Evaluation of 13.56 MHz RFID System Considering Communication Distance Between Reader and Tag

  • Kiyotaka FujisakiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 773)


RFID system becomes one of the very useful tools for the management of the library. Using electromagnetic coupling, an RFID tag can get power supplier by a reader and communicate with it for data exchange. Because the RFID system enables non-contact communication, various services and applications including the management of a library catalogue are possible. However, because the system is affected easily by neighboring environment, the communication performance is low. In this paper, by using 13.56 MHz RFID system, we evaluate the resonant frequency of RFID tag and the communication distance between the reader and the target tag when some tags becoming as interference sources come close to each other, and show the possibility to expand the communication distance by using tags near the target tag.



I am indebted to Hirotaka Kato for his assistance in experiments.


  1. 1.
    Bolomey, J.C, Capdevila, S., Jofre, L., Romeu, J.: Electromagnetic modeling of RFID-modulated scattering mechanism. Application to tag performance evaluation. Proc. IEEE (2010).
  2. 2.
    Cantatore, E., Geuns, T.C.T., Gelinck, G.H., et al.: A 13.56-MHz RFID system based on organic transponders. IEEE J. Solid-State Circ. (2007).
  3. 3.
    Finkenzeller, K.: RFID Handbook, 3rd edn. Wiley (2010).
  4. 4.
    Fujisaki, K.: The implementation of the RFID technology in the library, and electromagnetic compatibility (in Japanese). Monthly EMC 183, 86–94 (2003)Google Scholar
  5. 5.
    Fujisaki, K.: Implementation of a RFID-based system for library management. Int. J. Distrib. Syst. Technol. (2015).
  6. 6.
    Fujisaki, K.: Evaluation and measurements of main features of a table type RFID reader. J. Mob. Multimed. 11, 21–33 (2015)Google Scholar
  7. 7.
    Ha, O.K., Song, Y.S., Chung, K.Y., et al.: Relation model describing the effects of introducing RFID in the supply chain: evidence from the food and beverage industry in South Korea. Pers. Ubiquitous Comput. Arch. (2014).
  8. 8.
    Iga, T., Morise, H.: How to Use IC Tag. Nikkan Kogyo Shinbun (2005) (in Japanese)Google Scholar
  9. 9.
    Karibe, H.: Introduction to Contactless Smart Card Design. Nikkan Kogyo Shinbun (2005) (in Japanese)Google Scholar
  10. 10.
    Kuoa, S.K., Hsub, J.Y., Hungb, Y.H.: A performance evaluation method for EMI sheet of metal mountable HF RFID tag. Measurement (2011).
  11. 11.
    Li, N., Gerber, B.B.: Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment. Adv. Eng. Inf. (2011).
  12. 12.
    Potyrailo, R.A., Morris, W.G., Sivavec, T., et al.: RFID sensors based on ubiquitous passive 13.56-MHz RFID tags and complex impedance detection. Wirel. Commun. Mob. Comput. (2009).
  13. 13.
    Prasad, N.R.K., Rajesh, A.: RFID-based hospital real time patient management system. Int. J. Comput. Trends Technol. 3, 1011–1016 (2012)Google Scholar
  14. 14.
    Basat, S.S., Kyutae, L., Laskar, J., Tentzeris, M.M.: Design and modeling of embedded 13.56 MHz RFID antennas. In: Proceedings of IEEE International Symposium on Antenna Propagation (2005).
  15. 15.
    Sing, J., Brar, N., Fong, C.: The State of RFID applications in libraries. Inf. Technol. Libr. (2006).
  16. 16.
    Symonds, J., Seet, B.C., Xiong, J.: Activity inference for RFID-based assisted living applications. J. Mob. Multimed. 6, 15–25 (2010)Google Scholar
  17. 17.
    Uysal, D.D., Gainesville, F., Emond, J., Engles, D.W.: Evaluation of RFID performance for a pharmaceutical distribution chain: HF vs. UHF. In: Proceedings of 2008 IEEE International Conference on RFID (2008).
  18. 18.
    Zhonga, R.Y., Dai, Q.Y., Qu, T., et al.: RFID-enabled real-time manufacturing execution system for mass-customization production. Robot. Comput. Integr. Manuf. (2013).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fukuoka Institute of TechnologyFukuokaJapan

Personalised recommendations