Advertisement

Performance Analysis of Simulation System Based on Particle Swarm Optimization and Distributed Genetic Algorithm for WMNs Considering Different Distributions of Mesh Clients

  • Admir Barolli
  • Shinji SakamotoEmail author
  • Leonard Barolli
  • Makoto Takizawa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 773)

Abstract

The Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure because they have many advantages such as low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a Particle Swarm Optimization (PSO) based simulation system, called WMN-PSO, and a simulation system based on Genetic Algorithm (GA), called WMN-GA, for solving node placement problem in WMNs. In this paper, we implement a hybrid simulation system based on PSO and distributed GA (DGA), called WMN-PSODGA. We analyze the performance of WMN-PSODGA by computer simulations considering different client distributions. Simulation results show that the WMN-PSODGA has good performance when the client distribution is Normal compared with the case of Exponential distribution.

References

  1. 1.
    Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)CrossRefGoogle Scholar
  2. 2.
    Amaldi, E., Capone, A., Cesana, M., Filippini, I., Malucelli, F.: Optimization models and methods for planning wireless mesh networks. Comput. Netw. 52(11), 2159–2171 (2008)CrossRefGoogle Scholar
  3. 3.
    Barolli, A., Spaho, E., Barolli, L., Xhafa, F., Takizawa, M.: QoS routing in Ad-hoc networks using GA and multi-objective optimization. Mob. Inf. Syst. 7(3), 169–188 (2011)Google Scholar
  4. 4.
    Behnamian, J., Ghomi, S.F.: Development of a PSO-SA hybrid metaheuristic for a new comprehensive regression model to time-series forecasting. Expert Syst. Appl. 37(2), 974–984 (2010)CrossRefGoogle Scholar
  5. 5.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  6. 6.
    Cunha, MdC, Sousa, J.: Water distribution network design optimization: simulated annealing approach. J. Water Resour. Plann. Manag. 125(4), 215–221 (1999)CrossRefGoogle Scholar
  7. 7.
    Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)CrossRefGoogle Scholar
  8. 8.
    Franklin, A.A., Murthy, C.S.R.: Node placement algorithm for deployment of two-tier wireless mesh networks. In: Proceedings of Global Telecommunications Conference, pp. 4823–4827 (2007)Google Scholar
  9. 9.
    Ge, H., Du, W., Qian, F.: A hybrid algorithm based on particle swarm optimization and simulated annealing for job shop scheduling. In: Third International Conference on Natural Computation (ICNC-2007), vol. 3, pp. 715–719 (2007)Google Scholar
  10. 10.
    Girgis, M.R., Mahmoud, T.M., Abdullatif, B.A., Rabie, A.M.: Solving the wireless mesh network design problem using genetic algorithm and simulated annealing optimization methods. Int. J. Comput. Appl. 96(11), 1–10 (2014)Google Scholar
  11. 11.
    Goto, K., Sasaki, Y., Hara, T., Nishio, S.: Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks. Mob. Inf. Syst. 9(4), 295–314 (2013)Google Scholar
  12. 12.
    Inaba, T., Elmazi, D., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A secure-aware call admission control scheme for wireless cellular networks using fuzzy logic and its performance evaluation. J. Mob. Multimed. 11(3&4), 213–222 (2015)Google Scholar
  13. 13.
    Inaba, T., Obukata, R., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space Based Situated Comput. 6(4), 228–238 (2016)CrossRefGoogle Scholar
  14. 14.
    Inaba, T., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A testbed for admission control in WLAN: a fuzzy approach and its performance evaluation. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 559–571. Springer (2016)Google Scholar
  15. 15.
    Lim, A., Rodrigues, B., Wang, F., Xu, Z.: k-center problems with minimum coverage. In: Computing and Combinatorics, pp. 349–359 (2004)Google Scholar
  16. 16.
    Maolin, T., et al.: Gateways placement in backbone wireless mesh networks. Int. J. Commun. Netw. Syst. Sci. 2(1), 44 (2009)Google Scholar
  17. 17.
    Muthaiah, S.N., Rosenberg, C.P.: Single gateway placement in wireless mesh networks. In: Proceedings of 8th International IEEE Symposium on Computer Networks, pp. 4754–4759 (2008)Google Scholar
  18. 18.
    Naka, S., Genji, T., Yura, T., Fukuyama, Y.: A hybrid particle swarm optimization for distribution state estimation. IEEE Trans. Power Syst. 18(1), 60–68 (2003)CrossRefGoogle Scholar
  19. 19.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  20. 20.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study of simulated annealing and genetic algorithm for node placement problem in wireless mesh networks. J. Mob. Multimed. 9(1–2), 101–110 (2013)Google Scholar
  21. 21.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study of hill climbing, simulated annealing and genetic algorithm for node placement problem in WMNs. J. High Speed Netw. 20(1), 55–66 (2014)Google Scholar
  22. 22.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A simulation system for WMN based on SA: performance evaluation for different instances and starting temperature values. Int. J. Space Based Situated Comput. 4(3–4), 209–216 (2014)CrossRefGoogle Scholar
  23. 23.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Performance evaluation considering iterations per phase and SA temperature in WMN-SA system. Mob. Inf. Syst. 10(3), 321–330 (2014)Google Scholar
  24. 24.
    Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Application of WMN-SA simulation system for node placement in wireless mesh networks: a case study for a realistic scenario. Int. J. Mob. Comput. Multimed. Commun. (IJMCMC) 6(2), 13–21 (2014)CrossRefGoogle Scholar
  25. 25.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: An integrated simulation system considering WMN-PSO simulation system and network simulator 3. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 187–198. Springer (2016)Google Scholar
  26. 26.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)CrossRefGoogle Scholar
  27. 27.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: implementation of a new replacement method in WMN-PSO simulation system and its performance evaluation. In: The 30th IEEE International Conference on Advanced Information Networking and Applications (AINA-2016), pp. 206–211 (2016).  https://doi.org/10.1109/AINA.2016.42
  28. 28.
    Sakamoto, S., Obukata, R., Oda, T., Barolli, L., Ikeda, M., Barolli, A.: Performance analysis of two wireless mesh network architectures by WMN-SA and WMN-TS simulation systems. J. High Speed Netw. 23(4), 311–322 (2017)CrossRefGoogle Scholar
  29. 29.
    Sakamoto, S., Ozera, K., Barolli, A., Ikeda, M., Barolli, L., Takizawa, M.: Implementation of an intelligent hybrid simulation systems for WMNs based on particle swarm optimization and simulated annealing: performance evaluation for different replacement methods. Soft Comput. 1–7 (2017)Google Scholar
  30. 30.
    Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mob. Netw. Appl. 23, 1–7 (2017)Google Scholar
  31. 31.
    Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Global Optim. 31(1), 93–108 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Shi, Y.: Particle swarm optimization. IEEE Connections 2(1), 8–13 (2004)MathSciNetGoogle Scholar
  33. 33.
    Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Evolutionary Programming VII, pp. 591–600 (1998)Google Scholar
  34. 34.
    Vanhatupa, T., Hannikainen, M., Hamalainen, T.: Genetic algorithm to optimize node placement and configuration for WLAN planning. In: Proceedings of 4th IEEE International Symposium on Wireless Communication Systems, pp. 612–616 (2007)Google Scholar
  35. 35.
    Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS-2007), pp. 1–9 (2007)Google Scholar
  36. 36.
    Xhafa, F., Sanchez, C., Barolli, L.: Ad hoc and neighborhood search methods for placement of mesh routers in wireless mesh networks. In: Proceedings of 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS-2009), pp. 400–405 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Admir Barolli
    • 1
  • Shinji Sakamoto
    • 2
    Email author
  • Leonard Barolli
    • 3
  • Makoto Takizawa
    • 4
  1. 1.Department of Information TechnologyAleksander Moisiu University of DurresDurresAlbania
  2. 2.Department of Computer and Information ScienceSeikei UniversityMusashino-shi, TokyoJapan
  3. 3.Department of Information and Communication EngineeringFukuoka Institute of TechnologyFukuokaJapan
  4. 4.Department of Advanced Sciences, Faculty of Science and EngineeringHosei UniversityKoganei-Shi, TokyoJapan

Personalised recommendations