):

variable fluorescence (in the light)

LAI:

leaf area index

LCP:

light compensation point for photosynthesis

LMA:

leaf dry mass per unit leaf area

ML50:

larval survival rate and longevity

N:

nitrogen

OTC:

open top chamber

P:

phosphorus

PFD:

photon flux density

Pgrowth :

photosynthetic rate determined at the CO2 concentration experienced during growth

PNUE:

photosynthetic nitrogen use efficiency

qP:

photochemical quenching

S:R:

ratio of shoots to roots (biomass basis)

SM:

soil with Suillus grevillei inoculum

VA:

immature volcanic ash soil

Vc,max:

maximum rate of Rubisco carboxylation

+W:

well irrigated conditions

−W:

drought conditions

WUE:

water use efficiency

Φ 680 :

slope of the photosynthetic light response curve in the light-limiting region determined with monochromatic light of 680 nm = apparent quantum yield

References

  • Aaltonen H, Linden A, Heinonsalo J, Biasi C, Pumpanen J (2017) Effects of prolonged drought stress on scots pine seedling carbon allocation. Tree Physiol 37:418–427

    PubMed  Google Scholar 

  • Agathokleous E, Saitanis CJ, Wang X, Watanabe M, Koike T (2016a) A review study on past 40 years of research on effects of tropospheric O3 on belowground structure, functioning and processes of trees: a linkage with potential ecological implications. Water Air Soil Pollut 227:33

    Article  CAS  Google Scholar 

  • Agathokleous E, Watanabe M, Eguchi N, Nakaji T, Satoh F, Koike T (2016b) Root production of Fagus crenata Blume saplings grown in two soils and exposed to elevated CO2 concentration: an 11-year free-air-CO2 enrichment (FACE) experiment in northern Japan. Water Air Soil Pollut 227:187

    Article  CAS  Google Scholar 

  • Agathokleous E, Watanabe M, Nakaji T, Wang XN, Satoh F, Koike T (2016c) Impact of elevated CO2 on root traits of a sapling community of three birches and an oak: a free-air-CO2 enrichment (FACE) in northern Japan. Trees 30:353–362

    Article  CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Davey PA, Hymus GJ, Osborne CE, Rogers A, Blum H, Long SP (2003) Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for ten years at two nitrogen fertilization levels under free air CO2 enrichment (FACE). Plant Cell Environ 26:705–714

    Article  CAS  Google Scholar 

  • Andalo C, Goldringer I, Godelle B (2001) Inter- and intragenotypic competition under elevated carbon dioxide in Arabidopsis thaliana. Ecology 82:157–164

    Article  Google Scholar 

  • Anderson LJ, Maherali H, Johnson HB, Polley HW, Jackson RB (2001) Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3-C4 grassland. Glob Chang Biol 7:693–707

    Article  Google Scholar 

  • Aoki M, Yabuki K (1977) Studies on the carbon dioxide enrichment for plant growth: VII. Changes in dry matter production and photosynthetic rate of cucumber during carbon dioxide enrichment. Agr Meteorol 18:475–485

    Article  Google Scholar 

  • Arnone JA III, Gordon JH (1990) Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra bong. New Phytol 116:55–66

    Article  CAS  Google Scholar 

  • Arp WJ (1991) Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ 14:869–875

    Article  CAS  Google Scholar 

  • Aust H-J, Hoyningen-Huene J (1986) Microclimate in relation to epidemics of powdery mildew. Annu Rev Phytopathol 24:491–510

    Article  Google Scholar 

  • Bader MKF, Hiltbrunner E, Körner C (2009) Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE). Funct Ecol 23:913–921

    Article  Google Scholar 

  • Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Körner C (2013) Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J Ecol 101:1509–1519

    Article  CAS  Google Scholar 

  • Canadell JG, Pataki DE, Pitelka LF (eds) (2007) Terrestrial ecosystems in a changing world. Springer, Berlin

    Google Scholar 

  • Chaves MM, Pereira JS, Cerasoli S, Clifton-Brown J, Miglietta F, Raschi A (1995) Leaf metabolism during summer drought in Quercus ilex trees with lifetime exposure to elevated CO2. J Biogeogr 22:255–259

    Article  Google Scholar 

  • Choi DS, Quoreshi AM, Maruyama Y, Jin HO, Koike T (2005) Effect of ectomycorrhizal infection on growth and photosynthetic characteristics of Pinus densiflora seedlings grown under elevated CO2 concentrations. Photosynthetica 43:223–229

    Article  Google Scholar 

  • Coleman JS, McConnaughay KDM, Bazzaz FA (1993) Elevated CO2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? Oecologia 93:195–200

    Article  CAS  PubMed  Google Scholar 

  • Cook AC, Tissue DT, Roberts SW, Oechel WC (1998) Effects of long-term elevated CO2 from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology. Plant Cell Environ 21:417–425

    Article  CAS  Google Scholar 

  • Cook AC, Vourlitis GL, Harazono Y (2000) Evaluating the potential for long-term elevated CO2 exposure studies using CO2 springs in Japan. J Agr Meteorol 56:31–40

    Article  Google Scholar 

  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89:887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotrufo MF, Raschi A, Lanini M, Ineson P (1999) Decomposition and nutrient dynamics of Quercus pubescens leaf litter in a naturally enriched CO2 Mediterranean ecosystem. Funct Ecol 13:343–351

    Article  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Article  CAS  Google Scholar 

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants—a consequence of rising atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    Article  CAS  PubMed  Google Scholar 

  • Dubbs LL, Whalen SC (2010) Reduced net atmospheric CH4 consumption is a sustained response to elevated CO2 in a temperate forest. Biol Fertil Soils 46:597–607

    Article  Google Scholar 

  • Edwards MC, Ayres PG (1982) Seasonal changes in resistance of Quercus petraea (sessile oak) leaves to Microsphaera alphitoides. Trans Br Mycol Soc 78:569–571

    Article  Google Scholar 

  • Eguchi N (2008) Study on the changes in CO2 fixation and storage capacity of deciduous tree species native to cool temperate zone with increasing ambient CO2 concentration. Doctoral dissertation of The Graduate School of Agriculture of Hokkaido University, Sapporo, Japan

    Google Scholar 

  • Eguchi N, Funada R, Ueda T, Takagi K, Hiura T, Sasa K, Koike T (2005) Soil moisture condition and growth of deciduous tree seedlings native to northern Japan grown under elevated CO2 with a FACE system. Phyton (Austria) 45:133–138

    CAS  Google Scholar 

  • Eguchi N, Karatsu K, Ueda T, Funada R, Takagi K, Hiura T, Koike T et al (2008a) Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in northern Japan. Trees 22:437–447

    Article  CAS  Google Scholar 

  • Eguchi N, Morii N, Ueda T, Funada R, Takagi K, Hiura T, Sasa K, Koike T (2008b) Changes in petiole hydraulic structure and leaf water flow in birch and oak saplings in an enhanced CO2 environment. Tree Physiol 28:287–295

    Article  CAS  PubMed  Google Scholar 

  • Emberson L, Ashmore M, Murry F (eds) (2004) Air pollution impacts on crops and forests. Imperial College Press, London

    Google Scholar 

  • Epron D, Dreyer E (1992) Effects of severe dehydration on leaf photosynthesis in Quercus petraea (Matt.) Liebl.: photosystem II efficiency, photochemical and nonphotochemical fluorescence quenching and electrolyte leakage. Tree Physiol 10:273–284

    Article  CAS  PubMed  Google Scholar 

  • Fajer ED, Bowers MD, Bazzaz FA (1989) The effects of enriched carbon dioxide atmospheres on plant—insect herbivore interactions. Science 243:1198–1200

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Fernandez MD, Pieters A, Donoso C, Tezara W, Azkue M, Herrera C, Herrera A et al (1998) Effects of a natural source of very high CO2 concentration on the leaf gas exchange, xylem water potential and stomatal characteristics of plants of Spatiphylum cannifolium and Bauhinia multinervia. New Phytol 138:689–697

    Article  Google Scholar 

  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352

    Article  CAS  Google Scholar 

  • Fordham M, Barnes JD, Bettarini I, Polle A, Slee N, Raines C, Raschi A et al (1997) The impact of elevated CO2 on growth and photosynthesis in Agrostis canina L. ssp. Monteluccii adapted to contrasting atmospheric CO2 concentrations. Oecologia 110:169–178

    Article  PubMed  Google Scholar 

  • Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, von Caemmerer S et al (2013) Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol 197:1077–1094

    Article  CAS  PubMed  Google Scholar 

  • Gahrooee FR (1998) Impacts of elevated atmospheric CO2 on litter quality, litter decomposability and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem. Glob Chang Biol 4:667–677

    Article  Google Scholar 

  • Gough CM, Vogel CS, Brady Hardiman B, Curtis PS (2010) Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession. For Ecol Manag 260:36–41

    Article  Google Scholar 

  • Hara Y, Watanabe M, Takagi K, Mao QZ, Koike T (2012) Dynamics of leaf area index of 3 kinds of birch species grown under free air CO2 enrichment (FACE) system. –temporal changes of CO2 exposure for 4 years. Boreal For Res 60:39–40 (in Japanese)

    Google Scholar 

  • Hättenschwiler S, Körner C (1996) System-level adjustments to elevated CO2 in model ecosystems. Glob Chang Biol 2(3):77–387

    Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) Thirty years of in situ tree growth under elevated CO2—a model for future forest responses. Glob Chang Biol 3:463–471

    Article  Google Scholar 

  • Hendrey GR (1992) FACE: free air CO2 enrichment for plant research in the field. CRC Press, Boca Raton

    Google Scholar 

  • Hikosaka K, Niinemets Ü, NPR A (2016) Canopy photosynthesis: from basics to applications. Springer, Berlin

    Book  Google Scholar 

  • Idso KE, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agric For Meteorol 69:153–203

    Article  Google Scholar 

  • Irigoyen JJ, Goicoechea N, Antolín MC, Pascual I, Sánchez-Díaz M, Aguirreolea J, Morales F (2014) Growth, photosynthetic acclimation and yield quality in legumes grown under climate change simulations: an updated survey. Plant Sci 226:22–29

    Article  CAS  PubMed  Google Scholar 

  • Jones MB, Clifton Brown J, Raschi A, Miglietta F (1995) The effects on Arbutus unedo L. of long-term exposure to elevated CO2. Glob Chang Biol 1:295–302

    Article  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  PubMed  Google Scholar 

  • Karnosky DF, Percy KE, Chappelka AH, Krupa SV (2003) Air pollution and global change impacts on forest ecosystems: monitoring and research needs. Elsevier Ltd., Oxford

    Google Scholar 

  • Kato MC, Hikosaka K, Hirotsu N, Makino A, Hirose T (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol 44:318–325

    Article  CAS  PubMed  Google Scholar 

  • Kelly CK, Chase MW, de Bruijn A, Fay MF, Woodward FI (2003) Temperature-based population segregation in birch. Ecol Lett 6:87–89

    Article  Google Scholar 

  • Kim YS, Watanabe M, Imori M, Sasa K, Takagi K, Hatano R, Koike T (2011) Reduced atmospheric CH4 consumption by two forest soils under elevated CO2 concentration in a FACE system in northern Japan. Jpn J Atmos Environ 46:30–36

    CAS  Google Scholar 

  • Kimbara K (1992) Distribution map and catalogue of hot and mineral springs in Japan. Geological Survey of Japan, Tsukuba

    Google Scholar 

  • Kira T, Shidei T (1976) Primary productivity of Japanese forests—productivity of terrestrial communities, JIBP Synthesis, vol 16. University of Tokyo Press, Tokyo

    Google Scholar 

  • Kitao M, Lei TT (2007) Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought. Plant Biol 9:69–75

    Article  CAS  PubMed  Google Scholar 

  • Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2003) Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiol Plant 118:406–413

    Article  CAS  Google Scholar 

  • Kitao M, Koike T, Tobita H, Maruyama Y (2005) Elevated CO2 and limited nitrogen nutrition can restrict excitation energy dissipation in photosystem II of Japanese white birch (Betula platyphylla var. japonica) leaves. Physiol Plant 125:64–73

    Article  CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T, Kayama M, Tobita H, Maruyama Y (2007) Interaction of drought and elevated CO2 concentration on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch seedlings grown with limited N availability. Tree Physiol 27:727–735

    Article  CAS  PubMed  Google Scholar 

  • Kitao M, Kitaoka S, Komatsu M, Utsugi H, Tobita H, Koike T, Maruyama Y (2012) Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient. Physiol Plant 146:192–204

    Article  CAS  PubMed  Google Scholar 

  • Kitao M, Hida T, Eguchi N, Tobita H, Utsugi H, Uemura A, Koike T et al (2016) Light compensation point in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2. Plant Biol 18:22–27

    Article  CAS  PubMed  Google Scholar 

  • Kitao M, Kitaoka S, Harayama H, Tobita H, Agathokleous E, Utsugi H (2018) Canopy nitrogen distribution is optimized to prevent photoinhibition throughout the canopy during sun flecks. Sci Rep (in press)

    Google Scholar 

  • Kobayashi K (2015) FACE-ing the challenges of increasing surface ozone concentration in Asia. J Agric Meteor 71:161–166

    Article  Google Scholar 

  • Koch GW (1994) The use of natural situation of CO2 enrichment in studies of vegetation response to increasing atmospheric CO2. In: Schulze ED, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Commission of the European Communities, Luxembourg, pp 381–392

    Google Scholar 

  • Kohut R (2003) The long-term effects of carbon dioxide on natural systems: issues and research needs. Environ Int 29:171–180

    Article  CAS  PubMed  Google Scholar 

  • Koike T (1991) Light utilization of deciduous broadleaved trees a view point of photosynthesis. Research Report, FFPRI Hokkaido 25:1–8 (in Japanese)

    Google Scholar 

  • Koike T (1993) Effects of CO2 in interaction with temperature and soil fertility on the foliar phenology of alder, birch, and maple seedlings. Can J Bot 73:149–157

    Article  Google Scholar 

  • Koike T (1995) Physiological ecology of the growth characteristics of Japanese mountain birch in northern Japan: a comparison with Japanese mountain white birch. In: Box EO, Peet RK, Masuzawa T, Yamada I, Fujiwara K, Maycock PF (eds) Vegetation science in forestry. Kluwer Academic Publishers, Dordrecht, pp 409–422

    Google Scholar 

  • Koike T, Kohda H, Mori S, Takahashi K, Inoue MT, Lei TT (1995) Growth responses of the cuttings of two willow species to elevated CO2 and temperature. Plant Species Biol 10:95–101

    Article  Google Scholar 

  • Koike T, Lei TT, Maximov TC, Tabuchi R, Takahashi K, Ivanov BI (1996) Comparison of the photosynthetic capacity of Siberian and Japanese birch seedlings grown in elevated CO2 and temperature. Tree Physiol 16:381–385

    Article  CAS  PubMed  Google Scholar 

  • Koike T, Izuta T, Lei TT, Kitao M, Asanuma S (1997) Effects of high CO2 on nodule formation in roots of Japanese mountain alder seedlings grown under two nutrient levels. Plant Soil 195:887–888

    Google Scholar 

  • Koike T, Kitao M, Quoreshi AM, Matsuura Y (2003) Growth characteristics of root-shoot relations of three birch seedlings raised under different water regimes. Plant Soil 255:303–310

    Article  CAS  Google Scholar 

  • Koike T, Tobita H, Shibata T, Mastuki S, Konno K, Kitao M, Maruyama Y et al (2006) Defense characteristics of seral deciduous broad-leaved tree seedlings grown under differing levels of CO2 and nitrogen. Popul Ecol 48:23–29

    Article  Google Scholar 

  • Koike T, Mao Q, Inada N, Kawaguchi K, Hoshika Y, Kita K, Watanabe M (2012) Growth and photosynthetic responses of cuttings of a hybrid larch (Larix gmelinii var. japonica x L. kaempferi) to elevated ozone and/or carbon dioxide. Asian J Atmos Environ 6:104–110

    Article  CAS  Google Scholar 

  • Koike T, Watanabe M, Watanabe Y, Agathokleous E, Mao QZ, Eguchi N, Funada R et al (2015) Ecophysiology of deciduous trees native to Northeast Asia grown under FACE (free air CO2 enrichment). J Agric Meteorol 71:174–184

    Article  Google Scholar 

  • Körner C, Arnone JA III (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672–1675

    Article  PubMed  Google Scholar 

  • Körner C, Miglietta F (1994) Long term effects of naturally elevated CO2 on Mediterranean grassland and forest trees. Oecologia 99:343–351

    Article  PubMed  Google Scholar 

  • Kornyeyev D, Logan BA, Holaday AS (2010) Excitation pressure as a measure of the sensitivity of photosystem II to photoinactivation. Funct Plant Biol 37:943–951

    Article  CAS  Google Scholar 

  • Lambers H, Chapin IIIFS, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Lemon ER (1983) CO2 and plants. AAAS selected symposium 84. Westview Press, Boulder

    Google Scholar 

  • Leppälammi-Kujansuu J, Aro L, Salemaa M, Hansson K, Berggren Kleja D, Helmisaari HS (2014) Fine root longevity and carbon input into soil from below- and aboveground litter in climatically contrasting forests. For Ecol Manag 326:79–90

    Article  Google Scholar 

  • Lindroth RL (1996) Consequences of elevated atmospheric CO2 for forest insects. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities, Physiological ecology series. Academic Press, San Diego, pp 347–361

    Chapter  Google Scholar 

  • Lindroth RL (2010) Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J Chem Ecol 36:2–21

    Article  CAS  PubMed  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277

    Article  Google Scholar 

  • Liu L, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12:1103–1117

    Article  CAS  PubMed  Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric carbon dioxide concentrations: has its importance been underestimated? Plant Cell Environ 14:729–740

    Article  CAS  Google Scholar 

  • Matsumura H, Mikami C, Sakai Y, Murayama K, Izuta T, Yenekura T, Miwa M, Kohno Y (2005) Impacts of elevated O3 and/or CO2 on growth of Betula platyphylla, Betula ermanii, Fagus crenata, Pinus densiflora and Cryptomeria japonica seedlings. J Agric Meteorol 60:1121–1124

    Article  Google Scholar 

  • Mcelrone AJ, Reid CD, Hoye KA, Hart E, Jackson RB (2005) Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob Chang Biol 11:1828–1836

    Article  Google Scholar 

  • McNear DH (2013) The rhizosphere—roots, soil and everything in between. Nat Educ 4:1–8

    Google Scholar 

  • Miglietta F, Raschi M (1993) Studying the effect of elevated CO2 in the open in a naturally enriched environment in Central Italy. Vegetation 104/105:391–400

    Article  Google Scholar 

  • Miglietta F, Raschi A, Bettarini I, Resti R, Selvi F (1993a) Natural CO2 springs in Italy: a resource for examining long-term response of vegetation to rising atmospheric CO2 concentrations. Plant Cell Environ 16:873–878

    Article  CAS  Google Scholar 

  • Miglietta F, Raschi A, Resti R, Resti R, Selvi F (1993b) Growth and onto-morphogenesis of soybean (Glycine max Merril) in an open, naturally CO2-enriched environment. Plant Cell Environ 16:909–918

    Article  CAS  Google Scholar 

  • Miglietta F, Raschi A, Bettarini I, Baldiani M, van Gardingen P (1994) Carbon dioxide springs and their use for experimentation. In: Schulze ED, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Commission of the European Communities, Luxembourg, pp 393–403

    Google Scholar 

  • Monsi M, Saeki T (1978) Ecophysiology of photosynthetic productivity, JIBP synthesis, vol 19. The University of Tokyo Press, Tokyo

    Google Scholar 

  • Morales F, Pascual I, Sánchez-Díaz M, Aguirreolea J, Irigoyen JJ, Goicoechea N, Antolín MC, Oyarzun M, Urdiain A (2014) Methodological advances: using greenhouses to simulate climate change scenarios. Plant Sci 226:30–40

    Article  CAS  PubMed  Google Scholar 

  • Morishita M, Sakata M, Takahashi M, Ishizuka S, Mizoguchi T, Inagaki Y, Terazawa K, Sawata S, Igarashi M, Yasuda H, Koyama Y, Suzuki Y, Toyota N, Muro M, Kinjo M, Yamamoto H, Ashiya D, Kanazawa Y, Hashimoto T, Umata H (2007) Methane uptake and nitrous oxide emission in Japanese forest soils and their relationship to soil and vegetation types. Soil Sci Plant Nutr 53:678–691

    Article  CAS  Google Scholar 

  • Nakaji T, Noguchi K, Oguma H (2008) Classification of rhizosphere components using visible–near infrared spectral images. Plant Soil 310:245–261

    Article  CAS  Google Scholar 

  • Nakamura I, Onoda Y, Matsushima N, Yokoyama J, Kawata M, Hikosaka K (2011) Phenotypic and genetic differences in a perennial herb across a natural gradient of CO2 concentration. Oecologia 165:809–818

    Article  PubMed  Google Scholar 

  • Newton PCD, Bell CC, Clark H (1996) Carbon dioxide emissions from mineral springs in northland and the potential of these sites for studying the effects of elevated carbon dioxide on pastures. NZ J Agric Res 39:33–40

    Article  Google Scholar 

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203

    Article  Google Scholar 

  • Nösberger J (2006) Managed ecosystems and CO2: case studies, processes and perspectives. Springer, Heidelberg

    Book  Google Scholar 

  • Oikawa T (1986) Simulation of forest carbon dynamics based on a dry-matter production model. III. Effects of increasing CO2 upon a tropical rain forest ecosystem. Bot Mag Tokyo 99:419–430

    Article  CAS  Google Scholar 

  • Onoda Y, Hikosaka K, Hirose T (2005) Natural CO2 springs in Japan: a case study of vegetation dynamics. Phyton 45:389–394

    CAS  Google Scholar 

  • Onoda Y, Hirose T, Hikosaka K (2007) Effect of elevated CO2 on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan. Ecol Res 22:475–484

    Article  CAS  Google Scholar 

  • Onoda Y, Hirose T, Hikosaka K (2009) Does leaf photosynthesis adapt to CO2-enriched environments? An experiment on plants originating from three natural CO2 springs. New Phytol 182:698–702

    Article  CAS  PubMed  Google Scholar 

  • Oren R, Ellsworth DS, Johness KH, Phillips N, Ewers BE, Maler C, Katul GG et al (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  CAS  PubMed  Google Scholar 

  • Osada N, Onoda Y, Hikosaka K (2010) Effects of atmospheric CO2 concentration, irradiance and soil nitrogen availability on leaf photosynthetic traits on Polygonum sachalinense around the natural CO2 springs in northern Japan. Oecologia 164:41–52

    Article  PubMed  Google Scholar 

  • Peltonen PA, Vapaavuori E, Julkunen-Tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Glob Chang Biol 11:1305–1324

    Article  Google Scholar 

  • Pinto H, Sharwood RE, Tissue DT, Ghannoum O (2014) Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2. J Exp Bot 65:3669–3681

    Article  PubMed  PubMed Central  Google Scholar 

  • Polle A, McKee I, Blaschke L (2001) Altered physiological and growth responses to elevated CO2 in offspring from holm oak (Quercus ilex L.) mother trees with lifetime exposure to naturally elevated CO2. Plant Cell Environ 24:1075–1083

    Article  Google Scholar 

  • Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetation 104/105:77–97

    Article  Google Scholar 

  • Pospíšilová J, Èatský J (1999) Development of water stress under increased atmospheric CO2 concentration. Biol Plant 42:1–24

    Article  Google Scholar 

  • Qu LY, Shinano T, Quoreshi AM, Tamai Y, Osaki M, Koike T (2004) Allocation of 14C-Carbon in two species of larch seedlings infected with ectomycorrhizal fungi. Tree Physiol 24:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Qu LY, Makoto K, Choi DS, Quoreshi AM, Koike T (2010) The role of Ectomycorrhiza in boreal forest ecosystem. Springer Ecol Stud 209:413–424

    Google Scholar 

  • Rapparini F, Baraldi R, Miglietta F, Loreto F (2004) Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ 27:381–391

    Article  CAS  Google Scholar 

  • Raschi A, Vaccari FP, Miglietta F (1999) Ecosystem response to CO2: the MAPLE project results. Official publications of the European Communities, Luxembourg, pp 158–167

    Google Scholar 

  • Rogers A, Ellsworth DS (2002) Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO2 (FACE). Plant Cell Environ 25:851–858

    Article  CAS  Google Scholar 

  • Ruiz-Vera UM, De Souza AP, Long SP, Ort DR (2017) The role of sink strength and nitrogen availability in the down-regulation of photosynthetic capacity in field-grown Nicotiana tabacum L. at elevated CO2 concentration. Front Plant Sci 8:998

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholefield PA, Doick KJ, Herbert BMJ, Hewitt CNS, Schnitzler JP, Pinelli P, Loreto F (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:393–401

    Article  CAS  Google Scholar 

  • Schulte M, Von Ballmoos P, Rennenberg H, Herschbach C (2002) Life-long growth of Quercus ilex L. at natural CO2 springs acclimates sulfur, nitrogen and carbohydrate metabolism of the progeny to elevated pCO2. Plant Cell Environ 25:1715–1727

    Article  CAS  Google Scholar 

  • Shi C, Kitao M, Agathokleous E, Watanabe M, Tobita H, Yazaki K, Koike T et al (2016) Foliar chemical composition of two oak species grown in a free-air enrichment system with elevated O3 and CO2. J Agric Meteorol 72:50–58

    Article  Google Scholar 

  • Smith RA, Lewis JD, Ghannoum O, Tissue DT (2012) Leaf structural responses to pre-industrial, current and elevated atmospheric CO2 and temperature affect leaf function in Eucalyptus sideroxylon. Funct Plant Biol 39:285–296

    Article  CAS  PubMed  Google Scholar 

  • Snider JL, Collins GD, Whitaker J, Perry CD, Chastain DR (2014) Electron transport through photosystem II is not limited by a wide range of water deficit conditions in field-grown Gossypium hirsutum. J Agron Crop Sci 200:77–82

    Article  CAS  Google Scholar 

  • Stylinski CD, Oechel WC, Gamon JA, Tissue DT, Miglietta F, Raschi A (2000) Effects of lifelong CO2 enrichment on carboxylation and light utilization of Quercus pubescens Willd. Examined with gas exchange, biochemistry and optical techniques. Plant Cell Environ 23:1353–1362

    Article  CAS  Google Scholar 

  • Tadaki Y, Akai T (1974) Forest –its mechanism and function. Kyoritsu-Publisher, Tokyo In Japanese

    Google Scholar 

  • Takamatsu S, Braun U, Limkaisang S, Kom-un S, Sato T, Cunnington JH (2007) Phylogeny and taxonomy of the oak powdery mildew Erysiphe alphitoides sensu lato. Mycol Res 111:809–826

    Article  CAS  PubMed  Google Scholar 

  • Temme AA, Cornwell WK, Cornelissen JHC, Aerts R (2013) Meta-analysis reveals profound responses of plant traits to glacial CO2 levels. Ecol Evol 3:4525–4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima I, Yanagisawa S, Sakakibara H (2014) Plant responses to CO2: background and perspectives. Plant Cell Physiol 55:237–240

    Article  CAS  PubMed  Google Scholar 

  • Tissue DT, Lewis JD (2012) Learning from the past: how low CO2 studies inform plant and ecosystem response to future climate change. New Phytol 194:4–6

    Article  CAS  PubMed  Google Scholar 

  • Tissue DT, Oechel WC (1987) Response of Eriphorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68:401–410

    Article  Google Scholar 

  • Tobita H, Uemura A, Kitao M, Kitaoka S, Maruyama Y, Utsugi H (2011) Effects of elevated atmospheric carbon dioxide, soil nutrients and water conditions on photosynthetic and growth responses of Alnus hirsuta. Funct Plant Biol 38:702–710

    Article  CAS  PubMed  Google Scholar 

  • Tognetti R, Giovannelli A, Longobucco A, Miglietta F, Raschi A (1996) Water relations of oak species growing in the natural CO2 spring of Rapolano (Central Italy). Ann Des Sci For 53:475–485

    Article  Google Scholar 

  • Tognetti R, Longobucco A, Miglietta F, Raschi A (1998) Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring. Plant Cell Environ 21:613–622

    Article  Google Scholar 

  • Tognetti R, Longobucco A, Miglietta F, Raschi A (1999) Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring. Tree Physiol 19:261–270

    Article  PubMed  Google Scholar 

  • Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytol 146:59–74

    Article  Google Scholar 

  • Totsuka T (1966) Relationships between CO2 concentration of air and dry matter production of higher plants. Bot Mag Tokyo 79:51–60 (in Japanese)

    Article  CAS  Google Scholar 

  • Tsurumi M, Hirabayashi J, Yoshimura K, Kondo H, Sasaki M, Ishida S (1999) Report on the volcanic gas in the Hakkoda Mountain. Official document of Aomori Prefecture, Aomori (in Japanese)

    Google Scholar 

  • Vodnik D, Pfanz H, Wittmann C, Macek I, Kastelec D, Turk B, Batic F (2002) Photosynthetic acclimation in plants growing near a carbon dioxide spring. Phyton 42:239–244

    Google Scholar 

  • Wang X, Qu L, Mao Q, Watanabe M, Hoshika Y, Koyama A, Koike T et al (2015) Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO2 and O3. Environ Pollut 197:116–126

    Article  CAS  PubMed  Google Scholar 

  • Wang XN, Agathokleous E, Qu L, Watanabe M, Koike T (2016a) Effects of CO2 and/or O3 on the interaction between root of woody plants and ectomycorrhizae. J Agric Meteorol 72:95–105

    Article  Google Scholar 

  • Wang XN, Fujita S, Nakaji T, Watanabe M, Satoh F, Koike T (2016b) Fine root turnover of Japanese white birch (Betula platyphylla var. japonica) grown under elevated CO2 in northern Japan. Trees 30:363–374

    Article  CAS  Google Scholar 

  • Watanabe Y, Tobita H, Kitao M, Maruyama Y, Choi DS, Sasa K, Koike T et al (2008) Effects of elevated CO2 and nitrogen on wood structure related to water transport in seedlings of two deciduous broad-leaved tree species. Trees 22:403–411

    Article  CAS  Google Scholar 

  • Watanabe Y, Satomura T, Sasa K, Funada R, Koike T (2010) Differential anatomical responses to elevated CO2 in saplings of four hardwood species. Plant Cell Environ 33:1101–1111

    PubMed  Google Scholar 

  • Watanabe M, Watanabe Y, Kitaoka S, Utsugi H, Kita K, Koike T (2011) Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) under elevated CO2 concentration with low nutrient availability. Tree Physiol 31:965–975

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Kitaoka S, Eguchi N, Watanabe Y, Satomura T, Takagi K, Koike T et al (2014) Photosynthetic traits and growth of Quercus mongolica var. crispula sprouts attacked by powdery mildew under free air CO2 enrichment. Eur J For Res 133:725–733

    Article  CAS  Google Scholar 

  • Watanabe M, Kitaoka S, Eguchi N, Watanabe Y, Satomura T, Takagi K, Koike T et al (2016) Photosynthetic traits of Siebold’s beech seedlings in changing light conditions by removal of shading trees under elevated CO2. Plant Biol 18:56–62

    Article  CAS  PubMed  Google Scholar 

  • Yabuki K (2004) Photosynthetic rate and dynamic environment. Springer, Tokyo (original version was 1985, Asakura publisher, Tokyo, in Japanese)

    Book  Google Scholar 

  • Yamaguchi T, Noguchi I (2015) Long-term trends for nitrate and sulfate ions in snowcover on Hokkaido, northern Japan. J Agric Meteorol 71:196–201

    Article  Google Scholar 

  • Yazaki K, Ishida S, Kawagishi T, Fukatsu E, Maruyama Y, Kitao M, Tobita H, Koike T, Funada R (2004) Effects of elevated CO2 concentration on growth, annual ring structure and photosynthesis in Larix kaempferi seedlings. Tree Physiol 24:941–949

    Article  Google Scholar 

  • Yazaki K, Maruyama Y, Mori S, Koike T, Funada R (2005) Effects of elevated carbon dioxide concentration on wood structure and formation in trees. In: Omasa K, Nouchi I, De Kok LJ (eds) Plant responses to air pollution and global change. Springer, Tokyo, pp 89–97

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. I. Terashima of The University of Tokyo for comments on a draft and Mr. T. Squires (Oregon State University, USA) for proofreading a draft. Dr. E. Agathokleous is an International Research Fellow (ID No: P17102) of the Japanese Society for the Promotion of Science (JSPS). Studies in the area of plant response to CO2 have been funded by several grants from JSPS (Innovative Areas-21114008, Type A-17208013, Type B-11460061, 11460076, challenging Exploratory Research-16658060,18658060) over several decades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayoshi Koike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koike, T. et al. (2018). Photosynthetic and Photosynthesis-Related Responses of Japanese Native Trees to CO2: Results from Phytotrons, Open-Top Chambers, Natural CO2 Springs, and Free-Air CO2 Enrichment. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_15

Download citation

Publish with us

Policies and ethics