Skip to main content

Variants of Independence Detection in SAT-Based Optimal Multi-agent Path Finding

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10839))

Included in the following conference series:

  • 415 Accesses

Abstract

In multi-agent path finding (MAPF) on graphs, the task is to find paths for distinguishable agents so that each agent reaches its unique goal vertex from the given start while collisions between agents are forbidden. A cumulative objective function is often minimized in MAPF. The main contribution of this paper consists in integrating independence detection technique (ID) into a compilation-based MAPF solver that translates MAPF instances into propositional satisfiability (SAT). The independence detection technique in search-based solvers tries to decompose a given MAPF instance into instances consisting of small groups of agents with no interaction across groups. After the decomposition phase, small instances are solved independently and the solution of the original instance is combined from individual solutions to small instances. The presented experimental evaluation indicates significant reduction of the size of instances translated to the target SAT formalism and positive impact on the overall performance of the solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audemard, G., Simon, L.: The Glucose SAT Solver (2013). http://labri.fr/perso/lsimon/glucose/. Accessed Oct 2016

  2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 399–404. IJCAI (2009)

    Google Scholar 

  3. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_8

    Chapter  MATH  Google Scholar 

  4. Balint, A., Belov, A., Heule, M., Järvisalo, M.: SAT 2015 competition (2015). http://www.satcompetition.org/. Accessed Oct 2016

  5. van den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for multiple robots: optimal decoupling into sequential plans. In: Proceedings of Robotics: Science and Systems V, University of Washington. The MIT Press (2010)

    Google Scholar 

  6. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  7. Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., Shimony, S.: ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 740–746. IJCAI (2015)

    Google Scholar 

  8. Čáp, M., Novák, P., Vokřínek, J., Pěchouček, M.: Multi-agent RRT: sampling-based cooperative pathfinding. In: International conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2013), pp. 1263–1264. IFAAMAS (2013)

    Google Scholar 

  9. Erdem, E., Kisa, D.G., Öztok, U., Schüller, P.: A general formal framework for pathfinding problems with multiple agents. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013). AAAI Press (2013)

    Google Scholar 

  10. Huang, R., Chen, Y., Zhang, W.: A novel transition based encoding scheme for planning as satisfiability. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010). AAAI Press (2010)

    Google Scholar 

  11. Kautz, H., Selman, B.: Unifying SAT-based and graph-based planning. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 318–325. Morgan Kaufmann (1999)

    Google Scholar 

  12. Kim, D., Hirayama, K., Park, G.-K.: Collision avoidance in multiple-ship situations by distributed local search. J. Adv. Comput. Intell. Intell. Inform. (JACIII) 18(5), 839–848 (2014)

    Article  Google Scholar 

  13. Kornhauser, D., Miller, G.L., Spirakis, P.G.: Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. In: Proceedings of the 25th Annual Symposium on Foundations of Computer Science (FOCS 1984), pp. 241–250. IEEE Press (1984)

    Google Scholar 

  14. Ma, H., Koenig, S., Ayanian, N., Cohen, L., Hoenig W., Kumar, T.K.S., Uras, T., Xu, H., Tovey, C., Sharon, G.: Overview: generalizations of multi-agent path finding to real-world scenarios. In: IJCAI-16 Workshop on Multi-Agent Path Finding (WOMPF) (2016)

    Google Scholar 

  15. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30(1), 73–86 (2011)

    Article  Google Scholar 

  16. Ratner, D., Warmuth, M.K.: NxN puzzle and related relocation problems. J. Symb. Comput. 10(2), 111–138 (1990)

    Article  Google Scholar 

  17. Ryan, M.R.K.: Exploiting Subgraph structure in multi-robot path planning. J. Artif. Intell. Res. (JAIR) 31, 497–542 (2008)

    MATH  Google Scholar 

  18. Ryan, M.R.K.: Constraint-based multi-robot path planning. In: Proceedings ICRA 2010, pp. 922–928. IEEE Press (2010)

    Google Scholar 

  19. Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search for optimal multi-agent pathfinding. Artif. Intell. 195, 470–495 (2013)

    Article  MathSciNet  Google Scholar 

  20. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

    Article  MathSciNet  Google Scholar 

  21. Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_35

    Chapter  MATH  Google Scholar 

  22. Silver, D.: Cooperative pathfinding. In: Proceedings of the 1st Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2005), pp. 117–122. AAAI Press (2005)

    Google Scholar 

  23. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73

    Chapter  MATH  Google Scholar 

  24. Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 173–178. AAAI Press (2010)

    Google Scholar 

  25. Standley, T., Korf, R.E.: Complete algorithms for cooperative pathfinding problems. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 668–673. IJCAI (2011)

    Google Scholar 

  26. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE Trans. Comput. Intell. AI Games 4(2), 144–148 (2012)

    Article  Google Scholar 

  27. Surynek, P.: A novel approach to path planning for multiple robots in biconnected graphs. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA 2009), pp. 3613–3619. IEEE Press (2009)

    Google Scholar 

  28. Surynek, P.: An optimization variant of multi-robot path planning is intractable. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1261–1263. AAAI Press (2010)

    Google Scholar 

  29. Surynek, P.: Compact representations of cooperative path-finding as SAT based on matchings in bipartite graphs. In: Proceedings of the 26th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2014), pp. 875–882. IEEE Computer Society (2014)

    Google Scholar 

  30. Surynek, P., Felner, A., Stern, R., Boyarski, E.: Efficient SAT approach to multi-agent path finding under the sum of costs objective. In: Proceedings of 22nd European Conference on Artificial Intelligence (ECAI 2016), pp. 810–818. IOS Press (2016)

    Google Scholar 

  31. Surynek, P., Švancara, J., Felner, A., Boyarski, E.: Integration of independence detection into SAT-based optimal multi-agent path finding: a novel SAT-based optimal MAPF solver. In: Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017). SciTe Press (2017)

    Google Scholar 

  32. Yu, J., LaValle, S.M.: Structure and intractability of optimal multirobot path planning on graphs. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013). AAAI Press (2013)

    Google Scholar 

  33. Yu, J., LaValle, S.M.: Planning optimal paths for multiple robots on graphs. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2013), pp. 3612–3617. IEEE Press (2013)

    Google Scholar 

  34. Wang, K.C., Botea, A.: Fast and memory-efficient multi-agent pathfinding. In: Proceedings of the 18th International Conference on Automated Planning and Scheduling (ICAPS 2008), pp. 380–387. AAAI Press (2008)

    Google Scholar 

  35. de Wilde, B., ter Mors, A., Witteveen, C.: Push and rotate: a complete multi-robot pathfinding algorithm. J. Artif. Intell. Res. (JAIR) 51, 443–492 (2014)

    MATH  Google Scholar 

  36. Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. J. Comb. Theory Ser. B 16, 86–96 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is supported by the joint grant of the Israel Ministry of Science and the Czech Ministry of Education Youth and Sports number 8G15027, and Charles University under the SVV project number 260 333.

We would like thank anonymous reviewers for their constructive comments of [31] which helped us to prepare this extended version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Surynek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surynek, P., Švancara, J., Felner, A., Boyarski, E. (2018). Variants of Independence Detection in SAT-Based Optimal Multi-agent Path Finding. In: van den Herik, J., Rocha, A., Filipe, J. (eds) Agents and Artificial Intelligence. ICAART 2017. Lecture Notes in Computer Science(), vol 10839. Springer, Cham. https://doi.org/10.1007/978-3-319-93581-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93581-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93580-5

  • Online ISBN: 978-3-319-93581-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics