Skip to main content

Nucleobases on the Primitive Earth: Their Sources and Stabilities

  • Chapter
  • First Online:
Prebiotic Chemistry and Chemical Evolution of Nucleic Acids

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 35))

Abstract

Nucleobases are nitrogen heterocycles that are key structural components of biological nucleic acids. Some theories for the origins of life suggest a role for environmentally supplied organic compounds, including nucleobases, as part of a primordial RNA or pre-RNA world. Over the last 65 years, many potentially prebiotic synthetic mechanisms have been experimentally demonstrated for nucleobases, and their presence in extraterrestrial materials has been extensively verified, suggesting some of these are valid explanations for how the environment produces them. However, the abundance of nucleobases in primitive environments would depend on the balance of the rates of their environmental synthesis and decomposition. The literature regarding chemical aspects of these questions is briefly reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam ZR, Hongo Y, Cleaves HJ, Yi R, Fahrenbach AC, Yoda I, Aono M (2018) Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci Rep 8(1):265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander CMOD, Fogel M, Yabuta H, Cody GD (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim Cosmochim Acta 71:4380–4403

    Article  CAS  Google Scholar 

  • Allentoft ME, Collins M, Harker D, Haile J, Oskam CL, Hale ML, Campos PF, Samaniego JA, Gilbert MTP, Willerslev E, Zhang G, Scofield RP, Holdaway RN, Bunce M (2012) The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc R Soc B 279(1748):4724–4733. https://doi.org/10.1098/rspb.2012.1745

    Article  PubMed  CAS  Google Scholar 

  • Barks HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: relaxation of the requirements for prebiotic purine nucleobase formation. Chembiochem 11:1240–1243

    Article  CAS  PubMed  Google Scholar 

  • Baross J, Hoffman S (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph 15:327–345

    Article  CAS  Google Scholar 

  • Benner SA, Ellington AD (1991) RNA world. Science 252:1232

    Article  CAS  PubMed  Google Scholar 

  • Bertinchamps AJ, Ahnström G, Hüttermann J, Cadet J, Köhnlein W, Coquerelle T, Teoule R, Cramp WA, Ehrenberg A, Elliott JP (2011) Effects of ionizing radiation on DNA: physical, chemical and biological aspects. Springer, Berlin

    Google Scholar 

  • Boldissar S, de Vries MS (2018) How nature covers its bases. Phys Chem Chem Phys 20:9701–9716

    Google Scholar 

  • Borquez E, Cleaves HJ, Lazcano A, Miller SL (2005) An investigation of prebiotic purine synthesis from the hydrolysis of HCN polymers. Orig Life Evol Biosph 35:79–90

    Article  CAS  PubMed  Google Scholar 

  • Bredereck H, Effenberger F, Rainer G (1961) Eine neue einfache Purin-Synthese. Angew Chem 73:63–63

    Article  CAS  Google Scholar 

  • Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci 108:13995–13998

    Article  PubMed  Google Scholar 

  • Chittenden GJ, Schwartz AW (1976) Possible pathway for prebiotic uracil synthesis by photodehydrogenation. Nature 263:350–351

    Article  CAS  PubMed  Google Scholar 

  • Choughuley AS, Subbaraman AS, Kazi ZA, Chadha MS (1977) A possible prebiotic synthesis of thymine: uracil-formaldehyde-formic acid reaction. Biosystems 9:73–80

    Article  CAS  PubMed  Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    Article  CAS  PubMed  Google Scholar 

  • Cleaves HJ (2012) Prebiotic chemistry: What we know, what we don’t. Evol Educ Outreach 5:342–360

    Article  Google Scholar 

  • Cleaves HJ, Bada J (2012) The prebiotic chemistry of alternative nucleic acids. In: Seckbach J (ed) Genesis – in the beginning. Springer, Dordrecht, pp 3–33

    Chapter  Google Scholar 

  • Cleaves HJ, Miller SL (1998) Oceanic protection of prebiotic organic compounds from UV radiation. Proc Natl Acad Sci U S A 95:7260–7263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cody GD, Heying E, Alexander CMO, Nittler LR, Kilcoyne ALD, Sandford SA, Stroud RM (2011) Establishing a molecular relationship between chondritic and cometary organic solids. Proc Natl Acad Sci

    Google Scholar 

  • Corey EJ (1988) Retrosynthetic thinking – essentials and examples. Chem Soc Rev 17:111–133. https://doi.org/10.1039/CS9881700111

    Article  CAS  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  CAS  PubMed  Google Scholar 

  • Cronin JR (1989) Origin of organic compounds in carbonaceous chondrites. Adv Space Res 9:59–64

    Article  CAS  PubMed  Google Scholar 

  • Doane TA (2017) A survey of photogeochemistry. Geochem Trans 18:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draganić IG, Draganić ZD, Adloff JP (1990) Radiation and radioactivity on Earth and beyond. CRC Press, Boca Raton, FL

    Google Scholar 

  • Ferris JP, Orgel LE (1965) Aminomalononitrile and 4-amino-5-cyanoimidazole in hydrogen cyanide polymerization and adenine synthesis. J Am Chem Soc 87:4976–4977

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis. 3. Synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol 33:693–704

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311

    Article  CAS  PubMed  Google Scholar 

  • Fox SW, Harada K (1961) Synthesis of uracil under conditions of a thermal model of prebiological chemistry. Science 133:1923–1924

    Article  CAS  PubMed  Google Scholar 

  • Gautier T, Carrasco N, Buch A, Szopa C, Sciamma-O’Brien E, Cernogora G (2011) Nitrile gas chemistry in Titan’s atmosphere. Icarus 213:625–635

    Article  CAS  Google Scholar 

  • Gilbert W (1986) Origin of life: The RNA world. Nature 319

    Google Scholar 

  • Halevy I, Bachan A (2017) The geologic history of seawater pH. Science 355(6329):1069–1071

    Article  CAS  PubMed  Google Scholar 

  • Hayatsu R, Studier MH, Matsuoka S, Anders E (1972) Origin of organic-matter in early solar system. 6. Catalytic synthesis of nitriles, nitrogen bases and porphyrin-like pigments. Geochim Cosmochim Acta 36:555–571

    Article  CAS  Google Scholar 

  • Hayatsu R, Studier MH, Moore LP, Anders E (1975) Purines and triazines in murchison meteorite. Geochim Cosmochim Acta 39:471–488

    Article  CAS  Google Scholar 

  • Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA 84:4398–4402

    Article  CAS  PubMed  Google Scholar 

  • Kminek G, Bada JL (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245:1–5

    Article  CAS  Google Scholar 

  • Krissansen-Totton J, Arney GN, Catling DC (2018) Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc Natl Acad Sci 115(16):201721296

    Google Scholar 

  • Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino acids and hydrocarbons in Murchison meteorite. Nature 228:923–926

    Article  CAS  PubMed  Google Scholar 

  • Kvenvolden K, Lawless JG, Ponnamperuma C (1971) Nonprotein amino acids in Murchison meteorite. Proc Natl Acad Sci U S A 68:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci U S A 95:7933–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy M, Miller SL, Brinton K, Bada JL (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145:609–613

    Article  CAS  PubMed  Google Scholar 

  • Lewis CA, Crayle J, Zhou S, Swanstrom R, Wolfenden R (2016) Cytosine deamination and the precipitous decline of spontaneous mutation during Earth’s history. Proc Natl Acad Sci 113(29):8194–8199

    Article  CAS  PubMed  Google Scholar 

  • Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Correa IR, Romesberg FE (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins Z, Botta O, Fogel ML, Sephton MA, Glavin DP, Watson JS, Dworkin JP, Schwartz AW, Ehrenfreund P (2009) Extraterrestrial nucleobases in the Murchison meteorite. Orig Life Evol Biosph 39:214–214

    Google Scholar 

  • Mason SF (1991) Chemical evolution: origin of the elements, molecules, and living systems. Clarendon Press, Oxford

    Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  CAS  Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primitive Earth conditions. J Am Chem Soc 77:2351–2361

    Article  CAS  Google Scholar 

  • Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611

    Article  CAS  PubMed  Google Scholar 

  • Minton A, Rosenberg E (1964) The effect of temperature on the preservation of purine and pyrimidine bases. Geochim Cosmochim Acta 28(12):1953–1959

    Article  CAS  Google Scholar 

  • Miyakawa S, Cleaves HJ, Miller SL (2002a) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002b) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci U S A 99:14628–14631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyakawa S, Cleaves HJ, Miller SL (2002c) The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig Life Evol Biosph 32:195–208

    Article  CAS  PubMed  Google Scholar 

  • Morowitz HJ (1999) A theory of biochemical organization, metabolic pathways, and evolution. Complexity 4:39–53

    Article  Google Scholar 

  • Mumma MJ, Charnley SB (2011) The chemical composition of comets—Emerging taxonomies and natal heritage. Astron Astrophys 49:471–524

    Article  CAS  Google Scholar 

  • Musto H, Naya H, Zavala A, Romero H, Alvarez-Valın F, Bernardi G (2004) Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett 573(1–3):73–77

    Article  CAS  PubMed  Google Scholar 

  • Nelson KE, Robertson M, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosph 31:221–229

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  CAS  PubMed  Google Scholar 

  • Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194

    Article  PubMed  Google Scholar 

  • Oró J (1963) Studies in experimental organic cosmochemistry. Ann NY Acad Sci 108(2):464–481

    Article  PubMed  Google Scholar 

  • Pearce BK, Pudritz RE, Semenov DA, Henning TK (2017) Origin of the RNA world: the fate of nucleobases in warm little ponds. Proc Natl Acad Sci, p 201710339

    Google Scholar 

  • Peeters Z, Botta O, Charnley SB, Ruiterkamp R, Ehrenfreund P (2003) The astrobiology of nucleobases. Astrophys J Lett 593(2):L129

    Article  CAS  Google Scholar 

  • Pinheiro VB, Loakes D, Holliger P (2013) Synthetic polymers and their potential as genetic materials. BioEssays 35:113–122

    Article  CAS  PubMed  Google Scholar 

  • Pizzarello S (2012) Hydrogen cyanide in the Murchison meteorite. Astrophys J Lett 754:L27

    Article  CAS  Google Scholar 

  • Pizzarello S, Shock E (2010) The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol 2:a002105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powner MW, Sutherland JD (2008) Potentially prebiotic synthesis of pyrimidine beta-D-ribonucleotides by photoanomerization/hydrolysis of alpha-D-cytidine-2′-phosphate. Chembiochem 9:2386–2387

    Article  CAS  PubMed  Google Scholar 

  • Powner MW, Sutherland JD, Szostak JW (2010) Chemoselective multicomponent one-pot assembly of purine precursors in water. J Am Chem Soc 132:16677–16688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson MP, Miller SL (1995a) Prebiotic synthesis of 5-substituted uracils – a bridge between the RNA world and the DNA-protein world. Science 268:702–705

    Article  CAS  PubMed  Google Scholar 

  • Robertson MP, Miller SL (1995b) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774

    Article  CAS  PubMed  Google Scholar 

  • Robertson MP, Miller SL (1995c) Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science 268:702–705

    Article  CAS  PubMed  Google Scholar 

  • Robertson MP, Levy M, Miller SL (1996) Prebiotic synthesis of diaminopyrimidine and thiocytosine. J Mol Evol 43:543–550

    Article  CAS  PubMed  Google Scholar 

  • Rubey WW (1951) Geologic history of sea water. Geol Soc Am Bull 62:1111–1148

    Article  CAS  Google Scholar 

  • Ruiz-Bermejo M, Zorzano M-P, Osuna-Esteban S (2013) Simple organics and biomonomers identified in HCN polymers: An overview. Life 3:421–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114(1):285–366

    Article  CAS  PubMed  Google Scholar 

  • Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Bioorg Med Chem 9:1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Sanchez RA, Orgel LE (1970) Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol 47:531–543

    Article  CAS  PubMed  Google Scholar 

  • Sanchez R, Ferris J, Orgel LE (1966a) Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science 153:72–73

    Article  CAS  PubMed  Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1966b) Cyanoacetylene in prebiotic synthesis. Science 154:784–785

    Article  CAS  PubMed  Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1967) Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Biol 30:223–253

    PubMed  CAS  Google Scholar 

  • Schlesinger G, Miller SL (1983a) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino acids. J Mol Evol 19:376–382

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger G, Miller SL (1983b) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. II. Hydrogen cyanide, formaldehyde and ammonia. J Mol Evol 19:383–390

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci 107:2763–2768

    Article  PubMed  Google Scholar 

  • Schneider C, Becker S, Okamura H, Crisp A, Amatov T, Stadlmeier M, Carell T (2018) Prebiotic methylations and carbamoylations generate non-canonical RNA nucleosides as molecular fossils of an early Earth. Angew Chem

    Google Scholar 

  • Schulze-Makuch D, Wagner D, Kounaves SP, Mangelsdorf K, Devine KG, de Vera JP, Schmitt-Kopplin P, Grossart HP, Parro V, Kaupenjohann M, Galy A (2018) Transitory microbial habitat in the hyperarid Atacama Desert. Proc Natl Acad Sci 115(11):2670–2675

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AW, Bakker CG (1989) Was adenine the first purine? Science 245:1102–1104

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AW, Joosten H, Voet AB (1982) Prebiotic adenine synthesis via HCN oligomerization in ice. Biosystems 15(3):191

    Article  CAS  PubMed  Google Scholar 

  • Segré D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A 97:4112–4117

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro R (1999) Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc Natl Acad Sci U S A 96:4396–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen-Sherwood E, Oro J, Kimball AP (1971) Thymine: a possible prebiotic synthesis. Science 173:446–447

    Article  CAS  PubMed  Google Scholar 

  • Stoks PG, Schwartz AW (1981) Nitrogen-heterocyclic compounds in Meteorites – significance and mechanisms of formation. Geochim Cosmochim Acta 45:563–569

    Article  CAS  Google Scholar 

  • Stoks PG, Schwartz AW (1982) Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim Cosmochim Acta 46:309–315

    Article  CAS  Google Scholar 

  • Strašák M, Šeršeň F (1991) An unusual reaction of adenine and adenosine on montmorillonite. Naturwissenschaften 78(3):121–122

    Article  Google Scholar 

  • Switzer CMSBS (1989) Enzymatic incorporation of a new base pair into DNA and RNA. J Am Chem Soc 111:8322–8323

    Article  CAS  Google Scholar 

  • Tian F, Toon OB, Pavlov AA, De Sterck H (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Van der Velden W, Schwartz AW (1974) Purines and pyrimidines in sediments from Lake Erie. Science 185(4152):691–693

    Article  Google Scholar 

  • Voet AB, Schwartz AW (1982) Uracil synthesis via HCN oligomerization. Orig Life 12:45–49

    Article  CAS  PubMed  Google Scholar 

  • Voet AB, Schwartz AW (1983) Prebiotic adenine synthesis from HCN—Evidence for a newly discovered major pathway. Bioorg Chem 12:8–17

    Article  CAS  Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  PubMed Central  Google Scholar 

  • Wang HC, Susko E, Roger AJ (2006) On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors. Biochem Biophys Res Commun 342(3):681–684

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Willerslev E, Hansen AJ, Rønn R, Brand TB, Barnes I, Wiuf C, Gilichinsky D, Mitchell D, Cooper A (2004) Long-term persistence of bacterial DNA. Curr Biol 14(1):R9–R10

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper & Row, New York

    Google Scholar 

  • Wolman Y, Haverland WJ, Miller SL (1972) Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc Natl Acad Sci U S A 69:809–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshino D, Hayatsu R, Anders E (1971) Origin of organic matter in early solar system. 3. Amino acids – catalytic synthesis. Geochim Cosmochim Acta 35:927–938

    Article  CAS  Google Scholar 

  • Zubay G (1993) To what extent do biochemical pathways mimic prebiotic pathways? Chemtracts Biochem Mol Biol 4:317–323

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Hadean Bioscience,” grant number JP26106003. This project was also supported by the ELSI Origins Network (EON), which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. James Cleaves II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cleaves, H.J. (2018). Nucleobases on the Primitive Earth: Their Sources and Stabilities. In: Menor-Salván , C. (eds) Prebiotic Chemistry and Chemical Evolution of Nucleic Acids. Nucleic Acids and Molecular Biology, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-319-93584-3_1

Download citation

Publish with us

Policies and ethics