Skip to main content

Intravenous Oxygen Therapeutics: A Revolution in Medicine Yet to Be Realized?

  • Chapter
  • First Online:
  • 633 Accesses

Abstract

Intravenous fluids have been categorized as colloids and crystalloids, but missing from both is the ability to carry enhanced oxygen levels. Medicine has pursued an oxygen therapeutic since the early 1930s with actually some spotty points of success. There are places in the world today that such agents are available, but they have not realized their potential. Two distinctly different pharmaceutical approaches are under accelerated development: hemoglobin-based oxygen carriers (HBOCs) and perfluorocarbon (PFC) preparations. If fully developed either or both would represent revolutions in medicine with far-reaching and game-changing treatment options. This chapter will explore assumptions about oxygen carrying and delivery made by medicine that to some degree have hindered the development of these compounds. The history to this point is outlined with a careful look forward into perhaps what is to come.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Frayee E, Kashani K. Fluid management for critically ill patients: a review of the current state of fluid therapy in the intensive care unit. Kidney Dis. 2016;2:64–71.

    Article  Google Scholar 

  2. Kampmeier T, Rehbeerg S, Ertmer C. Evolution of fluid therapy. Best Prac Res Clin Anaesthesiol. 2014;28:207–16.

    Article  Google Scholar 

  3. Guirgis FW, Williams DJ, Hale M, et al. The relationship of intravenous fluid chloride content to kidney function in patients with severe sepsis or septic shock. Am J Emerg Med. 2015;33:439–43.

    Article  Google Scholar 

  4. Butler FK Jr. Fluid resuscitation in tactical combat casualty care: yesterday and today. Wilderness Environ Med. 2017;28:S74–81.

    Article  Google Scholar 

  5. Studer NM, Apil MD, Bowling F, Danielson PD, Cay AD. Albumin for pre-hospital fluid resuscitation of hemorrhagic shock in tactical combat casualty care. J Spec Oper Med. 2017;17:82–8.

    PubMed  Google Scholar 

  6. Sevcikova S, Vymazal T, Durila M. Effect of balanced crystalloid, gelatin, and hydroxyethyl starch on coagulation detected by rotational thromboelastography in vitro. Clin Lab. 2017;63:1691–700.

    Article  Google Scholar 

  7. Hahn RG. Adverse effects of crystalloid and colloid fluids. Anaesthesiol Intensive Ther. 2017;49:303–8.

    PubMed  Google Scholar 

  8. Morris BR, deLaforcade A, Lee J, Palmisano J, Meola D, Rozyanski E. Effects of in vitro hemodilution with crystalloids, colloids and plasma on canine whole blood coagulation as determined by kaolin-activated thromboelastography. J Vet Emerg Crit Care. 2016;26:58–63.

    Article  Google Scholar 

  9. Villeal NR, Salazar Vazquez BY, Intaglietta M. Microcirculatory effects of intravenous fluids in critical illness: plasma expansion beyond crystalloids and colloids. Curr Opin Anaesthesiol. 2009;22:163–7.

    Article  Google Scholar 

  10. Schmidt PJ, Blood AIDS. Bureaucracy: the crisis and the tragedy. Transfus Med Rev. 2011;25:335–43.

    Article  Google Scholar 

  11. Keshavjee S, Weiser S, Kleinman A. Medicine betrayed: hemophilia patients and HIV in the United States. Soc Sci Med. 2007;53:1081–94.

    Article  Google Scholar 

  12. Weiskopf RB. Hemoglobin-base oxygen carriers: disclosed history and the way ahead: the relativity of safety. Anesthesia Analgesia. 2014;119:758–60.

    Article  Google Scholar 

  13. Lane N. Oxygen: the molecule that made the world. Oxford: Oxford University Press; 2009.

    Google Scholar 

  14. Winslow R. Oxygen: the poison is in the dose. Transfusion. 2013;53:424–37.

    Article  CAS  Google Scholar 

  15. Hare GM, Harrington A, Liu E, Wang JL, Baker AJ, Mazer CD. Effect of oxygen affinity and molecular weight on HBOC’s on cerebral oxygenation and blood pressure in rats. Can J Anesth. 2006;53:1030–8.

    Article  Google Scholar 

  16. Engel RH, Kaklamani VG. Role of efaproxiral in metastatic brain tumors. Exert Rev Anticancer Ther. 2006;6:477–85.

    Article  CAS  Google Scholar 

  17. Sinivasan AJ, Morkane C, Martin DS, Welsby IJ. Should modulation of P50 be a therapeutic target in the critically ill? Expert Rev Hematol. 2017;10:449–58.

    Article  Google Scholar 

  18. Kunert MP, Abraham DJ. RSR-13, an allosteric effector of hemoglobin, increases systemic and illiac vascular resistance in rats. Am J Phys. 1996;27:H602–13.

    Google Scholar 

  19. Suh JH. Efaproxiral: A novel radiation sensitizer. Exper Opin Investg Drugs. 2004;13:543–50.

    Article  CAS  Google Scholar 

  20. Donnelly ET, Liu Y, Efaproxiral RS. (RSR-13) plus oxygen breathing increases the therapeutic ratio of carboplatin in EMT6 mouse mammary tumors. Exp Bio Med. 2006;231:317–21.

    Article  CAS  Google Scholar 

  21. Torres-Filho I. Hemorrhagic shock and the microvasculature. Compr Physiol. 2018;8:61–101.

    Google Scholar 

  22. Lamy ML, Daily EK, Brichant JF, et al. Randomized trial of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusions after cardiac surgery. The DCLHb cardiac surgery trial collaboration. 2000.

    Google Scholar 

  23. Amberson WR, Jennings JJ, Rhode M. Clinical experience with hemoglobin-saline solutions. J Appl Phys. 1949;7:469–89.

    Google Scholar 

  24. Saxena R, Wijnhoud AD, Man in’t Veld AJ, et al. Effect of diaspirin cross-linked hemoglobin on endothelim-1 and blood pressure in acute stroke in man. J Hypertens. 1998;16:1459–65.

    Article  CAS  Google Scholar 

  25. Saxena R, Wijnhoud AD, Carton H, et al. Controlled safety study of a hemoglobin-based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke. 1999;30:993–6.

    Article  CAS  Google Scholar 

  26. Kumar A, Sen AP, Saxena PR, Gulatin A. Resuscitaiton with diaspirin crosslinked hemoglobin increases cerebral and renal blood perfusion in hemorrhaged rats. Artif Cells Blood Subst Immobil Biotechnol. 1997;25:85–94.

    Article  CAS  Google Scholar 

  27. Schubert A, O’Hara JF Jr, Przybelski RJ. Effect of diaspirin crosslinked hemoglobin (DCJHb Hemassist) during high blood loss surgery on selected indices of organ function. Artif Cells Blood Substit Immobil Biotechnol. 2002;30:259–83.

    Article  CAS  Google Scholar 

  28. Sloan EP, Koenigsberg M, Clark JM, Weir WB, Philbin N. Shock index and prediction of traumatic hemorrhagic shock, 28-day mortality: data from DCLHb resuscitation clinical trials. West J Emerg Med. 2014;15:795–802.

    Article  Google Scholar 

  29. Sloan EP, Philbin NB, Koenisberg M, Gao W. DCLHb traumatic hemorrhagic shock study group: European host investigators. Shock. 2010;33:123–33.

    Article  Google Scholar 

  30. Gupta AS. 2017 military supplement: hemoglobin-based oxygen carriers: current- state-of the art and novel molecules. Shock. 2017. https://doi.org/10.1097/SHK.0000000001009.

  31. Starr D. Blood. In: An epic history of medicine and commerce. New York: Harper Collins; 2002. p. 53–116.

    Google Scholar 

  32. Eikelboom JW, Cook RJ, Liu Y, Heddle NM. Duration of red cell storage before transfusion and in-hospital mortality. Am Heart J. 2010;159:737–43.

    Article  Google Scholar 

  33. Shander A, Javidroozi M, Ozawa S, Hare GMT. What is really dangerous: anaemia or transfusion? Brit J Anaesthesia. 2011;107:41–59.

    Article  Google Scholar 

  34. Sass RG. Toward a more stable blood supply: charitable incentives for donation, rates and the experience of September 11. Am J Bioeth. 2013;13:38–45.

    Article  Google Scholar 

  35. Dann EJm Bonstein L, arbor KA, Rahimi-Levene N. Blood bank protocols for large scale civilian casualty events, experience from terrorist bombings in Israel. Transfus Med. 2007;17:135–9.

    Article  Google Scholar 

  36. Shinan E, Yahalom V, Silverman BG. Meeting blood requirements following terrorist attacks: the Isreali experience. Curr Opin Hematol. 2006;13:452–6.

    Article  Google Scholar 

  37. De Michelis C. Transfusion refusal and the shifting limits of multicultural accommodation. Qual Health Res. 2017;27:2150–61.

    Article  Google Scholar 

  38. Dhingra N. International challenges of self-sufficiency in blood products. Transfus Clin Biol. 2013;20:148–52.

    Article  CAS  Google Scholar 

  39. Osaro E, Charles AT. The challenges of meeting the blood transfusion requirements in sub-Saharan Africa: the need for the development of alternatives to allogeneic blood. J Blood Med. 2011;2:7–12.

    Article  Google Scholar 

  40. Verra F, Angheben A, Martello E, et al. A systemic review of transfusion-transmitted malaria in non-endemic areas. Malar J. 2018;17:36.

    Article  Google Scholar 

  41. Alonso P, Noor AM. The global fight against malaria is at a crossroads. Lancet. 2017;290:2532–4.

    Article  Google Scholar 

  42. Eichbaum Q, Murphy M, Liu Y, et al. Patient blood management: an international perspective. Anesth Analg. 2016;123:1574–81.

    Article  Google Scholar 

  43. Kubio C, Tierney G, Quaye T, et al. Blood transfusion practice in a rural hospital in northern Ghana, Dannongo, west Gonja District. Transfusion. 2012;52:2161–6.

    Article  Google Scholar 

  44. Jayaraman S, Chalabi Z, Perrel P, Guerriero C, Roberts I. The risk of transfusion-transmitted infections in sub-Saharan Africa. Transfusion. 2010;50:433–42.

    Article  Google Scholar 

  45. Umolu PI, Okoror LE, Orhue P. Human immunodeficiency virus (HIV) seropositivity and hepatitis B surface antigenemia (HBSAG) among blood donors in Benin City, Edo state, Nigeria. Afr Health Sci. 2005;5:55–8.

    PubMed  PubMed Central  Google Scholar 

  46. Aubry M, Finke J, Tessier A, et al. Seroprevelance of Arbo viruses among blood donors in French Polynesia 2011-2013. Int J Infect Dis. 2015;41:11–20.

    Article  Google Scholar 

  47. Wilder-Smith A, chen LH, Massad E, Wilson ME. Threat of dengue to blood safety in dengue endemic countries. Emerg Infect Dis. 2009;15:8–11.

    Article  Google Scholar 

  48. Mer H, Hodson E, Wallis L, et al. Hemoglobin-glutamer-25- (bovine) in South Africa: consensus usage from clinician experts who have treated patients. Transfusion. 2016;56:2631–6.

    Article  Google Scholar 

  49. Te Lintel Hekkert M, Dubé GP, Regar E, et al. Preoxygenated hemoglobin based oxygen carrier HBOC-201 annihilates myocardial ischemia during brief coronary artery occlusion in pigs. Am J Physiol Heart Circ Physiol. 2010.

    Google Scholar 

  50. Bovine hemoglobin-based oxygen-carrying solution (HBOC-201) improves flap survival in a rat model of epigastric flap failure. Microsurgery. 2006;26:203–6.

    Article  Google Scholar 

  51. Wu W, Yang Q, Li T, Zhang P, Zhou R, Yang C. Hemoglobin-based oxygen carriers combined with anti-cancer drugs may enhance sensitivity to solid tumors. Art Cells Blood Substit Imobil Biotechnol. 2009;37:163–5.

    Article  CAS  Google Scholar 

  52. Yu M, Han J, Dai M, Cui P, Li H, Liu Q, Xiu R. Influence of PEG-conjugated hemoglobin on tumor oxygenation and response to chemotherapy. Artif Cells blood Substit Imobil Biotech. 2008;36:551–6.

    Article  CAS  Google Scholar 

  53. Spiess BD. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J Appl Physiol. 2009;106:1444–52.

    Article  CAS  Google Scholar 

  54. Torres LN, Spiess BD, Torres Filho IP. Effects of perfluorocarbon emulsions on microvascular blood flow and oxygen transport in a model of severe arterial gas embolism. J Surg Res. 2014;187(1):324–33.

    Article  CAS  Google Scholar 

  55. Symons JD, Sun X, Flaim SF, del Balzo U. Perflubron emulsion improves tolerance to low-flow ischemia in isolated rabbit hearts. J Cardiovasc Pharmacol. 1999;34:108–15.

    Article  CAS  Google Scholar 

  56. Xu L, Qui X, Zhang Y, Cao K, Zhao X, Wu J, Hu Y, Guo H. Liposome encapsulated perfluorohexane enhances radiotherapy in mice without additional oxygen supply. J Transl Med. 2016;14:628.

    Google Scholar 

  57. Kerins DM. Role of perfluorocarbon Fluosol DA in coronary angioplasty. Am J Med Sci. 1994;307:218–21.

    Article  CAS  Google Scholar 

  58. Feldman LA, Fabre MS, Grasso C, et al. Perfluorocarbon emulsions radiosensitize brain tumors in carbogen breathing mice with orthotopic GL-261 gliomas. PLoS One. 2017;12:e0184250.

    Article  Google Scholar 

  59. Alayash AI. Setbacks in blood substitutes research and development: a biochemical perspective. Clin Lab Med. 2010;30:381–9.

    Article  Google Scholar 

  60. Bunn H, Jandel J. The renal handling of hemoglobin transactions of the. Ass Am Phys. 1968;81:147–52.

    CAS  Google Scholar 

  61. Stowell CP, Levin J, Spiess BD, Winslow RM. Progress in the development of RBC substitutes. Transfusion. 2001;41:287–99.

    Article  CAS  Google Scholar 

  62. Lamy ML, Daily EK, Brichant JF, et al. Randomized trial of Diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. Anesthesiology. 2000;92:646–56.

    Article  CAS  Google Scholar 

  63. Walder J, Zaugg R, Walder R, Steele J, Klotz I. Diaspirins that cross-link B chains of hemoglobin: bis (3,5-dibromo slicyl) succinate and bis (3,5-dibromoslicyl) fumurate. Biochemist. 1979;18:4265–70.

    Article  CAS  Google Scholar 

  64. Hess J, Macdonald V, Winslow R. Dehydration and shock: an animal model of hemorrhage and resuscitation of battlefield injury. Artif Cells Blood Substit Immobil Biotechnol. 1992;20:499–502.

    CAS  Google Scholar 

  65. Cheng DC, Mazer CR, Martinaeau R, et al. A phase II dose response study of hemoglobin raffimer (HemoLink) in elective coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2004;127:79–86.

    Article  CAS  Google Scholar 

  66. Gould SA, Moore EE, Hoyt DB, et al. The first randomized trial of polymerized hemoglobin as a blood substitute in acute trauma and emergent surgery. J Am Coll Surg. 1998;187:113–20.

    Article  CAS  Google Scholar 

  67. Beliaev AM, Marshall RJ, Gordon M, et al. Clinical benefits and cost-effectiveness of allogeneic red-blood-cell transfusion in severe symptomatic anemia. Vox Sang. 2012;103:18–24.

    Article  CAS  Google Scholar 

  68. Weiskopf RB, Beliaev AM, Shander A, et al. Addressing the unmet need of life-threatening anemia with hemoglobin-based oxygen carriers. Transfusion. 2017;57:207–14.

    Article  CAS  Google Scholar 

  69. Natanson C, Kerns SJ, Lure P, et al. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death. A meta-analysis. JAMA. 2008;299:2304–12.

    Article  CAS  Google Scholar 

  70. Winslow RM. Current status of blood substitute research: towards a new paradigm; 2003. p. 253–508-517.

    Google Scholar 

  71. Maevsky E, Ivanitsky G, Bogdanauva L, et al. Clinical results of Perftoran application: present and future. Art Cells Blood Substit Immobil Biotechnol. 2005;33:37–46.

    Article  CAS  Google Scholar 

  72. Keipert PE, Otto S, Flain F, Weers JG, Schmitt EA, Pelura TJ. Influences of perflubron emulsion particle size on blood half-life and febrile response in rats. Art Cells blood Substit Immobil Biotechnol. 1994;22:1169–74.

    Article  CAS  Google Scholar 

  73. Pollack GL, Kennan RP, Holm GT. Solubility of inert gases in PFC blood substitutes, blood plasma and mixtures. Biomat Artif Cells. 1992;20:1101–4.

    CAS  Google Scholar 

  74. Torres LN, Spiess BD, Torres Filho IP. Effects of perfluorocarbon emulsions on microvascular blood flow and oxygen transport in a model of severe arterial gas embolism. J Surg Res. 2013. https://doi.org/10.1016/j/jss.2013.08.011. PMID: 2426440.

  75. Spiess BD. The potential role of perfluorocarbon emulsions in decompression illness. Diving Hyperbaric Med. 2010;40:28–33.

    Google Scholar 

  76. Spiess BD, Zhu J, Pierce B, Weis R, Berger BE, Reses J, Smith CR, Ewbank B, Ward KR. Effects of perfluorocarbon infusion in an anesthetized swine decompression model. J Surg Res. 2008. Mar 26 (E Pub ahead of print) PMID: 18541265.

    Google Scholar 

  77. Herren JI, Kunzelman KS, Vocelka C, Cochran RP, Spiess BD. Angiographic and histological evaluation of porcine retinal vascular damage and protection with Perfluorocarbon after massive air embolism. Stroke. 1998;29:2396–403.

    Article  CAS  Google Scholar 

  78. Kwon TH, Sun D, Daughter WP, Spiess BD, Bullock MR. Effect of perflourocarbons on brain oxygenation and ischemic damage in an acute subdural hematoma model in rats. J Neurosurg. 2005;103(4):724–30.

    Article  CAS  Google Scholar 

  79. Zhu Z, Sun D Levasseur JE, Merenda A, Hamm RJ, Zhu Spiess BD, Bullock MR. Perfluorocarbon emulsions improve cognitive recovery after lateral fluid percussion brain injuries in rats. Neurosurgery. 2008;63:799–806.

    Article  Google Scholar 

  80. Eggleton CD, Tuhin KR, Popel AS. Predicitons of capillary oxygen transport in the presence fo fluorocarbon additives. Am J Physiol Heart Circ Physiol. 1998;H275:H2250–7.

    Article  Google Scholar 

  81. Graham K, Moor-Massat PF, Unger EC. Military supplement: Dodecafluoropentane (Ddfpe) as a resuscitation fluid for treatment of hemorrhagic shock and traumatic brain injury: a review. 2017;15. https://doi.org/10.1097/SHK. shock 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Spiess MD, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spiess, B.D. (2018). Intravenous Oxygen Therapeutics: A Revolution in Medicine Yet to Be Realized?. In: Shander, A., Corwin, H. (eds) Hematologic Challenges in the Critically Ill. Springer, Cham. https://doi.org/10.1007/978-3-319-93572-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93572-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93571-3

  • Online ISBN: 978-3-319-93572-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics