Skip to main content

Trade-offs and Synergies in the Structural and Functional Characteristics of Leaves Photosynthesizing in Aquatic Environments

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 44))

Summary

Aquatic plants, comprising different divisions of embryophytes, derive from terrestrial ancestors. They have evolved to live in water, both fresh and salty, an environment that presents unique challenges and opportunities for photosynthesis and growth. These include, compared to air, a low water stress, a greater density, and attenuation of light, and a more variable supply of inorganic carbon, both in concentration and chemical species, but overall a lower carbon availability, and the opportunity to take up nutrients from the water. The leaves of many aquatic plants are linear, dissected, whorled, or cylindrical with a large volume of air spaces. They tend to have a high specific leaf area, thin cuticles, and usually lack functional stomata. Exploiting the availability of chemicals in their environment, freshwater macrophytes may incorporate silica in their cell wall, while seagrasses contain sulphated polysaccharides, similar to those of marine macroalgae; both groups have low lignin content. This altered cell wall composition produces plants that are more flexible and therefore more resistant to hydraulic forces (mechanical stress arising from water movement). Aquatic plants may have enhanced light harvesting complexes conferring shade adaptation, but also have mechanisms to cope with high light. Aquatic plants have evolved numerous strategies to overcome potential carbon-limitation in water. These include growing in micro-environments where CO2 is high, producing leaves and roots that exploit CO2 from the air or sediment and operating concentrating mechanisms that increase CO2 (CCM) around the primary carboxylating enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. These comprise C4 metabolism, crassulacean acid metabolism, and the ability to exploit the often high concentrations of HCO3 , and ~50% of freshwater macrophytes and ~85% of seagrasses have one or more CCM. Many of these adaptations involve trade-offs between conflicting constraints and opportunities while others represent ‘synergies’ that help to maximize the productivity of this important group of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

air

Atm:

atmospheric

ATP:

adenosine-5′-triphosphate

CAM:

crassulacean acid metabolism

CCM:

CO2-concentrating mechanism

Chl:

chlorophyll

COP1:

E3 ubiquitin ligase constitutively photomorphogenic 1

Env:

environment

FW:

freshwater

HVME1:

Hydrilla verticillata malic enzyme isoform1

Ic :

incident light at which respiratory CO2 generation is balanced by photosynthetic CO2 fixation

Ik :

incident light at which photosynthetic CO2 fixation approaches saturation

LHCB1:

light-harvesting chlorophyll-binding complex 1 of photosystem II

ME:

malic enzyme

NAD:

nicotinamide adenine dinucleotide

NADP:

nicotinamide adenine dinucleotide phosphate

PEPC:

phosphoenolpyruvate carboxylase

PEPCK:

PEP carboxykinase

PGA:

phosphoglyceric acid

PPDK:

pyruvate phosphate dikinase

ROS:

reactive oxygen species

Rubisco:

ribulose-1,5-bisphosphate carboxylase-oxygenase

RuBP:

ribulose-1,5-bisphosphate

Sed:

sedimentary

UV:

ultraviolet radiation

UVR8:

UV-B photoreceptor UV resistance locus 8

W:

water

References

  • Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2013) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117:31–44

    Article  CAS  PubMed  Google Scholar 

  • Aquino RS, Landeira-Fernandez AM, Valente AP, Andrade LR, Mourao PAS (2005) Occurrence of sulfated galactans in marine angiosperms: evolutionary implications. Glycobiology 15:11–20

    Article  CAS  PubMed  Google Scholar 

  • Arber A (1920) Water plants: a study of Aquatic Angiosperms. Cambridge University Press, Cambridge

    Google Scholar 

  • Aulio K (1986) CAM-like photosynthesis in Littorella uniflora (L.) Aschers – the role of humidity. Ann Bot 58:273–275

    Article  Google Scholar 

  • Baattrup-Pedersen A, Madsen TV (1999) Interdependence of CO2 and inorganic nitrogen on crassulacean acid metabolism and efficiency of nitrogen use by Littorella uniflora (L.) Aschers. Plant Cell Environ 22:535–542

    Article  CAS  Google Scholar 

  • Bagger J, Madsen TV (2004) Morphological acclimation of aquatic Littorella uniflora to sediment CO2 concentration and wave exposure. Funct Ecol 18:946–951

    Article  Google Scholar 

  • Bain JT, Proctor MCF (1980) The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source, some experimental evidence. New Phytol 86:393–400

    Article  CAS  Google Scholar 

  • Barko JW, Gunnison D, Carpenter SR (1991) Sediment interactions with submersed macrophyte growth and community dynamics. Aquat Bot 41:41–65

    Article  Google Scholar 

  • Beer S, Shomerilan A, Waisel Y (1980) Carbon metabolism in seagrasses. 2. Patterns of photosynthetic CO2 incorporation. J Exp Bot 31:1019–1026

    Article  CAS  Google Scholar 

  • Beer S, Waisel Y (1982) Effects of light and pressure on photosynthesis in 2 seagrasses. Aquat Bot 13:331–337

    Article  Google Scholar 

  • Beer S, Sandjensen K, Madsen TV, Nielsen SL (1991) The carboxylase activity of rubisco and the photosynthetic performance in aquatic plants. Oecologia 87:429–434

    Article  CAS  PubMed  Google Scholar 

  • Benzecry A (2013) Field notes on Thalassia testudinum growing under stress conditions. Eur J Environ 1:7–10

    Article  Google Scholar 

  • Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berveiller D, Damesin C (2008) Carbon assimilation by tree stems:potential involvement of phosphoenolpyruvate carboxylase. Trees- Struct Func 22:149–157

    Article  CAS  Google Scholar 

  • Binzer T, Sand-Jensen K, Middelboe A-L (2006) Community photosynthesis of aquatic macrophytes. Limnol Oceanogr 51:2722–2733

    Article  Google Scholar 

  • Black MA, Maberly SC, Spence DHN (1981) Resistance to carbon dioxide fixation in four submerged freshwater macrophytes. New Phytol 89:557–568

    Article  CAS  Google Scholar 

  • Bodkin PC, Spence DHN, Weeks DC (1980) Photoreversible control of heterophylly in Hippuris vulgaris L. New Phytol 84:533–542

    Article  Google Scholar 

  • Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14

    Article  CAS  Google Scholar 

  • Borum J, Pedersen O, Kotula L, Fraser MW, Statton J, Colmer TD, Kendrick GA (2015) Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ 39:1240–1250

    Article  CAS  Google Scholar 

  • Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722

    Article  CAS  PubMed  Google Scholar 

  • Bowes G, Ogren WL (1972) Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J Biol Chem 247:2171–2176

    CAS  PubMed  Google Scholar 

  • Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct Plant Biol 29:379–392

    Article  CAS  PubMed  Google Scholar 

  • Bowes G (2011) Single-cell C4 photosynthesis in aquatic plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms, pp 63–80

    Google Scholar 

  • Bristow JM (1969) The effects of carbon dioxide on the growth and development of amphibious plants. Can J Bot 47:1803–1807

    Article  CAS  Google Scholar 

  • Cao T, Ni L, Xie P, Xu J, Zhang M (2011) Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability. Freshw Biol 56:1620–1629

    Article  CAS  Google Scholar 

  • Carr H, Axelsson L (2008) Photosynthetic utilization of bicarbonate in Zostera marina is reduced by inhibitors of mitochondrial ATPase and electron transport. Plant Physiol 147:879–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casati P, Lara MV, Andreo CS (2000) Induction of a C-4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species. Plant Physiol 123:1611–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26

    Article  Google Scholar 

  • Chen LY, Chen JM, Gituru RW, Wang QF (2012) Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol Biol 12:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chollet R, Vidal J, Oleary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47:273–298

    Article  CAS  PubMed  Google Scholar 

  • Clement R, Dimnet L, Maberly SC, Gontero B (2016) The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. New Phytol 209:1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    Article  CAS  PubMed  Google Scholar 

  • Collen J, Porcel B, Carre W, Ball SG, Chaparro C, Tonon T,. .. Boyen C (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247--5252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman JA, Sorsa K, Hoffmann JP, Smith CS, Andrews JH (1987) Yield- and photosynthesis-derived critical concentrations of tissue phosphorus and their significance for growth of Eurasian water milfoil, Myriophyllum spicatum. Aquat Bot 29:111–122

    Article  CAS  Google Scholar 

  • Colmer TD, Pedersen O (2008) Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol 177:918–926

    Article  CAS  PubMed  Google Scholar 

  • Cook CDK (1990) Aquatic plant book. SPB Publishing, The Hague

    Google Scholar 

  • Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv Ecol Res 23:93–185

    Article  CAS  Google Scholar 

  • Cushman JC, Borland AM (2002) Induction of Crassulacean acid metabolism by water limitation. Plant Cell Environ 25:295–310

    Article  CAS  PubMed  Google Scholar 

  • Dacey JWH (1980) Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210:1017–1019

    Article  CAS  PubMed  Google Scholar 

  • Dacey JWH (1981) Pressurized ventilation in the Yellow Waterlily. Ecology 62:1137–1147

    Article  Google Scholar 

  • Degroote D, Kennedy RA (1977) Photosynthesis In Elodea canadensis Michx: four-carbon acid synthesis. Plant Physiol 59:1133–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demars BOL, Edwards AC (2007) Tissue nutrient concentrations in freshwater aquatic macrophytes: high inter-taxon differences and low phenotypic response to nutrient supply. Freshw Biol 52:2073–2086

    Article  CAS  Google Scholar 

  • den Hartog C, Kuo J (2006) Taxonomy and biogeography of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 1–23

    Google Scholar 

  • Denny MW (1993) Air and water: the biology and physics of life’s media. Princeton University Press, Princeton

    Google Scholar 

  • Denny P, Weeks DC (1970) Effects of light and bicarbonate on membrane potential in Potamogeton schweinfurthii (Benn). Ann Bot 34:483–496

    Article  CAS  Google Scholar 

  • Denny P (1980) Solute movement in submerged angiosperms. Biol Rev Camb Philos Soc 55:65–92

    Article  CAS  Google Scholar 

  • Deschamp PA, Cooke TJ (1983) Leaf dimorphism in aquatic angiosperms: significance of turgor pressure and cell expansion. Science 219:505–507

    Article  CAS  PubMed  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S et al (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  PubMed  CAS  Google Scholar 

  • Du Z-Y, Wang Q-F (2014) Correlations of life form, pollination mode and sexual system in aquatic angiosperms. Plos One 9:e115653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  CAS  Google Scholar 

  • Edwards D, Kerp H, Hass H (1998) Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49:255–278

    Article  Google Scholar 

  • Edwards GE, Franceschi VR, Ku MSB, Voznesenskaya EV, Pyankov VI, Andreo CS (2001) Compartmentation of photosynthesis in cells and tissues of C4 plants. J Exp Bot 52:577–590

    CAS  PubMed  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  CAS  PubMed  Google Scholar 

  • Enriquez S, Duarte CM, SandJensen K, Nielsen SL (1996) Broad-scale comparison of photosynthetic rates across phototrophic organisms. Oecologia 108:197–206

    Article  PubMed  Google Scholar 

  • Enriquez S (2005) Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 289:141–150

    Article  Google Scholar 

  • Espineira JM, Novo Uzal E, Gomez Ros LV, Carrion JS, Merino F, Ros Barcelo A, Pomar F (2011) Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol 13:59–68

    Article  CAS  PubMed  Google Scholar 

  • Estavillo GM, Rao SK, Reiskind JB, Bowes G (2007) Characterization of the NADP malic enzyme gene family in the facultative, single-cell C4 monocot Hydrilla verticillata. Photosynth Res 94:43–57

    Article  CAS  PubMed  Google Scholar 

  • Farmer AM, Maberly SC, Bowes G (1986) Activities of carboxylation enzymes in freshwater macrophytes. J Exp Bot 37:1568–1573

    Article  CAS  Google Scholar 

  • Fondy BR, Geiger DR (1982) Diurnal pattern of translocation and carbohydrate-metabolism in source leaves of Beta vulgaris L. Plant Physiol 70:671–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2001) Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410:357–360

    Article  CAS  PubMed  Google Scholar 

  • Frost-Christensen H, Jogensen LB, Floto F (2003) Species specificity of resistance to oxygen diffusion in thin cuticular membranes from amphibious plants. Plant Cell Environ 26:561–569

    Article  Google Scholar 

  • Gerloff GC, Krombholz PH (1966) Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnol Oceanogr 11:529–537

    Article  Google Scholar 

  • Germ M, Mazej Z, Gaberscik A, Hader DP (2002) The influence of enhanced UV-B radiation on Batrachium trichophyllum and Potamogeton alpinus - aquatic macrophytes with amphibious character. J Photochem Photobiol B Biol 66:37–46

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Golicz AA, Schliep M, Lee HT, Larkum AWD, Dolferus R, Batley J et al (2015) Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. J Exp Bot 66:1489–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez B, Daviero-Gomez V, Coiffard C, Martin-Closas C, Dilcher DL (2015) Montsechia, an ancient aquatic angiosperm. Proc Natl Acad Sci U S A 112:10985–10,988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gontero B, Salvucci ME (2014) Regulation of photosynthetic carbon metabolism in aquatic and terrestrial organisms by Rubisco activase, redox-modulation and CP12. Aquat Bot 118:14–23

    Article  CAS  Google Scholar 

  • Graham L, Lewis LA, Taylor W, Wellman C, Cook M (2014) Early terrestrialization: transition from algal to bryophyte grade. In: Hanson DT, Rice SK (eds) Photosynthesis in Bryophytes and Early Land Plants. Springer, Dordercht, pp 9–28

    Chapter  Google Scholar 

  • Grasset C, Delolme C, Arthaud F, Bornette G (2015) Carbon allocation in aquatic plants with contrasting strategies: the role of habitat nutrient content. J Veg Sci 26:946–955

    Article  Google Scholar 

  • Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  • Grosse W, Buchel HB, Tiebel H (1991) Pressurized ventilation in wetland plants. Aquat Bot 39:89–98

    Article  Google Scholar 

  • Gu S, Yin L, Wang Q-f (2015) Phosphoenolpyruvate carboxylase in the stem of the submersed species Egeria densa may be involved in an inducible C4-like mechanism. Aquat Bot 125:1–8

    Article  CAS  Google Scholar 

  • Gutierre M, Gracen VE, Edwards GE (1974) Biochemical and cytological relationships in C4 plants. Planta 119:279–300

    Article  Google Scholar 

  • Hadj-Saïd J, Pandelia M-E, Léger C, Fourmond V, Dementin S (2015) The carbon monoxide dehydrogenase from Desulfovibrio vulgaris. Biochim Biophys Acta 1847:1574–1583

    Article  PubMed  CAS  Google Scholar 

  • Hatch MD (1987) C4 Photosynthesis - a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895:81–106

    Article  CAS  Google Scholar 

  • Hellblom F, Beer S, Bjork M, Axelsson L (2001) A buffer sensitive inorganic carbon utilisation system in Zostera marina. Aquat Bot 69:55–62

    Article  CAS  Google Scholar 

  • Hellblom F, Axelsson L (2003) External HCO3 dehydration maintained by acid zones in the plasma membrane is an important component of the photosynthetic carbon uptake in Ruppia cirrhosa. Photosynth Res 77:173–181

    Article  CAS  PubMed  Google Scholar 

  • Hibberd JM, Quick WP (2002) Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415:451–454

    Article  CAS  PubMed  Google Scholar 

  • Holaday AS, Bowes G (1980) C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Plant Physiol 65:331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu JS, Powell J, Adler PB (2012) Sensitivity of mean annual primary production to precipitation. Global Change Biol 18:2246–2255

    Article  Google Scholar 

  • Hussner A, Hoelken HP, Jahns P (2010) Low light acclimated submerged freshwater plants show a pronounced sensitivity to increasing irradiances. Aquat Bot 93:17–24

    Article  Google Scholar 

  • Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36:145–174

    Article  CAS  Google Scholar 

  • Janauer GA, Englmaier P (1986) The effects of emersion on soluble carbohydrate accumulations in Hippuris vulgaris L. Aquat Bot 24:241–248

    Article  CAS  Google Scholar 

  • Johnson MP (1967) Temperature dependent leaf morphogenesis in Ranunculus flabellaris. Nature 214:1354–1355

    Article  Google Scholar 

  • Kane ME, Albert LS (1982) Growth regulators in aquatic plants: environmental and growth regulator effects on heterophylly and growth of Proserpinaca intermedia (Haloragaceae). Aquat Bot 13:73–85

    Article  CAS  Google Scholar 

  • Karlsson J, Bystrom P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–509

    Article  CAS  PubMed  Google Scholar 

  • Keeley JE (1981) Isoetes howellii a submerged aquatic CAM plant. Am J Bot 68:420–424

    Article  CAS  Google Scholar 

  • Keeley JE, Mathews RP, Walker CM (1983) Diurnal acid metabolism in Isoetes howellii from a temporary pool and a permanent lake. Am J Bot 70:854–857

    Article  CAS  Google Scholar 

  • Keeley JE, Busch G (1984) Carbon assimilation characteristics of the aquatic CAM plant, Isoetes howellii. Plant Physiol 76:525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175

    Article  Google Scholar 

  • Keeley JE (2014) Aquatic CAM photosynthesis: a brief history of its discovery. Aquat Bot 118:38–44

    Article  CAS  Google Scholar 

  • Kirk JTO (2011) Light and photosynthesis in aquatic environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Klančnik K, Pančić M, Gaberščik A (2014) Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiologia 737:121–130

    Article  CAS  Google Scholar 

  • Klavsen SK, Maberly SC (2009) Crassulacean acid metabolism contributes significantly to the in situ carbon budget in a population of the invasive aquatic macrophyte Crassula helmsii. Freshw Biol 54:105–118

    Article  CAS  Google Scholar 

  • Klavsen SK, Madsen TV, Maberly SC (2011) Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review. Photosynth Res 109:269–279

    Article  CAS  PubMed  Google Scholar 

  • Klavsen SK, Madsen TV (2012) Seasonal variation in crassulacean acid metabolism by the aquatic isoetid Littorella uniflora. Photosynth Res 112:163–173

    Article  CAS  PubMed  Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological function of the matrix polysaccharides. Oceanogr Mar Biol 26:259–315

    Google Scholar 

  • Koch K, Kennedy RA (1980) Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. Plant Physiol 65:193–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132

    Article  PubMed  Google Scholar 

  • Koi S, Ikeda H, Rutishauser R, Kato M (2015) Historical biogeography of river-weeds (Podostemaceae). Aquat Bot 127:62–69

    Article  Google Scholar 

  • Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685:1–17

    Article  Google Scholar 

  • Krause-Jensen D, Sand-Jensen K (1998) Light attenuation and photosynthesis of aquatic plant communities. Limnol Oceanogr 43:396–407

    Article  CAS  Google Scholar 

  • Kroth PG (2015) The biodiversity of carbon assimilation. J Plant Physiol 172:76–81

    Article  CAS  PubMed  Google Scholar 

  • Kuo J, den Hartog C (2006) Seagrass morphology, anatomy, and ultrastructure. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 57–87

    Google Scholar 

  • Lara MV, Casati P, Andreo CS (2002) CO2 concentrating mechanisms in Egeria densa, a submersed aquatic plant. Physiol Plant 115:487–495

    Article  CAS  PubMed  Google Scholar 

  • Larkum AWD, Davey PA, Kuo J, Ralph PJ, Raven JA (2017) Carbon-concentrating mechanisms in seagrasses. J Exp Bot 68:3773–3784

    Article  CAS  PubMed  Google Scholar 

  • Lamb JB, van de Water JAJM, Bourne DG, Altier C, Hein MY, Fiorenza EA, Abu N, Jompa J, Harvell CD (2017) Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355:731–733

    Article  CAS  PubMed  Google Scholar 

  • Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175

    Article  Google Scholar 

  • Leegood RC (2013) Strategies for engineering C4 photosynthesis. J Plant Physiol 170:378–388

    Article  CAS  PubMed  Google Scholar 

  • Les DH, Schneider EL (1995) The nymphaeales, alismatidae, and the theory of an aquatic monocotyledon origin. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 23–42

    Google Scholar 

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463

    Article  Google Scholar 

  • Les DH, Tippery N (2013) In time and with water... the systematics of alismatid monocotyledons. In: Wilkin P, Mayo SJ (eds) Early events in monocot evolution. Cambridge University Press, Cambridge, pp 118–164

    Chapter  Google Scholar 

  • Les DH (2015) Water from the rock: ancient aquatic angiosperms flow from the fossil record. Proc Natl Acad Sci U S A 112:10825–10,826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin B-L, Yang W-J (1999) Blue light and abscisic acid independently induce heterophyllous switch in Marsilea quadrifolia. Plant Physiol 119:429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorimer GH, Miziorko HM (1980) Carbamate formation on the epsilon-amino group of a lysyl residue as the basis for the activation of ribulose bisphosphate carboxylase by CO2 and Mg2+. Biochemistry 19:5321–5328

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Smith FA (1973) Formation of alkaline and acid regions at surface of Chara corallina cells. J Exp Bot 24:1–14

    Article  CAS  Google Scholar 

  • Maberly SC, Spence DHN (1983) Photosynthetic inorganic carbon use by freshwater plants. J Ecol 71:705–724

    Article  CAS  Google Scholar 

  • Maberly SC (1985a) Photosynthesis by Fontinalis antpyretica. 1. Interaction between photon irradiance, concentration of carbon dioxide and temperature. New Phytol 100:127–140

    Article  Google Scholar 

  • Maberly SC (1985b) Photosynthesis by Fontinalis antipyretica 2. Assessment of environmental factors limiting photosynthesis and production. New Phytol 100:141–155

    Article  CAS  Google Scholar 

  • Maberly SC, Spence DHN (1989) Photosynthesis and photorespiration in freshwater organisms- amphibious plants. Aquat Bot 34:267–286

    Article  CAS  Google Scholar 

  • Maberly SC (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J Phycol 26:439–449

    Article  CAS  Google Scholar 

  • Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol 35:579–598

    Article  CAS  Google Scholar 

  • Maberly SC, Madsen TV (1998) Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3. Funct Ecol 12:99–106

    Article  Google Scholar 

  • Maberly SC, Madsen TV (2002) Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct Plant Biol 29:393–405

    Article  CAS  PubMed  Google Scholar 

  • Maberly SC (2014) The fitness of the environments of air and water for photosynthesis, growth, reproduction and dispersal of photoautotrophs: an evolutionary and biogeochemical perspective. Aquat Bot 118:4–13

    Article  Google Scholar 

  • Maberly SC, Berthelot SA, Stott AW, Gontero B (2015) Adaptation by macrophytes to inorganic carbon down a river with naturally variable concentrations of CO2. J Plant Physiol 172:120–127

    Article  CAS  PubMed  Google Scholar 

  • Maberly SC, Gontero B (2017) Ecological imperatives for aquatic CO2-concentrating mechanisms. J Exp Bot 68:3797–3814

    Article  CAS  PubMed  Google Scholar 

  • Madsen JD (1991) Ecology of submersed aquatic macrophytes resource allocation at the individual plant level. Aquat Bot 41:67–86

    Article  Google Scholar 

  • Madsen TV (1985) A community of submerged aquatic CAM plants in lake Kalgaard, Denmark. Aquat Bot 23:97–108

    Article  Google Scholar 

  • Madsen TV (1987a) Interactions between internal and external CO2 pools in the photosynthesis of the aquatic CAM plants Littorella uniflora (L) Aschers and Isoetes lacustris L. New Phytol 106:35–50

    Article  Google Scholar 

  • Madsen TV (1987b) The effect of different growth conditions on dark and light carbon assimilation in Littorella uniflora. Physiol Plant 70:183–188

    Article  CAS  Google Scholar 

  • Madsen TV, Maberly SC (1991) Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate. Freshw Biol 26:175–187

    Article  Google Scholar 

  • Madsen TV, Breinholt M (1995) Effects of air contact on growth, inorganic carbon sources and nitrogen uptake by an amphibous freshwater macrophyte. Plant Physiol 107:149–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen TV, Cedergreen N (2002) Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshw Biol 47:283–291

    Article  Google Scholar 

  • Madsen TV, Olesen B, Bagger J (2002) Carbon acquisition and carbon dynamics by aquatic isoetids. Aquat Bot 73:351–371

    Article  CAS  Google Scholar 

  • Madsen TV, Maberly SC (2003) High internal resistance to CO2 uptake by submerged macrophytes that use HCO3 : measurements in air, nitrogen and helium. Photosynth Res 77:183–190

    Article  CAS  PubMed  Google Scholar 

  • Magnin NC, Cooley BA, Reiskind JB, Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol 115:1681–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnaughey T (1991) Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol Oceanogr 36:619–628

    Article  CAS  Google Scholar 

  • Meybeck M (1979) Major elements contents of river waters and dissolved inputs to the oceans. Rev. Geol Dyn Geogr Phys 21:215–246

    CAS  Google Scholar 

  • Meyer M, Griffiths H (2013) Origins and diversity of eukaryotic CO2 concentrating mechanisms: lessons for the future. J Exp Bot 64:769–786

    Article  CAS  PubMed  Google Scholar 

  • Middelboe AL, Markager S (1997) Depth limits and minimum light requirements of freshwater macrophytes. Freshw Biol 37:553–568

    Article  Google Scholar 

  • Miler O, Albayrak I, Nikora V, O’Hare M (2012) Biomechanical properties of aquatic plants and their effects on plant-flow interactions in streams and rivers. Aquat Sci 74:31–44

    Article  Google Scholar 

  • Moller CL, Sand-Jensen K (2011) High sensitivity of Lobelia dortmanna to sediment oxygen depletion following organic enrichment. New Phytol 190:320–331

    Article  CAS  PubMed  Google Scholar 

  • Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B et al (1995) The attentuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391

    Article  CAS  Google Scholar 

  • Newman JR, Raven JA (1995) Photosynthetic carbon assimilation by Crassula helmsii. Oecologia 101:494–499

    Article  PubMed  Google Scholar 

  • Nielsen LT, Borum J (2008) Why the free floating macrophyte Stratiotes aloides mainly grows in highly CO2-supersaturated waters. Aquat Bot 89:379–384

    Article  CAS  Google Scholar 

  • Nielsen SL, Nielsen HD (2006) Pigments, photosynthesis and photoinhibition in two amphibious plants: consequences of varying carbon availability. New Phytol 170:311–319

    Article  CAS  PubMed  Google Scholar 

  • Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Offermann S, Okita TW, Edwards GE (2011) Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici. Plant Physiol 155:1612–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JL, Rouzé P, Verhelst B, Lin Y-C, Bayer T, Collen J et al (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331–335

    Article  CAS  PubMed  Google Scholar 

  • Osmond CB (1984) CAM: regulated photosynthetic metabolism for all seasons. In: Sybesma C (ed) Advances in photosynthesis research. Junk, The Hague, pp 557–563

    Chapter  Google Scholar 

  • Pagani M, Caldeira K, Berner R, Beerling DJ (2009) The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460:85–88

    Article  CAS  PubMed  Google Scholar 

  • Papenbrock J Highlights in seagrasses’ phylogeny, physiology, and metabolism: what makes them special? ISRN Bot 2012, 2012:103892

    Google Scholar 

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41:421–453

    Article  CAS  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  CAS  PubMed  Google Scholar 

  • Pedersen O (1993) Long-distance water transport in aquatic plants. Plant Physiol 103:1369–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen O, Rich SM, Pulido C, Cawthray GR, Colmer TD (2011a) Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis. New Phytol 190:332–339

    Article  PubMed  Google Scholar 

  • Pedersen O, Pulido C, Rich SM, Colmer TD (2011b) In situ O2 dynamics in submerged Isoetes australis: varied leaf gas permeability influences underwater photosynthesis and internal O2. J Exp Bot 62:4691–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012) Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann Bot 109:1047–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Prins HBA, Snel JFH, Helder RJ, Zanstra PE (1980) Photosynthetic HCO3 utilization and OH excretion in aquatic angiosperms: light induced pH changes at the leaf surface. Plant Physiol 66:818–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins HBA, Snel JFH, Zanstra PE, Helder RJ (1982) The mechanisms of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea: CO2 concentrations at the leaf surface. Plant Cell Environ 5:207–214

    Article  CAS  Google Scholar 

  • Prins HBA, Deguia MB (1986) Carbon source of the water soldier, Stratiotes aloides L. Aquat Bot 26:225–234

    Article  CAS  Google Scholar 

  • Prins HBA, Elzenga JTM (1989) Bicarbonate utilization: function and mechanism. Aquat Bot 34:59–83

    Article  CAS  Google Scholar 

  • Puijalon S, Bouma TJ, Douady CJ, van Groenendael J, Anten NP, Martel E, Bornette G (2011) Plant resistance to mechanical stress: evidence of an avoidance-tolerance trade-off. New Phytol 191:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Rao SK, Magnin NC, Reiskind JB, Bowes G (2002) Photosynthetic and other phosphoenolpyruvate carboxylase isoforms in the single-cell, facultative C4 system of Hydrilla verticillata. Plant Physiol 130:876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SK, Fukayama H, Reiskind JB, Miyao M, Bowes G (2006) Identification of C4 responsive genes in the facultative C4 plant Hydrilla verticillata. Photosynth Res 88:173–183

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1970) Exogenous inorganic carbon sources in plant photosynthesis. Biol Rev Camb Philos Soc 45:167–221

    Article  CAS  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    Article  CAS  Google Scholar 

  • Raven JA, Lucas WJ (1985) Energy cost of carbon acquisition. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of plant physiologists, Rockville, pp 305–324

    Google Scholar 

  • Raven JA, Handley LL, Macfarlane JJ, McInroy S, McKenzie L, Richards JH, Samuelsson G (1988) The role of CO2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid life-form- A review with new data on Eriocaulon decangulare L. New Phytol 108:125–148

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (2008) Not drowning but photosynthesizing: probing plant plastrons. New Phytol 177:841–845

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc Lond Ser B Biol Sci 363:2641–2650

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109:281–296

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc Lond Ser B Biol Sci 367:493–507

    Article  CAS  Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Sci 3:291–315

    Article  Google Scholar 

  • Reiskind JB, Bowes G (1991) The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Natl Acad Sci USA 88:2883–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiskind JB, Madsen TV, VanGinkel LC, Bowes G (1997) Evidence that inducible C4 type photosynthesis is a chloroplastic CO2 concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ 20:211–220

    Article  CAS  Google Scholar 

  • Rizzini L, Favory J-J, Cloix C, Faggionato D, O’Hara A, Kaiserli E,... Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 Protein. Science 332:103--106.

    Article  CAS  PubMed  Google Scholar 

  • Robe WE, Griffiths H (1998) Adaptations for an amphibious life: changes in leaf morphology, growth rate, carbon and nitrogen investment, and reproduction during adjustment to emersion by the freshwater macrophyte Littorella uniflora. New Phytol 140:9–23

    Article  Google Scholar 

  • Robe WE, Griffiths H (2000) Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uniflora, during the transition from aquatic to dry terrestrial environments. Plant Cell Environ 23:1041–1054

    Article  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007) Carbon acquisition by diatoms. Photosynth Res 93:79–88

    Article  CAS  PubMed  Google Scholar 

  • Ronzhina DA, P’Yankov VI (2001) Structure of the photosynthetic apparatus in leaves of freshwater hydrophytes: 2. Quantitative characterisation of leaf mesophyll and the functional activity of leaves with different degress of submersion. Russ J Plant Physiol 48:567–575

    Article  CAS  Google Scholar 

  • Ronzhina DA, Ivanov LA, Lambers G, VI P’y (2009) Changes in chemical composition of hydrophyte leaves during adaptation to aquatic environment. Russ J Plant Physiol 56:355–362

    Article  CAS  Google Scholar 

  • Ronzhina DA, Ivanov LA (2014) Construction costs and mesostructure of leaves in hydrophytes. Russ J Plant Physiol 61:776–783

    Article  CAS  Google Scholar 

  • Rose CD, Durako MJ (1994) Induced photomorphogenesis by an altered R:FR light ratio in axenic Ruppia maritima L. Bot Mar 37:531–535

    Article  Google Scholar 

  • Rudall PJ, Knowles EVW (2013) Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning. Ann Bot 112:1031–1043

    Article  PubMed  PubMed Central  Google Scholar 

  • Runions A, Tsiantis M, Prusinkiewicz P (2017) A common developmental program can produce diverse leaf shapes. New Phytol 216:401–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruszala EM, Beerling DJ, Franks PJ, Chater C, Casson SA, Gray JE, Hetherington AM (2011) Land plants acquired active stomatal control early in their evolutionary history. Curr Biol 21:1030–1035

    Article  CAS  PubMed  Google Scholar 

  • Sage RF (2002) Are crassulacean acid metabolism and C4 photosynthesis incompatible? Funct Plant Biol 29:775–785

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Kubien DS (2003) Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth Res 77:209–225

    Article  CAS  PubMed  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 Photosynthesis. In: Merchant SS (ed) Annual review of plant biology, vol 63, pp 19–47

    Google Scholar 

  • Salvucci ME, Bowes G (1981) Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes. Plant Physiol 67:335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sand-Jensen K (1977) Effect of epiphytes on eelgrass photosynthesis. Aquat Bot 3:55–63

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Prahl C, Stokholm H (1982) Oxygen release from roots of submerged aquatic macrophytes. Oikos 38:349–354

    Article  Google Scholar 

  • Sand-Jensen K, Gordon DM (1986) Variable HCO3 affinity of Elodea canadensis Michaux in response to different HCO3 and CO2 concentrations during growth. Oecologia 70:426–432

    Article  PubMed  Google Scholar 

  • Sand-Jensen K (1998) Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshw Biol 39:663–679

    Article  Google Scholar 

  • Sand-Jensen K, Binzer T, Middelboe AL (2007) Scaling of photosynthetic production of aquatic macrophytes - a review. Oikos 116:280–294

    CAS  Google Scholar 

  • Sand-Jensen K, Pedersen ML (2008) Streamlining of plant patches in streams. Freshw Biol 53:714–726

    Article  Google Scholar 

  • Sand-Jensen K, Moller CL (2014) Reduced root anchorage of freshwater plants in sandy sediments enriched with fine organic matter. Freshw Biol 59:427–437

    Article  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilbria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose. New Phytol 186:385–391

    Article  CAS  PubMed  Google Scholar 

  • Schoelynck J, Puijalon S, Meire P, Struyf E (2015) Thigmomorphogenetic responses of an aquatic macrophyte to hydrodynamic stress. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00043

  • Schroder P, Grosse W, Woermann D (1986) Localization of thermo-osmotically active partitions in young leaves of Nuphar lutea. J Exp Bot 37:1450–1461

    Article  Google Scholar 

  • Schubert H, Sagert S, Forster RM (2014) Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgol Mar Res 55:12–22

    Article  Google Scholar 

  • Schutten J, Dainty J, Davy AJ (2004) Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes. Ann Bot 93:333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold, London

    Google Scholar 

  • Shao H, Gontero B, Maberly SC, Jiang HS, Cao Y, Li W, Huang WM (2017) Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. J Exp Bot 68:3985–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Weise SE, Standish AJ, Terashima I (2004) Chloroplast to leaf. In: Smith WK, Vogelmann TC, Critchley C (eds) Photosynthetic adaptation, vol 178. Springer, New York, pp 171–206

    Chapter  Google Scholar 

  • Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20

    Article  Google Scholar 

  • Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva TSF, Melack JM, Novo EMLM (2013) Responses of aquatic macrophyte cover and productivity to flooding variability on the Amazon floodplain. Glob Chang Biol 19:3379–3389

    PubMed  Google Scholar 

  • Silvera K, Neubig KM, Whitten WM, Williams NH, Winter K, Cushman JC (2010) Evolution along the crassulacean acid metabolism continuum. Funct Plant Biol 37:995–1010

    Article  CAS  Google Scholar 

  • Soana E, Bartoli M (2013) Seasonal variation of radial oxygen loss in Vallisneria spiralis L.: an adaptive response to sediment redox? Aquat Bot 104:228–232

    Article  Google Scholar 

  • Sondergaard M, Sand-Jensen K (1979) Carbon uptake by leaves and roots of Littorella uniflora (L) Aschers. Aquat Bot 6:1–12

    Article  Google Scholar 

  • Spence DHN, Chrystal J (1970a) Photosynthesis and zonation of freshwater macrophytes. 1. Depth distribution and shade tolerance. New Phytol 69:205–215

    Article  Google Scholar 

  • Spence DHN, Chrystal J (1970b) Photosynthesis and zonation of fresh-water macrophytes. 2. Adaptability of species of deep and shallow water. New Phytol 69:217–217

    Article  Google Scholar 

  • Steinbachova-Vojtıskova L, Tylovaa E, Soukupa A, Novickaa H, Votrubovaa O, Lipavskaa H, Cızkovab H (2006) Influence of nutrient supply on growth, carbohydrate,and nitrogen metabolic relations in Typha angustifolia. Environ Exp Bot 57:246–257

    Article  CAS  Google Scholar 

  • Summers JE, Jackson MB (1998) Light- and dark-grown Potamogeton pectinatus, an aquatic macrophyte, make no ethylene (ethene) but retain responsiveness to the gas. Aust J Plant Physiol 25:599–608

    Article  CAS  Google Scholar 

  • Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS (2008) Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot 59:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Talling JF (1985) Inorganic carbon reserves of natural waters and ecophysiological consequences of their photosynthetic depletion: microalgae. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, pp 403–435

    Google Scholar 

  • Thiébaut G (2008) Phosphorus and aquatic plants. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 31–49

    Chapter  Google Scholar 

  • Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric carbon dioxide at Mauna Loa observatory. 2. Analysis of the NOAA GMCC data, 1974–1985. J Geophys Res Atmos 94:8549–8565

    Article  CAS  Google Scholar 

  • Touchette BW, Burkholder JM (2000) Overview of the physiological ecology of carbon metabolism in seagrasses. J Exp Mar Biol Ecol 250:169–205

    Article  CAS  PubMed  Google Scholar 

  • Touchette BW (2007) Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. J Exp Mar Biol Ecol 350:194–215

    Article  Google Scholar 

  • Vadstrup M, Madsen TV (1995) Growth limitation of submerged aquatic macrophytes by inorganic carbon. Freshw Biol 34:411–419

    Article  CAS  Google Scholar 

  • Van der Hage JCH (1996) Why are there no insects and so few higher plants, in the sea? New thoughts on an old problem. Funct Ecol 10:546–547

    Google Scholar 

  • van der Heijden LH, Kamenos NA (2015) Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial. Biogeosciences 12:6429–6441

    Article  Google Scholar 

  • van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–274

    Article  Google Scholar 

  • Van Hoeck A, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R (2015) The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol Biofuels 8:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verberk W, Bilton DT, Calosi P, Spicer JI (2011) Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92:1565–1572

    Article  PubMed  Google Scholar 

  • Verboven P, Pedersen O, Ho QT, Nicolai BM, Colmer TD (2014) The mechanism of improved aeration due to gas films on leaves of submerged rice. Plant Cell Environ 37:2433–2452

    CAS  PubMed  Google Scholar 

  • Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C et al (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot 96:1129–1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Voesenek L, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206:57–73

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31:649–662

    Article  CAS  PubMed  Google Scholar 

  • Vu JCV, Allen LH, Bowes G (1984) Dark/light modulation of ribulose bisphosphate carboxylase activity in plants from different photosynthetic categories. Plant Physiol 76:843–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Haberer G, Gundlach H, Glaesser C, Nussbaumer T, Luo MC et al (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311

    Article  CAS  PubMed  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S,. .. Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A 106:12377--12,381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb DR, Rattray MR, Brown JMA (1988) A preliminary survey for crassulacean acid metabolism (CAM) in submerged aquatic macrophytes in New Zealand. N Z J Mar Freshw Res 22:231–235

    Article  CAS  Google Scholar 

  • Weise SE, van Wijk KJ, Sharkey TD (2011) The role of transitory starch in C3, CAM, and C4 metabolism and opportunities for engineering leaf starch accumulation. J Exp Bot 62:3109–3118

    Article  CAS  PubMed  Google Scholar 

  • Wells CL, Pigliucci M (2000) Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspect Plant Ecol Evol Syst 3:1–18

    Article  Google Scholar 

  • Westlake DF (1975) Primary production of freshwater macrophytes. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 189–206

    Google Scholar 

  • White A, Reiskind JB, Bowes G (1996) Dissolved inorganic carbon influences the photosynthetic responses of Hydrilla to photoinhibitory conditions. Aquat Bot 53:3–13

    Article  CAS  Google Scholar 

  • Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 111:E4859–E4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegleb G (1991) Die lebens und wuchsformen der makrophytischen wasserpflanzen und deren beziehungen zu ökologie, verbreitung und vergesellschaftung der arten. Tuexenia 11:135–148

    Google Scholar 

  • Wigand C, Stevenson JC, Cornwell JC (1997) Effects of different submersed macrophytes on sediment biogeochemistry. Aquat Bot 56:233–244

    Article  CAS  Google Scholar 

  • Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue construction costs from heat of combustion and organic nitrogen content. Plant Cell Environ 10:725–734

    CAS  Google Scholar 

  • Winter K, Holtum JAM, Smith JAC (2015) Crassulacean acid metabolism: a continuous or discrete trait. New Phytol 208:73–78

    Article  CAS  PubMed  Google Scholar 

  • Wium-Andersen S (1971) Photosynthetic uptake of free CO2 by roots of Lobelia dortmanna. Physiol Plant 25:245–248

    Article  Google Scholar 

  • Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S,. .. Wilf P (2017) Global climatic drivers of leaf size. Science 357:917--921.

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Liu X (2015) Comparing photosynthetic characteristics of Isoetes sinensis Palmer under submerged and terrestrial conditions. Sci Rep 5:17783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Li W, Madsen TV, Maberly SC, Bowes G (2017) Photosynthetic inorganic carbon acquisition in 30 freshwater macrophytes. Aquat Bot 140:48–54

    Article  CAS  Google Scholar 

  • Zeeman SC, Smith SM, Smith AM (2004) The breakdown of starch in leaves. New Phytol 163:247–261

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yin L, Jiang H-S, Li W, Gontero B, Maberly SC (2014) Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae). Photosynth Res 121:285–297

    Article  CAS  PubMed  Google Scholar 

  • Ziegler JP, Solomon CT, Finney BP, Gregory-Eaves I (2015) Macrophyte biomass predicts food chain length in shallow lakes. Ecosphere 6:1–16

    Article  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Marion Cambridge, Lukasz Kotula, Ole Pedersen, and Quing-Feng Wang for contributing photographs to Figs. 11.1 and 11.2, to Dina Ronzhina for giving permission to reproduce her drawings of leaf sections reproduced in Fig. 11.2 and to Hendrik Poorter for permission to reproduce Fig. 11.4. The Chinese Academy of Sciences is thanked for providing Visiting Professorships for Senior International Scientists and the President’s International Fellowship Initiative to the authors (2015VBA023, 2016VBA006). Stephen Maberly’s work is supported by the UK Natural Environment Research Council. Brigitte Gontero’s group is supported by Centre National de la Recherche Scientifique, Aix-Marseille Université, A*Midex project (No. ANR-11-IDEX-0001-02), Agence National de la Recherche (Signaux-BioNRJ, ANR-15-CE05-0021-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Christopher Maberly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maberly, S.C., Gontero, B. (2018). Trade-offs and Synergies in the Structural and Functional Characteristics of Leaves Photosynthesizing in Aquatic Environments. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_11

Download citation

Publish with us

Policies and ethics