Advertisement

Potential for Adaptation to Climate Change Through Genomic Breeding in Sesame

  • Haiyang ZhangEmail author
  • Hongmei Miao
  • Ming Ju
Chapter

Abstract

Sesame is an important oilseed crop with high oil content and oil quality. Abundant unsaturated fatty acids, proteins, and antioxidants in sesame seeds attract the worldwide consumption of sesame products. Sesame is highly tolerant of drought and poor soil condition, even though it is readily affected by diseases and waterlogging stress, thereby leading to reduced seed yield and quality. For sesame, increasing the high and stable yield is requisite and urgent. Meanwhile, it is necessary to increase the mechanization level of its harvest for the world’s sesame production. Sesame, S. indicum, is the sole cultivated species in Sesamum genus. The relatively low genetic diversity limits sesame breeding for new and substantial improved varieties. In this section, we present a review of the key agronomic traits and the breeding methods currently used in the species. We also pinpoint the achievement of the Sesame Genome Project (SGP) and the potential for the genomics-assisted breeding in sesame.

Keywords

Sesame (Sesamum indicum L.) Climate change Yield Seed quality Resistance Breeding Genomics-assisted selection 

Notes

Acknowledgements

We would like to thank Prof. Hongbin Zhang, Prof. Ray D. Langham, and the editor Prof. Chittaranjan Kole for their advices and suggestions on the article edition. This work was financially supported by the earmarked fund for China Agriculture Research System (CARS-14), the National Natural Science Foundation of China (31471537), Henan Province Key Science and Technology Program (151100111200), the Plan for Scientific Innovation Talent of Henan Province (184200510002), the Importing International Agricultural Science and Technology Program (2016-X05), the Henan Province Distinguished Professor Position Program (DPPP2016), the Distinguished Professor Program of Institutions of Higher Learning in Henan Province (DPPIHL2017), and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (ISTTCPHP2016).

References

  1. Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE, Scheffler BE, Pepper AE, Yu JZ, Kohel RJ, Abdukarimov A (2009) Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136(3):401–417PubMedCrossRefGoogle Scholar
  2. Abuja PM, Albertini R (2002) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta 306:1–17CrossRefGoogle Scholar
  3. Ahmed ME (2008) Evaluation of new sesame (Sesamum indicum L.) genotypes for yield, yield components and stability. Univ Khartoum J Agri Sci 16:380–394Google Scholar
  4. Alves-Santos FM, Benito EP, Eslava AP, Díaz-Mínguez J (1999) Genetic diversity of Fusarium oxysporum strains from common bean fields in Spain. Appl Environ Microbiol 65(8):3335–3340PubMedPubMedCentralGoogle Scholar
  5. An (2009) Adventitious shoot induction and plant regeneration from cotyledon of sesame (Sesamum indicum L.). Thesis, Nanjing Agriculture University, Nanjing, ChinaGoogle Scholar
  6. Anbarasan K, Rajendranmkk R, Sivalingam D (2015) Studies on the mutagenic effectiveness and efficiency of gamma rays, EMS and combined treatment in sesame (Sesamum indicum L.) var.TMV3. Res J Pharmaceut Biol Chem Sci 6(4):589–595Google Scholar
  7. Anilakumar KR, Pal A, Khanum F, Bawa AS (2010) Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds—an overview. Agri Conspect Sci 75(4):159–168Google Scholar
  8. Armstrong JK, Armstrong GM (1950) A Fusarium wilt of sesame in United States. Phytopathol J 40:785Google Scholar
  9. Ashri A (1998) Sesame breeding. In: Janick J (ed) Plant breeding reviews, vol 16, Wiley, Israel, pp 179–228CrossRefGoogle Scholar
  10. Ashri A (2001) Induced mutations in sesame breeding. No. IAEA-TECDOC–1195Google Scholar
  11. Ashri A (2006) Sesame (Sesamum indicum L.). In: Signh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, Boca Raton, FL, pp 231–280CrossRefGoogle Scholar
  12. Ashri A, Singh RJ (2007) Sesame (Sesamum indicum L.). Genet Resour Chrom Engg Crop Improv: Oilseed Crops 4:231–280Google Scholar
  13. Azeez MA, Morakinyo JA (2011) Genetic diversity of fatty acids in sesame and its relatives in Nigeria. Eur J Lipid Sci Technol 113(2):238–244CrossRefGoogle Scholar
  14. Backiyarani S, Devarathinam AA, Shanthi S (1997) Combining ability studies on economic traits in sesame (Sesamum indicum L.). Crop Res (Hisar) 13(1):121–124Google Scholar
  15. Bakheit BR, Ismail AA, Elshiemy AA, Sedek FS (2000) Triple test cross analysis in four sesame crosses (Sesamum indicum L.). J Agri Sci 137(2):185–193Google Scholar
  16. Balasnse AG, Pawar BB, Dumbre AD (1991) Genetic analysis of some quantitative traits in sesame. J Maha Agri Univ 16:3457–3459Google Scholar
  17. Banerjee PP, Kole PC (2009a) Analysis of genetic architecture for some physiological characters in sesame (Sesamum indicum L.). Euphytica 168(1):11–22CrossRefGoogle Scholar
  18. Banerjee PP, Kole PC (2009b) Combining ability analysis for seed yield and some of its component characters in sesame (Sesamum indicum L.). Intl J Plant Breed Genet 3(1):11–21CrossRefGoogle Scholar
  19. Baskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on (Sesamum indicum L.)—an important oil plant. J Agri Technol 2:259–269Google Scholar
  20. Baydar H (2005) Breeding for the improvement of the ideal plant type of sesame. Plant Breed 124(3):263–267CrossRefGoogle Scholar
  21. Bedigian D (1988) Sesamum indicum L. (Pedaliaceae): Ethnobotany in Sudan, crop diversity, lignans, origin, and related taxa. In: Goldblatt P, Lowry PP (eds) Modern systematic studies in African Botany, AETFAT monographs in systematic Botany, Missouri, 25:315–321Google Scholar
  22. Bedigian D (2004) Slimy leaves and oily seeds: distribution and use of wild relatives of sesame in Africa. Econ Bot 58(sp1):S3–S33CrossRefGoogle Scholar
  23. Bedigian D (2010a) Chracterization of sesame (Sesamum indicum L.) germplasm: a critique. Genet Resour Crop Evol 57:641–647CrossRefGoogle Scholar
  24. Bedigian D (2010b) Cultivated sesame, and wild relatives in the genus Sesamum. CRC Press, Boca Raton, FL, pp 33–77CrossRefGoogle Scholar
  25. Bedigian D, Harlan JR (1986) Evidence for cultivation of sesame in the ancient world. Econ Bot 40(2):137–154CrossRefGoogle Scholar
  26. Bedigian D, Seigler DS, Harlan JR (1985) Sesamin, sesamolin and the origin of sesame. Biochem Syst Ecol 13(2):133–139CrossRefGoogle Scholar
  27. Begum T, Dasgupta T (2010) A comparison of the effects of physical and chemical mutagens in sesame (Sesamum indicum L.). Genet Mol Biol 33(4):761–766PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bekhrad H, Mahdavi B, Rahimi A (2016) Effect of seed priming on growth and some physiological characteristics of sesame (Sesamum indicum L.) under salinity stress condition caused by Alkali Salts. Pizhūhishhā-yi zirā̒ī-IĪrān 13 (4): 810-812Google Scholar
  29. Bhat KV, Babrekar PP, Lakhanpaul S (1999) Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 110:21–33CrossRefGoogle Scholar
  30. Bhattacharyya J, Chakraborty A, Mitra J, Chakraborty S, Pradhan S, Manna A, Sikdar N, Sen SK (2015) Genetic transformation of cultivated sesame (Sesamum indicum, L. cv Rama) through particle bombardment using 5-day-old apical, meristematic tissues of germinating seedlings. Plant Cell Tiss Org Cult 123(3):455–466CrossRefGoogle Scholar
  31. Biabani AR, Pakniyat H (2008) Evaluation of seed yield-related characters in sesame (Sesamum indicum L.) using factor and path analysis. Pak J Biol Sci 11(8):1157–1160Google Scholar
  32. Bor M, Seckin B, Ozgur R, Yılmaz O, Ozdemir F, Turkan I (2009) Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutryric acid levels of sesame (Sesamum indicum, L.). Acta Physiol Plant 31(3):655–659CrossRefGoogle Scholar
  33. Boranayaka MB, Gowda RK, Nandini B, Satish RG, Pujer SB (2010) Influence of gamma rays and ethyl methane sulphonate on germination and seedling survival in sesame (Sesamum indicum L.). Intl J Plant Sci 5(2):655–659Google Scholar
  34. Cagirgan MI (2001) Mutation techniques in sesame (Sesamum indicum L.) for intensive management: confirmed mutants. In: Sesame improvement by induced mutations, IAEA-TECDOC-1195, Vienna, pp 31–40Google Scholar
  35. Chakraborti P, Ghosh A (2009) Variation in callus induction and root-shoot bud formation depend on seed coat of sesame genotypes. Res J Bot 5:14–19Google Scholar
  36. Chattopadhyaya B, Banerjee J, Basu A, Sen SK, Maiti MK (2010) Shoot induction and regeneration using internodal transverse thin cell layer culture in Sesamum indicum L. Plant Biotechnol Rep 4(2):173–178CrossRefGoogle Scholar
  37. Chen Z, Wang X (2005) The mutagenesis improvement of rice strong dominant restorer line 9311 grain weight. Plant Mol Breed 3(3):353–356Google Scholar
  38. Chen Z, Wang J, Zhi Y, Yi M (1994) Study of multiple bud induction and shoot regeneration in sesame. J Henan Agri Sci 11(6):10–12Google Scholar
  39. Chen Z, Zhi Y, Yi M, Wang J, Liang X, Tu L, Fu R, Cao G, Shi Y, Sun Y (1996) Transformation of engineered male sterile gene and establishment of transgenic plants in sesame (Sesamum indicum L.). Acta Agri Bor-Sin 11(4):33–38Google Scholar
  40. Chen JCF, Lin RH, Huang HC, Tzen JTC (1997) Cloning, expression and isoform classification of a minor oleosin in sesame oil bodies. J Biochem 122(4):819–824PubMedCrossRefPubMedCentralGoogle Scholar
  41. Cho EK, Choi SH (1987) Etiology of half stem rot in sesame caused by Fusarium oxysporum. Kor J Plant Protec 26(1):25–30Google Scholar
  42. Chowdhury S, Basu A, Kundu S (2014) A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma 251:1175–1190PubMedCrossRefPubMedCentralGoogle Scholar
  43. Chowdhury S, Basu A, Kundu S (2017) Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Front Plant Sci 8:410PubMedPubMedCentralGoogle Scholar
  44. Chun JA, Jin UH, Lee JW, Yi YB, Hyung NI, Kang MH, Pyee JH, Suh MC, Kang CW, Seo HY, Lee SW, Chung CH (2003) Isolation and characterization of a myo-inositol 1-phosphate synthase cDNA from developing sesame (Sesamum indicum L.) seeds: functional and differential expression, and salt–induced transcription during germination. Planta 216(5):874–880Google Scholar
  45. Chyan CL, Lee TTT, Liu CP, Yang YC, Tzen JTC, Chou WM (2005) Cloning and expression of a seed-specific metallothionein-like protein from sesame. Biosci Biotechnol Biochem 69(12):2319–2325PubMedCrossRefPubMedCentralGoogle Scholar
  46. Culp TW (1959) Inheritance and association of oil and protein content and seed coat type in sesame. Sesamum indicum L. Genetics 44(5):897–909PubMedPubMedCentralGoogle Scholar
  47. Daniya E (2013) Correlation and path analysis between seed yield and some weed and quantitative components in two sesame (Sesamum indicum L.) varieties as influenced by seed rate and nitrogen fertilizer. J Biol Agri Healthcare 3(15):12–16Google Scholar
  48. Dinakaran D, Mohammed SEN (2001) Identification of resistant sources to root rot of sesame caused by Macrophomina phaseolina (Tassi.) Goid. Sesame Safflower Newsl 16:68–71Google Scholar
  49. Ding X, Wang L, Zhang Y, Li D, Wei W, Zhang X (2012) Evaluation of the waterlogging tolerance of the main sesame cultivars in China. Acta Agri Bor-Sin 27(4):89–93Google Scholar
  50. Dixit AA, Jin MH, Chung JW, Yu JW, Chung HK, Ma KH, Park YJ, Cho EG (2005) Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol Ecol Notes 5:736–738CrossRefGoogle Scholar
  51. Dossa K (2016) A physical map of important QTLs, functional markers and genes available for sesame breeding programs. Physiol Mol Biol Plants 22(4):1–7CrossRefGoogle Scholar
  52. Dossa K, Diouf D, Cissé N (2016a) Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front Plant Sci 7(190):1522PubMedPubMedCentralGoogle Scholar
  53. Dossa K, Xin W, Li D, Fonceka D, Zhang Y, Wang L, Yu J, Boshou L, Dioul D, Cissé N, Zhang X (2016b) Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biol 16(1):171PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dossa K, Yu J, Liao B, Cisse N, Zhang X (2017) Development of highly informative genome-wide single sequence repeat markers for breeding applications in sesame and construction of a web resource: SisatBase. Front Plant Sci 8:1470PubMedPubMedCentralCrossRefGoogle Scholar
  55. El-Bramawy MAES (2006) Inheritance of resistance to Fusarium wilt in some sesame crosses under field conditions. Plant Protec Sci 42(3):99–105CrossRefGoogle Scholar
  56. El-Bramawy MAES, Abdul Wahid OA (2006) Field resistance of crosses of sesame (Sesamum indicum L.) to charcoal root rot caused by Macrophomina phaseolina (Tassi.) goid. Plant Protec Sci 42(2):66–72Google Scholar
  57. El-Bramawy MAES, Amin Shaban WI (2007) Nature of gene action for yield, yield components and major diseases resistance in sesame (Sesamum indicum L.). Res J Agric & Biol Sci 3(6): 821-826Google Scholar
  58. El-Bramawy MAES, El-Hendawy SES, Amin Shaban WI (2008) Assessing the suitability of morphological and phenological traits to screen sesame genotypes for Fusarium wilt and charcoal rot disease resistance. J Plant Protec Res 48(4):397–410Google Scholar
  59. El-Shakhess SAM, Khalifa MMA (2007) Combining ability and heterosis for yield, yield components, charcoal-rot and Fusarium wilt diseases in sesame. Egypt J Plant Breeding 11(1):351–371Google Scholar
  60. Ercan AG, Taskin M, Turgut K (2004) Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Resour Crop Evol 51:599–607CrossRefGoogle Scholar
  61. Eshwarappa V (2010) F2 Bulk segregants analysis for Alternaria disease resistance using RAPD markers in sesame (Sesamum indicum L.). Thesis, University of Agricultural Sciences, Dharwad Karnataka, IndiaGoogle Scholar
  62. Fall AL, Byrne PF, Jung G, Coyne DP, Brick MA, Schwartz HF (2001) Detection and mapping of a major locus for Fusarium wilt resistance in common bean. Crop Sci 41(5):1494–1498CrossRefGoogle Scholar
  63. Fazeli F, Ghorbanli M, Niknam V (2007) Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol Plant 51(1):98–103CrossRefGoogle Scholar
  64. Feng X, Zhang X (1991) Identification and evaluation of sesame germplasm resource to waterlogging. Oil Crops China 3:12–15Google Scholar
  65. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442PubMedCrossRefGoogle Scholar
  66. Fuller DQ (2002) Fifty years of archaeobotanical studies in India: laying a solid foundation. In: Settar S, Korisettar R (eds) Indian archaeology in retrospect III. Archaeology and Interactive Disciplines, Manohar, New Delhi, pp 247–363Google Scholar
  67. Fuller DQ (2003) Further evidence on the prehistory of sesame. Asian Agri-Hist 7(2):127–137Google Scholar
  68. Fuller DQ, Madella M (2001) Issues in Harappan archaeobotany: retrospect and prospect. In: Settar S, Korisettar R (eds) Indian archaeology in retrospect II. Protohistory, Manohar, New Delhi, pp 317–390Google Scholar
  69. Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler E, Charcosset A, Clarke JD, Graner E, Hansen M, Joets J, Paslier ML, McMullen MD, Montalent P, Rose M, Schön C, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6(12):e28334PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gangadhara K, Prakash JC, Rajesh AM, Gireesh C, Somappa J, Yathish KR (2012). Correlation and path coefficient analysis in sesame (Sesamum indicum L.). BIOINFOLET-A Quart J Life Sci 9(3):303–310Google Scholar
  71. Gao TM, Wei SL, Zhang HY, Chun-Ming LI, Zheng YZ, Miao HM (2011) Analysis of the nutritional components of white sesame kernel. Acta Nutri Sin 53(12):565–581Google Scholar
  72. George L, Bapat VA, Rao PS (1987) In vitro multiplication of sesame (Sesamum indicum) through tissue culture. Ann Bot 60:17–21CrossRefGoogle Scholar
  73. Gnanasekaran M, Jebaraj S, Muthuramu S (2008) Correlation and path co-efficient analysis in sesame (Sesamum indicum L.). Plant Arch 8:167–169Google Scholar
  74. Gong H, Zhao F, Pei W, Meng Q (2016) Advances in sesame (Sesamum indicum L.) germplasm resources and molecular biology research. J Plant Genet Resour 17(3):517Google Scholar
  75. Goudappagoudar R, Lokesha R, Vanishree (2014) Inheritance of Alternaria blight resistance in sesame. Intl J Plant Sci 8(1):110–112Google Scholar
  76. Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26(2):145-161CrossRefGoogle Scholar
  77. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis in bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  78. Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2010) Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci 178(6):510–516CrossRefGoogle Scholar
  79. Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2012) Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environ Exp Bot 75(1):212–219CrossRefGoogle Scholar
  80. Hsiao ESL, Lin LJ, Li FY, Wang MMC, Liao MY, Tzen JTC (2006) Gene families encoding isoforms of two major sesame seed storage proteins, 11S globulin and 2S albumin. J Agri Food Chem 54(25):9544–9550CrossRefGoogle Scholar
  81. Ibrahim SE, Khidir MO (2012) Genotypic correlation and path coefficient analysis of yield and some yield components in sesame (Sesamum indicum L.). Intl J Agrisci 2(8):664 –670Google Scholar
  82. Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178(3):1725–1736PubMedPubMedCentralCrossRefGoogle Scholar
  83. IPGRI, NBPGR (2004) Descriptors for sesame (Sesamum spp.). International Plant Genetic Resources Institute, Rome, Italy, National Bureau of Plant Genetic Resources, New Delhi, India, SBN92-9043-632-8Google Scholar
  84. Jimoh WA, Aroyehun HT (2011) Evaluation of cooked and mechanically defatted sesame (Sesamum indicum) seed meal as a replacer for soybean meal in the diet of African catfish (Clarias gariepinus). Turk J Fisher Aquat Sci 11(2):185–190Google Scholar
  85. Jin UH, Lee JW, Chung YS, Lee JH, Yi YB, Kim YK, Hyung NI, Pyee JH, Chung CH (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161(5):935–941CrossRefGoogle Scholar
  86. Joshi AB (1961) Sesamum. Indian Central Oilseed Committee Hyderabad, India, p 109Google Scholar
  87. Kang CW, Lee JI, Choi BH (1995) Mutation breeding for disease resistance and high yield of sesame (Sesamum indicum L.) in Korea. Sesame Safflower Newsl 10:21–36Google Scholar
  88. Kanu PJ (2011) Biochemical analysis of black and white sesame seeds from china. Amer J Biochem Mol Biol 1(2):145–157CrossRefGoogle Scholar
  89. Kapadia GJ, Azuine MA, Tokuda H, Takasaki M, Mukainaka T, Konoshima T, Nishino H (2002) Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the epstein–barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacol Res 45(6):499–505PubMedCrossRefGoogle Scholar
  90. Karunanithi K (1996) Efficacy of fungicides in the control of powdery mildew of sesame caused by Oidium acanthospermi. Indian J Mycol Plant Pathol 26:229–230Google Scholar
  91. Kenoyer JM (1991) The Indus valley tradition of Pakistan and western India. J World Prehist 5(4):331–385CrossRefGoogle Scholar
  92. Kim DH, Zur G, Danin-Poleg Y, Lee SW, Shim KB, Kang CW, Kashi Y (2002) Genetic relationships of sesame germplasm collection as revealed by inter-simple sequence repeats. Plant Breed 121:259–262CrossRefGoogle Scholar
  93. Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5’-UTR intron. Mol Genet Genom 276(4):351–368CrossRefGoogle Scholar
  94. Kim KS, Park SH, Jenks MA (2007a) Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol 164(9):1134–1143PubMedCrossRefGoogle Scholar
  95. Kim MJ, Kim JK, Shin JS, Suh MC (2007b) The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E-and G-box elements. Plant Mol Biol 64:453–466PubMedCrossRefGoogle Scholar
  96. Kim MJ, Go YS, Lee SB, Kim YS, Shin JS, Min MK, Hwang I, Suh MC (2010) Seed-expressed casein kinase I acts as a positive regulator of the SeFAD2 promoter via phosphorylation of the SebHLH transcription factor. Plant Mol Biol 73:425–437PubMedCrossRefGoogle Scholar
  97. Kobayashi T (1986) Some genetic patterns for the main characteristics of the cultivated sesame. In: Fernandez MJ (ed) Sesame and Safflower Newsletter. CIDA, Cordova, Spain, pp 23–32Google Scholar
  98. Kobayashi T (1991) Cytogenetics of sesame (Sesamum indicum). Developments in Plant Genetics and Breeding. 2, part B, pp 581–592Google Scholar
  99. Koca H, Bor M, Özdemir F, Türkan Ì (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351CrossRefGoogle Scholar
  100. Kodym A, Afza R (2003) Physical and chemical mutagenesis. Plant Functional Genomics. Humana Press 236:189–204CrossRefGoogle Scholar
  101. Kumar P, Madhusudan K, Nadaf HL, Patil RK, Deshpande SK (2012) Combining ability and gene action studies in inter-mutant hybrids of sesame (Sesamum indicum L.). Karn J Agri Sci 25(1):1–4Google Scholar
  102. Kumpatla SP, Chandrasekharan MB, Iyer LM, Li G, Hall TC (2012) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3(3):97–104CrossRefGoogle Scholar
  103. Langham DG (1946) Genetics of sesame: III. ‘Open sesame’ and mottled leaf. J Hered 37(5):149–152PubMedCrossRefGoogle Scholar
  104. Langham DR (2007) Phenology of sesame. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, Alexandria, VA, pp 144–182Google Scholar
  105. Langham DR (2008) Growth and development of sesame, American Sesame Grower Association, San Antonio, TX, p 44Google Scholar
  106. Langham DR (2017) VII. Capsule descriptors of sesame (Sesamum indicum L.). Sesame Research LLC, Version: 1, ResearchGateGoogle Scholar
  107. Langham DR (2018) IX. Sesame cycle descriptors (Sesamum indicum L.).Working Paper 1, 10.13140/RG.2.2.30261.58083Google Scholar
  108. Langham DG, Rodriguez M (1946) Abrete sesamo: Ajonjoli (Sesamum indicum) que no pierde semillas. Circulation 17:153–159Google Scholar
  109. Langham DR, Wiemers T, Janick J, Whipkey A (2002) Progress in mechanizing sesame in the US through breeding. In: Janick J (ed) Trends in new crops and new uses. ASHS Press, Alexandria, VA, pp 157–173Google Scholar
  110. Laurentin HE, Petr K (2006) Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genetics 7(1):10Google Scholar
  111. Leduc V, Moneret-Vautrin DA, Tzen JTC, Morisset M, Guerin L, Kanny G (2006) Identification of oleosins as major allergens in sesame seed allergic patients. Allergy 61(3):349–356PubMedCrossRefGoogle Scholar
  112. Lee TTT, Chung MC, Kao YW, Wang CS, Chen LJ, Tzen JTC (2005) Specific expression of a sesame storage protein in transgenic rice bran. J Cereal Sci 41:23–29CrossRefGoogle Scholar
  113. Li H (2017) Identification of Sesame Fusarium Wilt Pathogen Toxins and the analysis of Sesame seed quality under disease nursery condition. Henan University of Technology, Zhengzhou, China, ThesisGoogle Scholar
  114. Li D, Wang L, Zhang Y, Lv H, Qi X, Wei W, Zhang X (2012a) Pathogenic variation and molecular characterization of Fusarium species isolated from wilted sesame in China. Afr J Microbiol Res 6(1):149–154Google Scholar
  115. Li H, Pu X, Zhang J, Huang C, Song K, Jiang J, He P, Li P, Jiang L (2012) Agronomic traits and molecular detection of Brassica napus L. generation induced by EMS. J Nucl Agri Sci 26(2):245–249Google Scholar
  116. Li C, Miao H, Wei L, Zhang T, Han X, Zhang H (2014) Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS ONE, 9(8):e105757PubMedPubMedCentralCrossRefGoogle Scholar
  117. Li D, Dossa K, Zhang Y, Wei X, Wang L, Zhang Y, Wei X, Wang L, Zhang Y, Liu A, Zhou R, Zhang X (2018) GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes 9(2):87PubMedCentralCrossRefPubMedGoogle Scholar
  118. Li L (2010) Food color science and optical properties. In: Li L (eds.) Food physics, China agriculture press, Beijing, China, p 115-116Google Scholar
  119. Liu X (2014) Progresses on EMS mutagenesis in plant breeding. Acta Laser Biol Sin 23(3):197–201Google Scholar
  120. Liu J, Ding F, Tu C (1980) Study on the correlation of sesame yield components. Chin J Oil Crop Sci 2:55–60Google Scholar
  121. Liu J, Tu L, Xu R, Zheng Y (1993) The relationship between the waterlogging resistance and the genotypes and the vigor of root system in sesame (Sesamum indicum L.). Acta Agri Bor-Sin 8(3):82–86Google Scholar
  122. Liu W, Wei L, Donghua L, Ren G, Zhang Y, Wen F, Han J, Zhang X (2017) Drought resistance of sesame germplasm resources and association analysis at adult stage. Sci Agri Sin 50(4):625–639Google Scholar
  123. Magni C, Ballabio C, Restani P, Fuggetta D, Alessandri C, Mari A, Bernardini R, Iacono ID, Ariorio M, Duranti M (2010) Molecular insight into IgE-mediated reactions to sesame (Sesamum indicum L.) seed proteins. Ann Allergy Asthma Immunol 105(6):458–464CrossRefGoogle Scholar
  124. Makinde FM, Akinoso R (2013) Nutrient composition and effect of processing treatments on anti nutritional factors of Nigerian sesame (Sesamum indicum Linn) cultivars. Intl Food Res J 20(5):2293–2300Google Scholar
  125. Mansouri S, Ahmadi MR (1998) Study of combining ability and gene effect on sesame lines by diallel cross method. Indian J Agri Sci 29(1):47–55Google Scholar
  126. Mary RJ, Jayabalan N (1997) Influence of growth regulators on somatic embryogenesis in sesame. Plant Cell Tiss Org Cult 49:67–70CrossRefGoogle Scholar
  127. Mei H, Liu Y, Du Z, Wu K, Cui CQ, Jiang X, Zhang H, Zheng Y (2017) High-density genetic map construction and gene mapping of basal branching habit and number of flowers per leaf axil in sesame. Front Plant Sci 8:636PubMedPubMedCentralCrossRefGoogle Scholar
  128. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492PubMedCrossRefGoogle Scholar
  129. Mensah JK, Obadoni BO, Eruotor PG, Onome-Irieguna F (2006) Simulated flooding and drought effects on germination, growth, and yield parameters of sesame (Sesamum indicum L). Afr J Biotechnol 5(13):1249–1253Google Scholar
  130. Miao H (2014) The sesame genome project and sesame genome sequencing. Plant and Animal Genome XXII Conference, 10–15 January, San Diego, USAGoogle Scholar
  131. Miao H, Zhang H (2016) The Genome of Sesamum indicum L. In: Plant and animal genome XXIV conference, 9–13 January, San Diego, USAGoogle Scholar
  132. Miao H, Ju M, Wei L, Ma Q, Zhang H (2012) Establishment of sesame callus induction and shoot regeneration system. Chin Bull Bot 47(2):162–170CrossRefGoogle Scholar
  133. Mitsuma S, Ishigaki E, Sugiyama R, Asamizu T, Yamada K, Kurosaki F (2004) Activation of phenylpropanoid metabolism in sesame by over-expression of carrot calmodulin gene. Biol Pharmaceut Bull 27(10):621–1625CrossRefGoogle Scholar
  134. Muhammad LM, Falusi OA, Daudu OAY, Gado AA, Lateef AA, Yahaya SA (2013) Radiation induced polygenic mutation in two common Nigerian sesame (Sesamum indicum L.) cultivars. Intl J Biotechnol Food Sci 1(2):23–28Google Scholar
  135. Muhamman MA, Mohammed SG, Lado A, Belel MD (2010) Interrelationship and path coefficient analysis of some growth and yield characteristics in sesame (Sesamum indicum L.). J Agri Sci 2(4):100–105Google Scholar
  136. Murty GSS (1988) Inheritance of three new mutants in sesame. Curr Sci 57(4):204–206Google Scholar
  137. Murty GSS, Bhatia CR (1990) Inheritance of polypetalous corolla mutation in sesame. Proc Indian Acad Sci (Plant Sci) 100(1):7–10Google Scholar
  138. Murty BR, Oropeza F (1989) An induced leaf differentiation mutant in Sesamum indicum L. Curr Sci 58(8):464–466Google Scholar
  139. Nimmakayala P, Perumal R, Mulpuri S, Reddy UK (2011) Sesamum. In: Kole C (ed) Wild corp relatives: genomic and breeding resources, volume: oilseeds. Springer, Berlin, Heidelberg, pp 261–273CrossRefGoogle Scholar
  140. Ogata N, Kato M (2016) Half-diallel analysis for sesamin and sesamolin contents of sesame (Sesamum indicum L.) seeds. Jpn J Crop Sci 85(3):302–308Google Scholar
  141. Ono E, Nakai M, Fukui Y, Namino Tomimori, Mizutani MF, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci USA 103(26):10116–10121PubMedCrossRefPubMedCentralGoogle Scholar
  142. Ozkan A, Kulak M (2013) Effects of water stress on growth, oil yield, fatty acid composition and mineral content of Sesamum indicum. J Anim Plant Sci 26(6):1686–1690Google Scholar
  143. Pandey SK, Das A, Dasgupta T (2013) Genetics of seed coat color in sesame (Sesamum indicum L.). Afr J Biotechnol 12(42): 6061–6067Google Scholar
  144. Pathak N, Bhaduri A, Bhat KV, Rai AK (2015) Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species-a domestication footprint. Plant Biol 17(5):1039–1046PubMedCrossRefGoogle Scholar
  145. Powell MA (1991) Epistemology and Sumerian agriculture: the strange case of sesame and linseed. Aula Orient 9:155–164Google Scholar
  146. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222CrossRefGoogle Scholar
  147. Prakash K, Naik SN (2014) Bioactive constituents as a potential agent in sesame for functional and nutritional application. J Bioresour Engg Technol 1:48–66Google Scholar
  148. Qiu C, Zhang H, Chang S, Wei L, Miao H (2014) Laboratory detecting method for pathogenicity of Fusarium oxysporum Schl. f. sp. sesami isolates. Acta Phytopathol Sin 44(1):26–35Google Scholar
  149. Rahman MF, Das P (1994) Seed soaking with chemicals for reducing infestation of Meloidogyne graminicola on rice. J Agri Sci Soc North East India 7:107–108Google Scholar
  150. Raja A, Jayabalan N (2011) In vitro shoot regeneration and flowering of sesame (Sesamum indicum L.) cv. SVPR-1. J Agri Technol 7(4):1089–1096Google Scholar
  151. Rajput MA, Sarwar G, Siddiqui KA, Siddiqui MA (1994) Genetic improvement of sesame for plant architecture and grain yield through nuclear techniques. In: Mutation breeding of oilseed crops, proceedings. Final FAO/IAEA research co-ordination meeting, 11–15 Jan 1993. IAEA, Vienna, Austria, IAEATECDOC-781, pp 89–96Google Scholar
  152. Rajput MA, Khan ZH, Jafri KA, Fazal Ali JA (1998) Field screening of sesame germplasm for resistance against charcoal rot (Macrophomina phaseolina). Sesame Safflower Newsl 13:63–66Google Scholar
  153. Ram R, Catlin D, Romero J, Cowley C (1990) Sesame: new approaches for crop improvement. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 225–228Google Scholar
  154. Ramadoss BR, Ganesamurthy K, Angappan K, Gunasekaran M (2014) Mutagenic effectiveness and efficiency of gamma rays in sesame (Sesamum indicum L.). Glob J Mol Sci 9(1):1–6Google Scholar
  155. Ramírez R, Gutiérrez D, Villafañe R, Lizaso JI (2005) Salt tolerance of sesame genotypes at germination, vegetative, and maturity stages. Commun Soil Sci Plant Analys 36(17–18):2405–2419CrossRefGoogle Scholar
  156. Ravichandran V, Jayakumar S (2015) Mutagenic effectiveness and efficiency of gamma rays and EMS in sesame (Sesamum indicum L.). Intl J Res Bot 5(2):14–19Google Scholar
  157. Reddy CDR, Ramachandraiah D, Haripriya S, Reddy KS (1992) Combining ability and heterosis for seed oil and yield in sesame. J Mah Agri Univ 17(1):78–81Google Scholar
  158. Saravanan S, Nadarajan N (2005) Effect of media supplements on in vitro response of sesame (Sesamum indicum L) genotypes. Res J Agri Biol Sci 1(1):98–100Google Scholar
  159. Sarkar PK, Khatun A, Singha A (2016) Effect of duration of water-logging on crop stand and yield of sesame. Intl J Innov Appl Stud 14(1):1–6Google Scholar
  160. Satish RG (2013) Genetic analysis of sesame (Sesamum indicum L.) for traits related to moisture stress tolerance with reference to root traits. Doctoral dissertation, University of Agricultural Sciences, Bengaluru, IndiaGoogle Scholar
  161. Sene B, Sarr F, Sow MS, Diouf D, Niang M (2017) Physico-chemical composition of the sesame variety (Sesamum indicum L.) and characterization of its derived products (seeds, oil and oilcake) in Senegal. Food Sci Qual Manag 65:5–10Google Scholar
  162. Seo HY, Kim YJ, Park TI, Kim HS, Yun SJ, Park KH, Oh MK, Choi MY, Paik CH, Lee YS, Choi YE (2007) High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. Vitro Cell Dev Biol Plant 43(3):209–214CrossRefGoogle Scholar
  163. Shahidi F, Liyana-Pathirana CM, Wall DS (2006) Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem 99(3):478–483CrossRefGoogle Scholar
  164. Sharma E, Shah TI, Khan F (2014) A review enlightening genetic divergence in Sesamum indicum based on morphological and molecular studies. Intl J Agri Crop Sci 7(1):1–9Google Scholar
  165. Sharmila V, Ganesh SK, Gunasekaran M (2007) Generation mean analysis for quantitative traits in sesame (Sesamum indicum L.) crosses. Genet Mol Biol 30(1):80–84CrossRefGoogle Scholar
  166. Shi S (1991) Application of mutagenesis in improvement of sesame varieties. Chin J Oil Crop Sci 2:93–96Google Scholar
  167. Shi S, Cai M (1986) Brief introduction of regenerated plants via stem culture of Congo wild sesame. Chin J Oil Crop Sci (4): 67-68 Google Scholar
  168. Shi S, Cai M (1989) Factors influencing the callus formation of sesame pollen. Chin J Oil Crop Sci 1:45–49Google Scholar
  169. Shittu LAJ, Bankole M, Ahmed T, Bankole MN, Shittu RK, Saalu CL, Ashiru OA (2007) Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic micro-organisms. Iran J Pharmacol Therapeut 6(6):165–170Google Scholar
  170. Sikka S, Gupta N (1947) Inheritance studies in Sesamum orientale L. Indian J Genet Plant Breed 7:3–52Google Scholar
  171. Sìlme RS, Çarğirgan MÌ (2010) Screening for resistance to Fusarium wilt in induced mutants and world collection of sesame under intensive management. Turk J Field Crops 15(1):89–93Google Scholar
  172. Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Deynze AV, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS ONE 7:e40563PubMedPubMedCentralCrossRefGoogle Scholar
  173. Singh RP, Singh SP, Pransad BK, Singh BD (2006) Multiple plantlets regeneration from tissue culture of sesame (Sesamum indicum L.). Res Crops 7:760–764Google Scholar
  174. Sinhamahapatra SP, Das SN (1992) Combining ability for resistance to charcoal rot (Macrophomina phaseolina Tassi (Goid)) in sesame. Indian J Genet Plant Breed 52(3):261–263Google Scholar
  175. Sorour WAI (1999) Gamma ray induced mutations in sesame (Sesamum indicum L.). I. Selection of useful mutants. Bull Fac Agri Univ Cairo 50:516–531Google Scholar
  176. Su Y (2011) A study of the isolation and identification of Fusarium wilt germ in sesame and the characteristics of sesame germplasm anti-Fusarium wilt disease. Nanjing Agricultural University, Nanjing, China, ThesisGoogle Scholar
  177. Su S, Li R, Lang D, Zhang K, Hao X, Liu Y, Wang J, Zhang H, Xu H (2016) Microstructure of glandular trichomes on leaf surface of sesame and changes of trichome secretions under drought condition. Acta Agron Sin 42(2):278–294CrossRefGoogle Scholar
  178. Subramanian M (2003) Wide crosses and chromosome behavior in Sesamum. Madr Agri J 90:1–15Google Scholar
  179. Sumathi P, Muralidharah V (2010) Analysis of genetic variability, association and path analysis in the hybrids of sesame (Sesamum indicum L.) Trop Agri Res Extn 13(3):63–67Google Scholar
  180. Sumathi P, Muralidharan V (2014) Gene effects and inheritance of branching and other yield attributing characteristics in sesame (Sesamum indicum L.). Trop Agri Res Extn 16(3):92–101CrossRefGoogle Scholar
  181. Sun J, Zhang X, Zhang Y, Huang B, Che Z (2008) Comprehensive evaluation of waterlogging tolerance of different sesame varieties. Chin J Oil Crop Sci 38(4):518–521Google Scholar
  182. Sun J, Zhang X, Zhang Y, Wang L, Li D (2010) Evaluation of yield characteristics and waterlogging tolerance of sesame germplasm with different plant types after waterlogging. J Plant Genet Resour 11(2):139–146Google Scholar
  183. Sun X (2006) The methodological study on taxonomy of the genus Alternaria Nees. Ph D Dissertation, Shangdong Agriculture University, Qingdao, ChinaGoogle Scholar
  184. Supriya K (2007) Genetic variability studies in identified mutants of sesame (Sesamum indicum L.). Master dissertation, Dharwad University of Agricultural Sciences, Dharwad, IndiaGoogle Scholar
  185. Suwimol S, Wiroj JR, Walin WK, Natchapon J, Pathamaporn H, Auranun SU (2012) Effects of sesame seeds consumption on serum cholesterol and oxidative status in hypercholesterolemia. Food Publ Health 2(6):193–196Google Scholar
  186. Takada N, Uno T (2001) Japanese Market and Thai black sesame seeds. In: Proceedings of the second national conference on Sesame, Sunflower, Castor and Safflower, Wongree Resort, Nakhon Nayok, Thailand, 16–17Google Scholar
  187. Thiyagu K, Kandasamy G, Manivannan N, Muralidharan V, Manoranjitham SK (2007) Identification of resistant genotypes to root rot disease (Macrophomina phaseolina) of sesame (Sesamum indicum L.). Agri Sci Dig 27(1):34–37Google Scholar
  188. Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12PubMedPubMedCentralCrossRefGoogle Scholar
  189. Tsuda M, Kaga A, Anai T, Shimizu T, Sayama T, Takagi K, Machita K, Watanabe S, Nishimura M, Yamada N, Mori S, Sasaki H, Kanamori H, Katayose Y, Ishimoto M (2015) Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genom 16:1014CrossRefGoogle Scholar
  190. Uncu AÖ, Gultekin V, Allmer J, Frary A, Doganlar S (2015) Genomic simple sequence repeat markers reveal patterns of genetic relatedness and diversity in sesame. Plant Genome 8(2):1–12CrossRefGoogle Scholar
  191. Uncu AÖ, Frary A, Karlovsky P, Doganlar S (2016) High-throughput single nucleotide polymorphism (SNP) identification and mapping in the sesame (Sesamum indicum, L.) genome with genotyping by sequencing (GBS) analysis. Mol Breed 36:173Google Scholar
  192. Uzo JO (1985) A search for drought resistance in the wild relatives of the cultivated sesame (Sesamum indicum). In: Ashri A (ed) Sesame and Safflower: status and potential. FAO Plant Production and Protection Paper 66, Rome, Italy, pp 163–165Google Scholar
  193. Uzun B, Çağırgan Mİ (2009) Identification of molecular markers linked to determinate growth habit in sesame. Euphytica 166:379–384CrossRefGoogle Scholar
  194. Van Zanten L (2001) Sesame improvement by induced mutations: Results of the co-ordinated research project and recommendation for future studies. In: Van Zanten L (ed) Sesame improvement by induced mutations 1, Proc Final FAO/IAEA Co-ord. Res. Mtng, IAEA, Vienna, TECDOC-1195, pp 1–12Google Scholar
  195. Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj C (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31(8):1120–1134PubMedCrossRefGoogle Scholar
  196. Venkatachalam P, Geetha N, Rao KS, Jayabalan N (1999) Rapid and high-frequency in vitro plant regeneration from leaflet and petiole explants of groundnut (arachis hypogaea, l.). Appl Biochem Biotechnol 80(3):193–203CrossRefGoogle Scholar
  197. Verma ML, Mehta N, Snagwan MS (2005) Fungal and bacterial diseases of sesame. In: Saharan GS, Mehta N (eds) Diseases of Oilseed Crops. Indus Publishing, New Delhi, pp 269–300Google Scholar
  198. Verma P, Goyal R, Chahota RK, Sharma TR, Abdin MZ, Bhatia S (2015) Construction of a genetic linkage map and identification of QTLs for seed weight and seed size traits in Lentil (Lens culinaris Medik.). PLoS ONE 10:e0139666PubMedPubMedCentralCrossRefGoogle Scholar
  199. Vyas SC (1981) Diseases in Sesamum in India and their control. Pesticides 15:10Google Scholar
  200. Wang W, Liu J, Tu L (1993) Study on the inheritance of resistance to Fusarium wilt in sesame. J Henan Agri Univ 27(1):84–89Google Scholar
  201. Wang W, Mei H, Zheng Y, Zhang F (1999) Study on response to waterlogging and adaptive change in sesame (Sesamum indicum L.) I. Changes of morphology, biomass and seed yield of different sesame genotypes under artificial flooding condition. Chin J Oil Crop Sci 21(4):29–32Google Scholar
  202. Wang W, Zhang Y, Mei H, Zhang F (2000) Studies on response to waterlogging and adaptive change in sesame (Sesamum indicum L.) II. Effects of waterlogging and growth regulators on physiological characteristics of some sesame genotypes. Chin J Oil Crop Sci 22(2):48–52Google Scholar
  203. Wang L, Zhang Y, Qi X, Gao Y, Zhang X (2012) Development and characterization of 59 polymorphic cDNA-SSR markers for the edible oil crop Sesamum indicum (Pedaliaceae). Amer J Bot 99(10):394–398CrossRefGoogle Scholar
  204. Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, Li Y, Liu S, Varshney RK, Wang J, Zhang X (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15(2):R39PubMedPubMedCentralCrossRefGoogle Scholar
  205. Wang S, Chen J, Zhang W, Hu Y, Chang L, Fang L, Wang Q, Lv F, Wu H, Si Z, Chen S, Cai C, Zhu X, Zhou B, Guo W, Zhang T (2015) Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 16:108PubMedPubMedCentralCrossRefGoogle Scholar
  206. Wang L, Xia Q, Zhang Y, Zhu X, Zhu X, Li D, Ni X, Gao Y, Xiang H, Wei X, Yu J, Quan Z, Zhang X (2016) Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genom 17:31CrossRefGoogle Scholar
  207. Wang H, Zhang H, Ma Q, Wei L, Ju M, Li C, Duan Y, Miao H (2017a) Optimization of EMS mutagenesis condition and screening of mutants in sesame. J Henan Agri Sci 46(1):36–41Google Scholar
  208. Wang L, Zhang Y, Zhu X, Zhu X, Li D, Zhang X, Gao Y, Xiao G, Wei X, Zhang X (2017b) Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Sci Rep 7:8349PubMedPubMedCentralCrossRefGoogle Scholar
  209. Wei L, Zhang H, Zheng Y, Miao H, Zhang T, Guo W (2009) A genetic linkage map construction for sesame (Sesamum indicum L.). Genes Genom 31(2):199–208CrossRefGoogle Scholar
  210. Wei L, Ma Q, Ju M, Zhang T, Wang H, Miao H (2011) Establishment of an acceptor system for gene transformation in sesame (Sesamum indicum L.) cotyledon. Mol Plant Breed 9(6):770–778Google Scholar
  211. Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451Google Scholar
  212. Wei W, Zhang Y, Lv H, Wang L, Li D, Zhang X (2012) Population structure and association analysis of oil content in a diverse set of Chinese sesame (Sesamum indicum L.) germplasm. Sci Agri Sin 45(10):1895–1903Google Scholar
  213. Wei W, Zhang Y, Lv H, Li D, Wang L, Zhang X (2013) Association analysis for quality traits in a diverse panel of Chinese sesame (Sesamum indicum L.) germplasm. J Integr Plant Biol 55(8):745–758PubMedCrossRefGoogle Scholar
  214. Wei L, Miao H, Li C, Duan Y, Niu J, Zhang T, Zhao Q, Zhang H (2014) Development of SNP and InDel markers via de novo transcriptome assembly in Sesamum indicum L. Mol Breed 34:2205–2217CrossRefGoogle Scholar
  215. Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D, Zhao Q, Zhu X, Zhu X, Li W, Fan D, Gao Y, Lu Y, Zhang X, Tang X, Zhou C, Zhu C, Liu L, Zhong R, Tian Q, Wen Z, Weng Q, Han B, Huang X, Zhang X (2015a) Genetic discovery for oil production and quality in sesame. Nat Commun 6:8609PubMedPubMedCentralCrossRefGoogle Scholar
  216. Wei X, Wang L, Yu J, Zhang Y, Li D, Zhang X (2015b) Genome-wide identification and analysis of the MADS-box gene family in sesame. Gene 569(1):66–76PubMedCrossRefGoogle Scholar
  217. Wei X, Zhu X, Yu J, Wang L, Zhang Y, Li D, Zhou R, Zhang X (2016) Identification of sesame genomic variations from genome comparison of landrace and variety. Front Plant Sci 7:1169PubMedPubMedCentralGoogle Scholar
  218. Wei Q, Miao H, Zhang H, Wang X, Li H, Yuan Q (2018) Effects of Fusarium wilt disease stress on the quality of sesame seed and oil product. J Henan Agri Sci 47(12): 70–77Google Scholar
  219. Weiss EA (1971) Castor, Sesame and Safflower. Leonard Hill Books, Weiss, London, p 901Google Scholar
  220. Weiss EA (1983) Oilseed crops. Longman Inc., New York, p 660Google Scholar
  221. Weiss EA (2000) Sesame, oilseed crops. Longman Inc., New York, pp 131–164Google Scholar
  222. Were BA, Gudu S, Onkware AO, Carlsson AS, Welander (2006) In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. Plant Cell Tiss Org Cult 85:235–239CrossRefGoogle Scholar
  223. Wessler SR (2005) Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci 10(2):54–56PubMedCrossRefGoogle Scholar
  224. Wu K, Liu H, Yang M, Tao Y, Ma H, Wu W, Zuo Y,Zhao Y (2014a) High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC Plant Biol 14:274Google Scholar
  225. Wu K, Yang M, Liu H, Ye T, Mei J, Zhao Y (2014b) Genetic analysis and molecular characterization of chinese sesame (Sesamum indicum L.) cultivars using insertion-deletion (InDel) and simple sequence repeat (SSR) markers. BMC Genetics 15(1):35PubMedPubMedCentralCrossRefGoogle Scholar
  226. Wu K, Wu WX, Yang MM, Liu HY, Hao ZC, Zhao YZ (2017) Qtl mapping for oil, protein and sesamin contents in seeds of white sesame. Acta Agron Sin 43(7):1003–1011CrossRefGoogle Scholar
  227. Xu LJ, Liang HZ, Yu YL, Yang HQ, Dong W, Niu YG, Lu HL, Cao J, LV AS (2016) Dynamic change regularity of nutritional components during seed development of sesame under saline and alkaline stress. J Henan Agri Sci 45(4):43–48Google Scholar
  228. Xu M, Ma H, Zeng L, Cheng Y, Lu G, Xu J, Zhang X, Zou X (2015) The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L. Field Crops Res 180:238–245CrossRefGoogle Scholar
  229. Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tiss Org Cult 103:377–386CrossRefGoogle Scholar
  230. Yang M, Liu H, Zhou T, Qu H, Yang Y, Wei X, Zuo Y, Zhao Y (2017a) Production and identification of F1 interspecific hybrid between Sesamum indicum and wild relative S. indicatum. Sci Agri Sin 50(10):1763–1771Google Scholar
  231. Yang M, Yang W, Gao Y, Zhang Y, Zhu X, Zhou R, Li D, Zhang X, Wu W, Wang L (2017b) Quantitative trait locus mapping for sesame capsule size. Chin J Oil Crop Sci 39(6):785–793Google Scholar
  232. Yermanos DM, Hemstreet S, Saleeb W, Huszar CK (1972) Oil content and composition of the seed in the world collection of sesame introductions. J Amer Oil Chem Socy 49(1):20–23CrossRefGoogle Scholar
  233. Yi Y, Zhang H, Zuo T, Wang Z (1997) Study on the culture of different explants of black seedcoat sesame in vitro. Acta Agri Bor-Occident Sin 6(4):26–29Google Scholar
  234. Yu A, Cai X, Li M, Qiao Z (1996) The influence of the high voltage electrostatic field separating effect on the biotic factors of rice seeds, rape seeds and sesame seeds during their sprouting period. Acta Biophys Sin 12:310–314Google Scholar
  235. Yuan Q (2018) Effects of waterlogging on the quality of sesame seeds and products. Thesis, Henan University of Technology, Zhengzhou, ChinaGoogle Scholar
  236. Yuan Q, Zhang H, Miao H, Duan Y, Wei Q, Wang X (2018) Effects of water logging stress on the quality of sesame seed and oil product. Acta Agri Bor-Sin 33(2):202–208Google Scholar
  237. Yue W, Wei L, Zhang T, Li C, Miao H, Zhang H (2012) Genetic diversity and population structure of germplasm resources in sesame (Sesamum indicum L.) by SSR Markers. Acta Agron Sin 38(12):2286–2296Google Scholar
  238. Yukawa Y, Takaiwa F, Shoji K, Masuda K, Yamada K (1996) Structure and expression of two seed-specfic cDNA clones encoding stearoyl-acyl carrier protein desaturase from sesame. Sesamum indicum L. Plant Cell Physiol 37(2):201–205PubMedCrossRefGoogle Scholar
  239. Zhang X, Feng X (2006) Descriptors and Data Standard for Sesame (Sesamum indicum L.). China Agriculture Press, IBN 7-109-11015-XGoogle Scholar
  240. Zhang H, Miao H, Li C, Wei L, Ma Q (2012a) Analysis of sesame karyotype and resemblance-near coefficient. Chin Bull Bot 47(6):602–614Google Scholar
  241. Zhang H, Wei L, Miao H, Wang C (2012b) Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genom 13:316CrossRefGoogle Scholar
  242. Zhang H, Wang X, Wang H, Wei S (2012b) Sesame production technology. In: Zhang H (ed) Henan People Press, Zhengzhou, China, p 203Google Scholar
  243. Zhang Y, Wang L, Li D, Wei W, Gao Y, Zhang X (2012d) Association mapping of sesame (Sesamum indicum L.) resistance to Macrophomina phaseolina and identification of resistant accessions. Sci Agri Sin 45(13):2580–2591Google Scholar
  244. Zhang H, Li C, Miao H, Xiong S (2013a) Insights from the complete chloroplast genome into the evolution of Sesamum indicum L. PLoS ONE 8(11):e80508PubMedPubMedCentralCrossRefGoogle Scholar
  245. Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q (2013b) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14(1):401PubMedPubMedCentralGoogle Scholar
  246. Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X (2013c) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141PubMedPubMedCentralCrossRefGoogle Scholar
  247. Zhang H, Miao H, Wei L, Li C, Zhao R, Wang C (2013c) Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PLoS ONE 8(5):e63898PubMedPubMedCentralCrossRefGoogle Scholar
  248. Zhang H, Miao H, Zhang T, Wei L, Li C, Wang H, Duan Y, Ju M (2013d) Biological characters of interspecific hybrid progenies between Sesamum indicum L. and wild relatives (Sesamum schinzianum Asch, Sesamum radiatum Schum & Thonn). Sci Agri Sin 46(19):3965–3977Google Scholar
  249. Zhang Y, Wang L, Li D, Gao Y, Lv H, Zhang X (2014) Mapping of sesame waterlogging tolerance QTL and identification of excellent waterlogging tolerant germplasm. Sci Agri Sin 47(3):422–430Google Scholar
  250. Zhang H, Miao H, Li C Wei L, Duan Y,Ma Q,Kong J, Xu F, Chang S (2016) Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L. Sci Rep 6:31556Google Scholar
  251. Zhao J, Artemyeva A, Carpio DPD, Basnet RK, Zhang N, Gao J, Li F, Bucher J, Wang X, Visser RG, Bonnema G (2010) Design of a Brassica rapa core collection for association mapping studies. Genome 53(53):884–898CrossRefGoogle Scholar
  252. Zhao H, Liu H, Yang X, Liu Y, Ni Y, Wang F, Tang L (2014a) First report of Nigrospora leaf blight on sesame caused by Nigrospora sphaerica in China. Plant Dis 98(6):842PubMedCrossRefGoogle Scholar
  253. Zhao L, Wang Q, Tian D, Han X (2014b) Effect of fertilizer application rates on dry matter accumulation and distribution in sesame. Chin Agri Sci Bull 30(6):129–134Google Scholar
  254. Zhao X, Han Y, Li Y, Liu D, Sun M, Zhao Y, Lv C, Li D, Yang Z, Huang L, Teng W, Qiu L, Zheng H, Li W (2015) Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J 82:245–255PubMedCrossRefPubMedCentralGoogle Scholar
  255. Zhi Y, Jiang W, Yi M, Chen Z (1998) Study on the effect of plant regeneration rate via in vitro culture of sesame cotyledon. J Xinyang Agri Coll 8(3):12–15Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Henan Sesame Research Center, Henan Academy of Agricultural SciencesZhengzhou CityChina
  2. 2.Department of AgronomyZhengzhou UniversityZhengzhou CityChina

Personalised recommendations