Advertisement

Breeding Brassica juncea and B. rapa for Sustainable Oilseed Production in the Changing Climate: Progress and Prospects

  • Priya Panjabi
  • Satish Kumar Yadava
  • Nitin Kumar
  • Rajkumar Bangkim
  • Nirala RamchiaryEmail author
Chapter
  • 313 Downloads

Abstract

The uncertainties of climatic variability and global warming are leading to rising concerns towards ensuring global food security of an expanding population. Unfavorable climatic conditions, like extremes of temperature, drought, flood, and salinity, in addition to the elevated greenhouse gases adversely affect the physiology, and accordingly the quantitative and qualitative characteristics of plants. Mustard (Brassica juncea) and rape (Brassica rapa), the two important oilseed crops of the Indian subcontinent, are also cultivated in Eastern Europe, Russia, China, and Canada. These oilseed crops are affected by various biotic and abiotic stress during different growth and developmental stages, that severely influences agricultural productivity. Extensive breeding efforts toward the development of Brassica cultivars that can resist these climatic variabilities are under various stages of progress. The Brassica germplasm and the wild relatives of B. juncea and B. rapa, which constitute important genetic stocks, are also being utilized in these breeding programs. An integrated approach is required that will study plant–insect pest and disease–climate interactions for conceiving future strategies to develop disease-, insect-resistant, and climate-resilient plant varieties. Developing mustard varieties, efficient in the utilization of soil nutrients, are also required for improving productivity in impoverished soils and for  better uptake/utilization of nutrients in soils rich in resources. Future research in oilseed mustard and rape should, therefore, involve examining the influence of climate-smart traits on yield/production in targeted environments, so that climate-resilient cultivars adapted to climate change conditions could be developed. This chapter summarizes the advances in breeding of climate-smart traits such as,  tolerance to drought, heat, salinity, flooding and frost, and efficient nutrient utilization, in oilseed mustard and rape, that could assist in the genomic designing for climate-smart crops.

Keywords

Climate resilient Brassica juncea Brassica rapa Molecular markers Genetic mapping Quantitative trait loci Genome sequencing 

Notes

Acknowledgements

This work was supported by UGC-SAP and DST-FIST project grants from the University Grants Commission and Department of Science and Technology, India, to the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.

References

  1. Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, de Oliveira AC, Cseke LJ, Dempewolf H, Pace CD, Edwards D, Gepts P, Greenland A, Hall AE, Henry R, Hori K, Howe GT, Hughes S, Humphreys M, Lightfoot D, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Tuberosa R, Valliyodan B, Varshney RK, Yano M (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14:1095–1098.  https://doi.org/10.1111/pbi.12467CrossRefPubMedGoogle Scholar
  2. Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588.  https://doi.org/10.1080/03650340903164231CrossRefGoogle Scholar
  3. Ahmad A, Khan I, Abrol YP, Iqbal M (2008) Genotypic variation of nitrogen use efficiency in Indian mustard. Environ Pollut 154:462–466.  https://doi.org/10.1016/j.envpol.2007.10.007CrossRefPubMedGoogle Scholar
  4. Ahmed S, Hassan MH, Kalam MA, Ashrafur Rahman SM, Abedin MJ, Shahir A (2014) An experimental investigation of biodiesel production, characterization, engine performance, emission and noise of Brassica juncea methyl ester and its blends. J Clean Prod 79:74–81.  https://doi.org/10.1016/j.jclepro.2014.05.019CrossRefGoogle Scholar
  5. Ahmed F, Rafii MY, Ismail MR, Juraimi AS, Rahim HA, Asfaliza R, Latif MA (2013) Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. Biomed Res Int 2013:963525.  https://doi.org/10.1155/2013/963525CrossRefPubMedGoogle Scholar
  6. Ajisaka H, Kuginuki Y, Yui S, Enomoto S, Hirai M (2001) Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis syn. campestris L.) using bulked segregant analysis. Euphytica 118:75.  https://doi.org/10.1023/a:1004023532005CrossRefGoogle Scholar
  7. Akhatar J, Banga SS (2015) Genome-wide association mapping for grain yield components and root traits in Brassica juncea (L.) Czern & Coss. Mol Breed 35:48.  https://doi.org/10.1007/s11032-015-0230-8
  8. Aksouh NM, Jacobs BC, Stoddard FL, Mailer RJ (2001) Response of canola to different heat stresses. Aust J Agri Res 52:817–824.  https://doi.org/10.1071/ar00120CrossRefGoogle Scholar
  9. Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, Yadav P, Papalou P, Rawat S, Grover A (2017) Overexpression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Front Plant Sci 8:1693.  https://doi.org/10.3389/fpls.2017.01693CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, Miller MR (2016) RAD capture (rapture): flexible and efficient sequence-based genotyping. Genetics 202:389–400.  https://doi.org/10.1534/genetics.115.183665CrossRefPubMedGoogle Scholar
  11. Ali A, Chung S-M (2013) Identification of quantitative trait loci (QTL) related to heat stress tolerance in Chinese cabbage. In: 3rd Annual meeting of the national association of plant breeders: “positioning plant breeding for the future”, Tampa, Florida, USA, 2–5 June, 939Google Scholar
  12. Annisa CS, Cowling WA (2013) Global genetic diversity in oilseed Brassica rapa. Crop Pasture Sci 64:993–1007.  https://doi.org/10.1071/cp13206CrossRefGoogle Scholar
  13. Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940.  https://doi.org/10.1093/aob/mcf049CrossRefPubMedPubMedCentralGoogle Scholar
  14. Arend D, Junker A, Scholz U, Schüler D, Wylie J, Lange M (2016) PGP repository: a plant phenomics and genomics data publication infrastructure. Database (Oxford).  https://doi.org/10.1093/database/baw033PubMedPubMedCentralCrossRefGoogle Scholar
  15. Artem’eva AM, Budahn H, Chesnokov YV (2013) Association mapping of morphological and physiological-biochemical traits in Brassica rapa L. species. Russ Agri Sci 39:107–111.  https://doi.org/10.3103/s1068367413020031CrossRefGoogle Scholar
  16. Ashraf MA (2012) Waterlogging stress in plants: a review. Afr J Agri Res 7:1976–1981.  https://doi.org/10.5897/ajarx11.084CrossRefGoogle Scholar
  17. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190.  https://doi.org/10.1007/s11099-013-0021-6CrossRefGoogle Scholar
  18. Ashraf M, McNeilly T (1990) Responses of four Brassica species to sodium chloride. Environ Exp Bot 30:475–487.  https://doi.org/10.1016/0098-8472(90)90028-3CrossRefGoogle Scholar
  19. Ashraf M, Mehmood S (1990) Response of four Brassica species to drought stress. Environ Exp Bot 30:93–100.  https://doi.org/10.1016/0098-8472(90)90013-tCrossRefGoogle Scholar
  20. Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ (2013) Gene transfer in legumes. In: Luttge U et al (eds) Progress in Botany. Springer, Berlin, Heidelberg, pp 37–100CrossRefGoogle Scholar
  21. Augustine R, Bisht NC (2015) Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family. Sci Rep 5:18005.  https://doi.org/10.1038/srep18005CrossRefPubMedPubMedCentralGoogle Scholar
  22. Augustine R, Mukhopadhyay A, Bisht NC (2013) Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Plant Biotechnol J 11:855–866.  https://doi.org/10.1111/pbi.12078CrossRefPubMedGoogle Scholar
  23. Axelsson T, Shavorskaya O, Lagercrantz U (2001) Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome 44:856–864.  https://doi.org/10.1139/g01-082CrossRefGoogle Scholar
  24. Bagheri H, El-Soda M, Kim HK, Fritsche S, Jung C, Aarts MGM (2013a) Genetic analysis of health-related secondary metabolites in a Brassica rapa recombinant inbred line population. Intl J Mol Sci 14:15561–15577.  https://doi.org/10.3390/ijms140815561CrossRefGoogle Scholar
  25. Bagheri H, Pino-Del-Carpio D, Hanhart C, Bonnema G, Keurentjes J, Aarts MGM (2013b) Identification of seed-related QTL in Brassica rapa. Span J Agri Res 11:1085–1093.  https://doi.org/10.5424/sjar/2013114-4160CrossRefGoogle Scholar
  26. Bagheri H, El-Soda M, van Oorschot I, Hanhart C, Bonnema G, Jansen-van den Bosch T, Mank R, Keurentjes J, Meng L, Wu J, Koornneef M, Aarts MGM (2012) Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population. Front Plant Sci 3:  https://doi.org/10.3389/fpls.2012.00183
  27. Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339.  https://doi.org/10.1146/annurev.arplant.59.032607.092752CrossRefPubMedGoogle Scholar
  28. Bains SS, Jhooty JS (1979) Mixed infections by Albugo candida and Peronospora parasitica on Brassica juncea inflorescence and their control. Indian Phytopathol 32:268–271Google Scholar
  29. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376.  https://doi.org/10.1371/journal.pone.0003376CrossRefPubMedPubMedCentralGoogle Scholar
  30. Bala A, Roy A, Das A, Chakraborti D, Das S (2013) Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination. BMC Biotechnol 13:88.  https://doi.org/10.1186/1472-6750-13-88CrossRefPubMedPubMedCentralGoogle Scholar
  31. Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950.  https://doi.org/10.1081/css-100104098CrossRefGoogle Scholar
  32. Baligar VC, Fageria NK (2015) Nutrient use efficiency in plants: an overview. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, India, pp 1–14Google Scholar
  33. Banga SK, Kaur G, Vishal (2009) Breeding canola quality Indian mustard (Brassica juncea L.). In: Proceedings of 16th Australian Research Assembly on Brassicas, Ballarat, VictoriaGoogle Scholar
  34. Barbetti MJ (1981) Effects of sowing date and oospore seed contamination upon subsequent crop incidence of white rust (Albugo candida) in rapeseed. Austral Plant Pathol 10:44–46.  https://doi.org/10.1071/app9810044CrossRefGoogle Scholar
  35. Barbetti MJ, Carter EC (1986) Diseases of rapeseed. In: Lawson JA (ed) Rapeseed in Western Australia. Western Australian Department of Agriculture, Bulletin No. 4105. pp 14–19Google Scholar
  36. Bariana HS, Bansal UK, Basandrai D, Chhetri M (2013) Disease resistance. In: Kole C (ed) Genomics and breeding for climate-resilient crops, vol 2. Springer, Berlin, Heidelberg, pp 291–314CrossRefGoogle Scholar
  37. Bas N, Menting F (2007) The European Brassica database: updates in 2005 and 2007Google Scholar
  38. Bauddh K, Sainger M, Kumar S, Sainger PA, Jaiwal PK, Singh RP (2015) Biotechnological approaches to mitigate adverse effects of extreme climatic factors on plant productivity. In: Jaiwal PK, Singh RP, Dhankher OP (eds.) Genetic manipulation in plants for mitigation of climate change. Springer, New Delhi, pp 187–203CrossRefGoogle Scholar
  39. Beck E, Hansen J, Heim R, Schäfer C, Vogg G, Leborgne N, Teulieres C, and Boudet AM (1995) Cold hardening and dehardening of evergreen trees. In: Sandermann H, Masimbert MB (eds, Paris: Ed. INRA), EUROSILVA—contribution to forest tree physiology vol 76, pp 171–193Google Scholar
  40. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucl Acids Res 41:D36–D42.  https://doi.org/10.1093/nar/gks1195CrossRefPubMedGoogle Scholar
  41. Berkenkamp B (1972) Diseases of rapeseed in central and northern Alberta in 1971. Can Plant Dis Surv 52:62–63Google Scholar
  42. Bhardwaj AR, Joshi G, Kukreja B, Malik V, Arora P, Pandey R, Shukla RN, Bankar KG, Katiyar-Agarwal S, Goel S, Jagannath A, Kumar A, Agarwal M (2015) Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol 15(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  43. Bilichak A, Ilnytskyy Y, Wóycicki R, Kepeshchuk N, Fogen D, Kovalchuk I (2015) The elucidation of stress memory inheritance in Brassica rapa plants. Front Plant Sci 6.  https://doi.org/10.3389/fpls.2015.00005
  44. Bird KA, An H, Gazave E, Gore MA, Pires JC, Robertson LD, Labate JA (2017) Population structure and phylogenetic relationships in a diverse panel of Brassica rapa L. Front Plant Sci 8.  https://doi.org/10.3389/fpls.2017.00321
  45. Blackshaw R, Johnson E, Gan Y, May W, McAndrew D, Barthet V, McDonald T, Wispinski D (2011) Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can J Plant Sci 91:889–896.  https://doi.org/10.4141/cjps2011-002CrossRefGoogle Scholar
  46. Blom CWPM, Voesenek L a. CJ, Sman AJM van der (1993) Responses to total submergence in tolerant and intolerant riverside species. In: Jackson MB, Black CR (eds), Interacting stresses on plants in a changing climate. Springer, Berlin, Heidelberg, pp 243–266CrossRefGoogle Scholar
  47. Bolívar JC, Machens F, Brill Y, Romanov A, Bülow L, Hehl R (2014) ‘In silico expression analysis’, a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences. Database (Oxford).  https://doi.org/10.1093/database/bau030PubMedPubMedCentralCrossRefGoogle Scholar
  48. Bradbury JF (1986) Guide to plant pathogenic bacteria. CAB International, UKGoogle Scholar
  49. Bramley H, Turner NC, Siddique KHM (2013) Water use efficiency. In: Kole C (ed) Genomics and breeding for climate-resilient crops: vol. 2 target traits, vol 2. Springer, Berlin Heidelberg, pp 225–268CrossRefGoogle Scholar
  50. Branca F, Cartea E (2011) Brassica. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: oilseeds. Springer, Berlin, Heidelberg, pp 17–36CrossRefGoogle Scholar
  51. Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085.  https://doi.org/10.1111/pbi.12454CrossRefPubMedGoogle Scholar
  52. Bucher E, Reinders J, Mirouze M (2012) Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr Opin Plant Biol 15:503–510.  https://doi.org/10.1016/j.pbi.2012.08.006CrossRefPubMedGoogle Scholar
  53. Burdzinski C, Wendell DL (2007) Mapping the anthocyaninless (anl) locus in rapid-cycling Brassica rapa (RBr) to linkage group R9. BMC Genet 8:64.  https://doi.org/10.1186/1471-2156-8-64CrossRefPubMedPubMedCentralGoogle Scholar
  54. Burton W, Ripley V, Potts D, Salisbury P (2004) Assessment of genetic diversity in selected breeding lines and cultivars of canola quality Brassica juncea and their implications for canola breeding. Euphytica 136:181–192CrossRefGoogle Scholar
  55. Burton WA, Pymer SJ, Salisbury PA, Kirk JTO and Oram RN (1999) Performance of Australian canola quality Indian mustard breeding lines. In: Proceedings of 10th International Rapeseed Congress, Canberra, AustraliaGoogle Scholar
  56. Cai C, Wang X, Liu B, Wu J, Liang J, Cui Y, Cheng F, Wang X (2017) Brassica rapa genome 2.0: a reference upgrade through sequence re-assembly and gene re-annotation. Mol Plant 10:649–651.  https://doi.org/10.1016/j.molp.2016.11.008CrossRefPubMedGoogle Scholar
  57. Canvin DT (1965) The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Can J Bot 43:63–69.  https://doi.org/10.1139/b65-008CrossRefGoogle Scholar
  58. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289.  https://doi.org/10.1093/bioinformatics/btn615CrossRefGoogle Scholar
  59. Carpio DPD, Basnet RK, Vos RCHD, Maliepaard C, Paulo MJ, Bonnema G (2011a) Comparative methods for association studies: a case study on metabolite variation in a Brassica rapa core collection. PLoS ONE 6:e19624.  https://doi.org/10.1371/journal.pone.0019624CrossRefGoogle Scholar
  60. Carpio DPD, Basnet RK, Vos RCHD, Maliepaard C, Visser R, Bonnema G (2011b) The patterns of population differentiation in a Brassica rapa core collection. Theor Appl Genet 122:1105–1118.  https://doi.org/10.1007/s00122-010-1516-1CrossRefGoogle Scholar
  61. Ceccarelli S (1996) Adaptation to low/high input cultivation. Euphytica 92:203–214.  https://doi.org/10.1007/bf00022846CrossRefGoogle Scholar
  62. Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Silva CD, Just J, Falentin C, Koh CS, Clainche IL, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M-CL, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T-H, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury J-M, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953.  https://doi.org/10.1126/science.1253435CrossRefPubMedGoogle Scholar
  63. Chaurasia N, Mishra A, Pandey SK (2012) Fingerprint of arsenic contaminated water in India–a review. J Foren Res 03:172.  https://doi.org/10.4172/2157-7145.1000172CrossRefGoogle Scholar
  64. Chen J, Hu Q, Zhang Y, Lu C, Kuang H (2014) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucl Acids Res 42:D1176–D1181.  https://doi.org/10.1093/nar/gkt1000CrossRefPubMedGoogle Scholar
  65. Chen J, Jing J, Zhan Z, Zhang T, Zhang C, Piao Z (2013) Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa. PLoS ONE 8:e85307.  https://doi.org/10.1371/journal.pone.0085307CrossRefPubMedPubMedCentralGoogle Scholar
  66. Chen H, Lin Y (2013) Promise and issues of genetically modified crops. Curr Opin Plant Biol 16:255–260.  https://doi.org/10.1016/j.pbi.2013.03.007CrossRefPubMedGoogle Scholar
  67. Chen S, Zou J, Cowling WA, Meng J (2010) Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop Pasture Sci 61:483–492.  https://doi.org/10.1071/cp09327CrossRefGoogle Scholar
  68. Chen J, Pang W, Chen B, Zhang C, Piao Z (2016) Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and –susceptible alleles in response to Plasmodiophora brassicae during early infection. Front Plant Sci 6.  https://doi.org/10.3389/fpls.2015.01183
  69. Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136.  https://doi.org/10.1186/1471-2229-11-136CrossRefPubMedPubMedCentralGoogle Scholar
  70. Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y, Liu D, Wang X, Li P, Liu Y, Lin K, Bucher J, Zhang N, Wang Y, Wang H, Deng J, Liao Y, Wei K, Zhang X, Fu L, Hu Y, Liu J, Cai C, Zhang S, Zhang S, Li F, Zhang H, Zhang J, Guo N, Liu Z, Liu J, Sun C, Ma Y, Zhang H, Cui Y, Freeling MR, Borm T, Bonnema G, Wu J, Wang X (2016a) Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet 48:1218–1224.  https://doi.org/10.1038/ng.3634CrossRefPubMedGoogle Scholar
  71. Cheng F, Wu J, Cai C, Fu L, Liang J, Borm T, Zhuang M, Zhang Y, Zhang F, Bonnema G, Wang X (2016b) Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection. Sci Data 3:160119.  https://doi.org/10.1038/sdata.2016.119CrossRefPubMedPubMedCentralGoogle Scholar
  72. Cheung WY, Gugel RK, Landry BS (1998) Identification of RFLP markers linked to the white rust resistance gene (Acr) in mustard (Brassica juncea (L.) Czern. and Coss.). Genome 41:626–628.  https://doi.org/10.1139/g98-043CrossRefGoogle Scholar
  73. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park B-S, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792.  https://doi.org/10.1007/s00122-007-0608-zCrossRefPubMedGoogle Scholar
  74. Christianson JA, Rimmer SR, Good AJ, Lydiate DJ (2006) Mapping genes for resistance to Leptosphaeria maculans in Brassica juncea. Genome 49(1):30–41PubMedCrossRefGoogle Scholar
  75. Christou P, Twyman RM (2004) The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 17:23–42.  https://doi.org/10.1079/nrr200373CrossRefPubMedGoogle Scholar
  76. Chu M, Song T, Falk KC, Zhang X, Liu X, Chang A, Lahlali R, McGregor L, Gossen BD, Yu F, Peng G (2014) Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae. BMC Genom 15:1166.  https://doi.org/10.1186/1471-2164-15-1166CrossRefGoogle Scholar
  77. Cooper L, Meier A, Laporte M-A, Elser JL, Mungall C, Sinn BT, Cavaliere D, Carbon S, Dunn NA, Smith B, Qu B, Preece J, Zhang E, Todorovic S, Gkoutos G, Doonan JH, Stevenson DW, Arnaud E, Jaiswal P (2018) The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics. Nucl Acids Res 46:D1168–D1180.  https://doi.org/10.1093/nar/gkx1152CrossRefPubMedGoogle Scholar
  78. Courcelle E, Beausse Y, Letort S, Stahl O, Fremez R, Ngom-Bru C, Gouzy J, Faraut T (2008) Narcisse: a mirror view of conserved syntenies. Nucl Acids Res 36:D485–D490.  https://doi.org/10.1093/nar/gkm805CrossRefPubMedGoogle Scholar
  79. De Candolle A (1886) Origin of cultivated plants, 2nd edn (1967). Hafner, New York, 468pGoogle Scholar
  80. Dechaine JM, Brock MT, Iniguez-Luy FL, Weinig C (2014a) Quantitative trait loci × environment interactions for plant morphology vary over ontogeny in Brassica rapa. New Phytol 201:657–669.  https://doi.org/10.1111/nph.12520CrossRefPubMedGoogle Scholar
  81. Dechaine JM, Brock MT, Weinig C (2014b) QTL architecture of reproductive fitness characters in Brassica rapa. BMC Plant Biol 14:66.  https://doi.org/10.1186/1471-2229-14-66CrossRefPubMedPubMedCentralGoogle Scholar
  82. Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotechnol 23:243–250.  https://doi.org/10.1016/j.copbio.2011.11.003CrossRefPubMedGoogle Scholar
  83. Delwiche PA, Williams PH (1974) Resistance to Albugo candida race 2 in Brassica species. Proc Amer Phytopathol Soc 1:66Google Scholar
  84. Denford KE, Vaughan JG (1977) A comparative study of certain seed isoenzymes in the ten chromosome complex of Brassica campestris and its allies. Ann Bot 41:411–418CrossRefGoogle Scholar
  85. Devi M, Sharma HK (2017) Effect of sowing date on flowering and seed set of mustard (Brassica juncea L.). J Entomol Zool Stud 5(5):1534–1537Google Scholar
  86. Dingkuhn M, Asch F (1999) Phenological responses of Oryza sativa, O. glaberrima and inter-specific rice cultivars on a toposquence in West Africa. Euphytica 110:109.  https://doi.org/10.1023/a:1003790611929CrossRefGoogle Scholar
  87. Directorate of Economics & Statistics, Government of India (2016) Agricultural statistics at a glance. Department of Agriculture & Cooperation, Ministry of Agriculture, Government of India, New DelhiGoogle Scholar
  88. Dong X, Feng H, Xu M, Lee J, Kim YK, Lim YP, Piao Z, Park YD, Ma H, Hur Y (2013) Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br 300 K oligomeric chip. PLoS ONE 8:e72178.  https://doi.org/10.1371/journal.pone.0072178CrossRefPubMedPubMedCentralGoogle Scholar
  89. Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucl Acids Res 32:D354–D359.  https://doi.org/10.1093/nar/gkh046CrossRefPubMedGoogle Scholar
  90. Dong X, Yi H, Lee J, Nou I-S, Han C-T, Hur Y (2015) Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS ONE 10:e0130451.  https://doi.org/10.1371/journal.pone.0130451CrossRefPubMedPubMedCentralGoogle Scholar
  91. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973.  https://doi.org/10.1093/molbev/mss075CrossRefPubMedPubMedCentralGoogle Scholar
  92. Duhamel M, Vandenkoornhuyse P (2013) Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication. Trends Plant Sci 18:597–600.  https://doi.org/10.1016/j.tplants.2013.08.010CrossRefPubMedGoogle Scholar
  93. Duran C, Appleby N, Clark T, Wood D, Imelfort M, Batley J, Edwards D (2009) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucl Acids Res 37:D951–D953.  https://doi.org/10.1093/nar/gkn650CrossRefPubMedGoogle Scholar
  94. Ebrahimi AG, Delwiche PA, Williams PH (1976) Resistance in Brassica juncea to Peronospora parasitica and Albugo candida race 2. Proc Amer Phytopathol Soc 3:273Google Scholar
  95. Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11.  https://doi.org/10.1007/s00122-012-1964-xCrossRefPubMedGoogle Scholar
  96. Edwards CE, Ewers BE, Williams DG, Xie Q, Lou P, Xu X, McClung CR, Weinig C (2011) The genetic architecture of ecophysiological and circadian traits in Brassica rapa. Genetics 189(1):375–390.  https://doi.org/10.1534/genetics.110.125112CrossRefPubMedPubMedCentralGoogle Scholar
  97. Edwards MD, Williams PH (1987) Selection for minor gene resistance to Albugo candida in a rapid-cycling population of Brassica campestris. Phytopathology 77:527.  https://doi.org/10.1094/phyto-77-527CrossRefGoogle Scholar
  98. Edwards D (2016) The impact of genomics technology on adapting plants to climate change. In Edwards D, Batley J (eds) Plant genomics and climate change. Springer, New York, NY, pp 173–178.  https://doi.org/10.1007/978-1-4939-3536-9Google Scholar
  99. Edwards J, Hertel K (2011) Canola growth and development. In: Edwards J (ed) NSW Department of Primary IndustriesGoogle Scholar
  100. Eigenbrode SD, Stoner KA, Shelton AM, Kain WC (1991) Characteristics of glossy leaf waxes associated with resistance to diamondback moth (Lepidoptera: Plutellidae) in Brassica oleracea. J Econ Entomol 84:1609–1618.  https://doi.org/10.1093/jee/84.5.1609CrossRefGoogle Scholar
  101. Ekstrom A, Taujale R, McGinn N, Yin Y (2014) PlantCAZyme: a database for plant carbohydrate-active enzymes. Database (Oxford).  https://doi.org/10.1093/database/bau079
  102. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379.  https://doi.org/10.1371/journal.pone.0019379CrossRefPubMedPubMedCentralGoogle Scholar
  103. Eom SH, Baek S-A, Kim JK, Hyun TK (2018) Transcriptome analysis in Chinese cabbage (Brassica rapa ssp. pekinensis) provides the role of glucosinolate metabolism in response to drought stress. Molecules 23:1186.  https://doi.org/10.3390/molecules23051186PubMedCentralCrossRefPubMedGoogle Scholar
  104. Estill J (2005) BACMan—BAC data management. http://bacman.sourceforge.net/. Accessed 17 Jul 2018
  105. FAO (1996) World food summit. www.fao.org/docrep/003/w3548e/w3548e00.htm. Accessed 11 July 2018
  106. FAO (2008) FAO Land and Plant Nutrition Management Service. Available at: http://www.fao.org/ag/agl/agll/spush
  107. FAO (2013b) Food and Agricultural Organization. FAOSTAT. http://faostat.fao.org/Rome
  108. FAO (2015) Coping with climate change—the roles of genetic resources for food and agriculture. Italy, RomeGoogle Scholar
  109. FAO (2016) Climate change and food security: risks and responses. Food and Agriculture Organisation. Available at: http://www.fao.org/asiapacific/news/detail-events/en/c/1106925/
  110. Farre G, Ramessar K, Twyman RM, Capell T, Christou P (2010) The humanitarian impact of plant biotechnology: recent breakthroughs vs bottlenecks for adoption. Curr Opin Plant Biol 13:219–225.  https://doi.org/10.1016/j.pbi.2009.11.002CrossRefPubMedGoogle Scholar
  111. Farre G, Twyman RM, Zhu C, Capell T, Christou P (2011) Nutritionally enhanced crops and food security: scientific achievements versus political expediency. Curr Opin Biotechnol 22:245–251.  https://doi.org/10.1016/j.copbio.2010.11.002CrossRefPubMedGoogle Scholar
  112. Fechner J, Goy J, Artigou JY, Bedu O, Loeper J, Emerit J, Grosgogeat Y (1986) Membrane lipid peroxidation in coronary insufficiency. Presse Med 15:1077–1080PubMedGoogle Scholar
  113. Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732.  https://doi.org/10.1007/bf00222140CrossRefPubMedGoogle Scholar
  114. Fischer JJ, Beatty PH, Good AG, Muench DG (2013) Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Sci 210:70–81.  https://doi.org/10.1016/j.plantsci.2013.05.009CrossRefPubMedGoogle Scholar
  115. Fischer T, Byerlee D, Edmeades G (2014) Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research, Canberra. xxii + 634ppGoogle Scholar
  116. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374.  https://doi.org/10.1146/annurev.arplant.54.031902.134907CrossRefPubMedPubMedCentralGoogle Scholar
  117. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690.  https://doi.org/10.1105/tpc.003483CrossRefPubMedPubMedCentralGoogle Scholar
  118. Furlong MJ, Spafford H, Ridland PM, Endersby NM, Edwards OR, Baker GJ, Keller MA, Paull CA (2008) Ecology of diamondback moth in Australian canola: landscape perspectives and the implications for management. Austral J Exp Agri 48:1494–1505.  https://doi.org/10.1071/ea07413CrossRefGoogle Scholar
  119. Furlong MJ, Wright DJ, Dosdall LM (2013) Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol 58:517–541.  https://doi.org/10.1146/annurev-ento-120811-153605CrossRefPubMedGoogle Scholar
  120. GRDC (2009) Canola best practice management guide for south-eastern Australia. Grains Research & Development Corporation, Level 1, 40 Blackall Street BARTON ACT 2600 PO Box 5367 KINGSTON ACT 2604, AustraliaGoogle Scholar
  121. Gao BZ, Liu B, Li SK, Liang JL, Cheng F, Wang XW, Wu J (2017) Genome-Wide Association studies for flowering time in Brassica rapa. Sci Agri Sin 50(17):3375–3385Google Scholar
  122. Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369.  https://doi.org/10.1007/s11103-007-9158-7CrossRefPubMedGoogle Scholar
  123. Ge Y, Wang T, Wang N, Wang Z, Liang C, Ramchiary N, Choi S-R, Lim YP, Piao ZY (2012) Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (Brassica rapa ssp. pekinensis). Sci Hort 147:42–48.  https://doi.org/10.1016/j.scienta.2012.09.004CrossRefGoogle Scholar
  124. Ge Y, Ramchiary N, Wang T, Liang C, Wang N, Wang Z, Choi SR, Lim YP, Piao Z (2011) Mapping quantitative trait loci for leaf and heading-related traits in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Hort Environ Biotechnol 52:494.  https://doi.org/10.1007/s13580-011-0031-xCrossRefGoogle Scholar
  125. Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CKK, Severn-Ellis A, McCombie WR, Parkin IAP, Paterson AH, Pires JC, Sharpe AG, Tang H, Teakle GR, Town CD, Batley J, Edwards D (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390.  https://doi.org/10.1038/ncomms13390CrossRefPubMedPubMedCentralGoogle Scholar
  126. Golicz AA, Bayer PE, Edwards D (2015) Skim-based genotyping by sequencing. In: Batley J. (ed) Plant genotyping, methods and protocols. Humana Press, New York, NY, pp 257–270Google Scholar
  127. Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262.  https://doi.org/10.1139/b07-019CrossRefGoogle Scholar
  128. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:D1178–D1186.  https://doi.org/10.1093/nar/gkr944CrossRefPubMedGoogle Scholar
  129. Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117.  https://doi.org/10.1126/science.1177837CrossRefGoogle Scholar
  130. Greeham K, Guadagno CR, Gehan MA, Mockler TC, Weinig C, Ewers BE, McClung CR (2017) Temporal network analysis identifies early physiological and transcriptomic. eLife 6:e29655. https://doi.org/10.7554/eLife.29655.001Google Scholar
  131. Gribskov M, Fana F, Harper J, Hope DA, Harmon AC, Smith DW, Tax FE, Zhang G (2001) PlantsP: a functional genomics database for plant phosphorylation. Nucleic Acids Res 29:111–113.  https://doi.org/10.1093/nar/29.1.111CrossRefPubMedPubMedCentralGoogle Scholar
  132. Guo Y, Chen S, Li Z, Cowling WA (2014) Center of origin and centers of diversity in an ancient crop, Brassica rapa (turnip rape). J Hered 105:555–565.  https://doi.org/10.1093/jhered/esu021CrossRefPubMedGoogle Scholar
  133. Guo YM, Samans B, Chen S, Kibret KB, Hatzig S, Turner NC, Nelson MN, Cowling WA, Snowdon RJ (2017) Drought-tolerant Brassica rapa shows rapid expression of gene networks for general stress responses and programmed cell death under simulated drought stress. Plant Mol Biol Rep 35:416–430.  https://doi.org/10.1007/s11105-017-1032-4CrossRefPubMedPubMedCentralGoogle Scholar
  134. Gupta K, Prem D, Agnihotri A (2010) Pyramiding white rust resistance and Alternaria blight tolerance in low erucic Brassica juncea using Brassica carinata. J Oilseed Brassica 1:55–65Google Scholar
  135. Gupta SK (2016) Brassicas. In: SK Gupta (ed) Breeding oilseed crops for sustainable production. Elsevier Inc. pp 33–53Google Scholar
  136. Gupta SK (2012) Brassicas. In: Gupta SK (ed) Technological innovations in major world oil crops, vol. 1. Springer, New York, pp 53–83.  https://doi.org/10.1007/978-1-4614-0356-2Google Scholar
  137. Halford NG (ed) (2006) Plant biotechnology: current and future uses of genetically modified crops. Wiley, ChichesterGoogle Scholar
  138. Halford NG (2012) Toward two decades of plant biotechnology: successes, failures, and prospects. Food Energy Secur 1:9–28.  https://doi.org/10.1002/fes3.3CrossRefGoogle Scholar
  139. Hall AE (1992) Breeding for heat tolerance. Plant Breed Rev 10:129–168Google Scholar
  140. Hammond JP, Mayes S, Bowen HC, Graham NS, Hayden RM, Love CG, Spracklen WP, Wang J, Welham SJ, White PJ, King GJ, Broadley MR (2011) Regulatory hotspots are associated with plant gene expression under varying soil phosphorus (P) supply in Brassica rapa. Plant Physiol 156(3):1230–1241.  https://doi.org/10.1104/pp.111.175612CrossRefPubMedPubMedCentralGoogle Scholar
  141. Hansen J, Türk R, Vogg G, Heim R and Beck E (1997) Conifer carbohydrate physiology: updating classical views. In: Trees—contributions to modern tree physiology. In: Rennenberg H, Eschrich W, Ziegler H (eds) Backhuys Publishers, Leiden, pp 97–108Google Scholar
  142. Harberd DJ (1976) Cytotaxonomic studies of Brassica and related genera. In: Vaughan JG, MacLeod AJ, Jones MG (eds) The biology and chemistry of the cruciferae. Academic, London, pp 47–68Google Scholar
  143. Harlan JR (1975) Crops and man. American Society of Agronomny, Crop Science Society of America, Madison, WIGoogle Scholar
  144. Harper FR, Pittman UJ (1974) Yield loss by Brassica compestris and Brassica napus from systemic stem infection by Albugo cruciferarum. Phytopathology.  https://doi.org/10.1094/phyto-64-408CrossRefGoogle Scholar
  145. Hasan MJ, Rahman H (2018) Resynthesis of Brassica juncea for resistance to Plasmodiophora brassicae pathotype. Breed Sci 68:385–391.  https://doi.org/10.1270/jsbbs.18010CrossRefPubMedPubMedCentralGoogle Scholar
  146. Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499.  https://doi.org/10.1146/annurev.arplant.51.1.463CrossRefPubMedGoogle Scholar
  147. Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H, Matsumoto S (2013) Identification and characterization of Crr1a, a Gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS ONE 8:e54745.  https://doi.org/10.1371/journal.pone.0054745CrossRefPubMedPubMedCentralGoogle Scholar
  148. Hayat S, Masood A, Yusuf M, Fariduddin Q, Ahmad A (2009) Growth of Indian mustard (Brassica juncea L.) in response to salicylic acid under high-temperature stress. Braz J Plant Physiol 21:187–195.  https://doi.org/10.1590/s1677-04202009000300003CrossRefGoogle Scholar
  149. Hayat S, Mir BA, Wani AS, Hasan SA, Irfan M, Ahmad A (2011) Screening of salt tolerant genotypes of Brassica juncea based on photosynthetic attributes. J Plant Interact 6:53–60CrossRefGoogle Scholar
  150. Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9.  https://doi.org/10.1016/s0168-9525(02)00009-4CrossRefPubMedGoogle Scholar
  151. Hirai M (2006) Genetic analysis of clubroot resistance in Brassica crops. Breed Sci 56:223–229.  https://doi.org/10.1270/jsbbs.56.223CrossRefGoogle Scholar
  152. Hirai M, Harada T, Kubo N, Tsukada M, Suwabe K, Matsumoto S (2004) A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor Appl Genet 108:639–643.  https://doi.org/10.1007/s00122-003-1475-xCrossRefPubMedGoogle Scholar
  153. Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, Leon N de, Kaeppler SM, Buell CR (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell tpc.113.119982.  https://doi.org/10.1105/tpc.113.119982PubMedPubMedCentralCrossRefGoogle Scholar
  154. Hocking P, Stapper M (1993) Effects of sowing time and nitrogen fertilizer rate on the growth, yield and nitrogen accumulation of canola, mustard and wheat. In: Proceedings of the 9th Australian Research Assembly on Brassicas, Wagga Wagga, Australia, pp 33–46Google Scholar
  155. Hong H, Datla N, Reed DW, Covello PS, MacKenzie SL, Qiu X (2002) High-level production of γ-linolenic acid in Brassica juncea Using a Δ6 desaturase from Pythium irregulare. Plant Physiol 129:354–362.  https://doi.org/10.1104/pp.001495CrossRefPubMedPubMedCentralGoogle Scholar
  156. Horler RSP, Turner AS, Fretter P, Ambrose M (2018) SeedStor: a germplasm information management system and public database. Plant Cell Physiol 59:e5–e5.  https://doi.org/10.1093/pcp/pcx195CrossRefPubMedGoogle Scholar
  157. Hossain MA, Uddin SN (2011) Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Aust J Crop Sci 5:1094Google Scholar
  158. Huang Y-J, Evans N, Li Z-Q, Eckert M, Chèvre A-M, Renard M, Fitt BDL (2006) Temperature and leaf wetness duration affect phenotypic expression of Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus. New Phytol 170:129–141.  https://doi.org/10.1111/j.1469-8137.2006.01651.xCrossRefPubMedGoogle Scholar
  159. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551.  https://doi.org/10.1146/annurev-arplant-050213-035715CrossRefPubMedGoogle Scholar
  160. Huang L, Yang Y, Zhang F, Cao J (2017a) A genome-wide SNP-based genetic map and QTL mapping for agronomic traits in Chinese cabbage. Sci Rep 7:46305.  https://doi.org/10.1038/srep46305
  161. Huang Z, Peng G, Liu X, Deora A, Falk KC, Gossen BD, McDonald MR, Yu F (2017b) Fine mapping of a clubroot resistance gene in Chinese cabbage using SNP markers identified from bulked segregant RNA sequencing. Front Plant Sci 8.  https://doi.org/10.3389/fpls.2017.01448
  162. Huang Z, Zhang X, Jiang S, Qin M, Zhao N, Lang L, Liu Y, Tian Z, Liu X, Wang Y, Zhang B, Xu A (2017c) Analysis of cold resistance and identification of SSR markers linked to cold resistance genes in Brassica rapa L. Breed Sci 67(3):213–220Google Scholar
  163. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res.  https://doi.org/10.1101/gr.089516.108PubMedPubMedCentralCrossRefGoogle Scholar
  164. Humphreys M, Gasior D (2013) Cold Tolerance. In: Kole C (ed) Genomics and breeding for climate-resilient crops. Springer, Berlin, Heidelberg, pp 133–166CrossRefGoogle Scholar
  165. Huysen TV, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-γ-synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78.  https://doi.org/10.1007/s00425-003-1070-zCrossRefPubMedGoogle Scholar
  166. Hwang I, Jung H-J, Park J-I, Yang T-J, Nou I-S (2014) Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response. Genomics 104:194–202.  https://doi.org/10.1016/j.ygeno.2014.07.008CrossRefPubMedGoogle Scholar
  167. Hyams E (1971) Cabbages and kings. Plants in the service of man. Dent JM, London, pp 33–61Google Scholar
  168. Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A (2010) Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3–17.  https://doi.org/10.1007/s00709-009-0098-8CrossRefPubMedGoogle Scholar
  169. Istanbulluoglu A, Arslan B, Gocmen E, Gezer E, Pasa C (2010) Effects of deficit irrigation regimes on the yield and growth of oilseed rape (Brassica napus L.). Biosyst Eng 105:388–394.  https://doi.org/10.1016/j.biosystemseng.2009.12.010CrossRefGoogle Scholar
  170. Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287.  https://doi.org/10.1111/j.1438-8677.1999.tb00253.xCrossRefGoogle Scholar
  171. Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505.  https://doi.org/10.1093/aob/mci205CrossRefPubMedPubMedCentralGoogle Scholar
  172. Jain A, Bhatia S, Banga SS, Prakash S, Lakshmikumaran M (1994) Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis. Theor Appl Genet 88:116–122.  https://doi.org/10.1007/bf00222403CrossRefPubMedGoogle Scholar
  173. Jakir Hasan M, Strelkov SE, Howard RJ, Rahman H (2012) Screening of Brassica germplasm for resistance to Plasmodiophora brassicae pathotypes prevalent in Canada for broadening diversity in clubroot resistance. Can J Plant Sci 92:501–515.  https://doi.org/10.4141/cjps2010-006CrossRefGoogle Scholar
  174. Jan SA, Shinwari ZK, Rabbani MA (2016) Agro-morphological and physiological responses of Brassica rapa ecotypes to salt stress. Pak J Bot 48(4):1379–1384Google Scholar
  175. Jiang C, Ramchiary N, Ma Y, Jin M, Feng J, Li R, Wang H, Long Y, Choi S, Zhang C et al (2011) Structural and functional comparative mapping between the Brassica a genomes in allotetraploid Brassica napus and diploid Brassica rapa. Theor Appl Genet 123:927–941.  https://doi.org/10.1007/s00122-011-1637-1CrossRefPubMedGoogle Scholar
  176. Jin M, Lee S-S, Ke L, Kim JS, Seo M-S, Sohn S-H, Park B-S, Bonnema G (2014) Identification and mapping of a novel dominant resistance gene, TuRB07 to Turnip mosaic virus in Brassica rapa. Theor Appl Genet 127:509–519.  https://doi.org/10.1007/s00122-013-2237-zCrossRefPubMedGoogle Scholar
  177. Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045.  https://doi.org/10.1093/nar/gkw982CrossRefPubMedGoogle Scholar
  178. Jing L, Bo L, Feng C, Jianli L, Xiaowu W, Jian W (2016) A high density linkage map facilitates QTL mapping of flowering time in Brassica rapa. Hortic Plant J 4:217–223Google Scholar
  179. Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, Ma C, Yi B, Wen J, Shen J (2012) A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J Exp Bot 63:1285–1295.  https://doi.org/10.1093/jxb/err355CrossRefPubMedGoogle Scholar
  180. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235.  https://doi.org/10.1093/aob/mci016CrossRefPubMedPubMedCentralGoogle Scholar
  181. Jung H-J, Dong X, Park J-I, Thamilarasan SK, Lee SS, Kim Y-K, Lim Y-P, Nou I-S, Hur Y (2014) Genome-wide transcriptome analysis of two contrasting Brassica rapa Doubled haploid lines under cold-stresses using Br 135 K oligomeric chip. PLoS ONE 9:e106069.  https://doi.org/10.1371/journal.pone.0106069CrossRefPubMedPubMedCentralGoogle Scholar
  182. Kajla S, Mukhopadhyay A, Pradhan AK (2017) Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes. PLoS ONE 12:e0182747.  https://doi.org/10.1371/journal.pone.0182747CrossRefPubMedPubMedCentralGoogle Scholar
  183. Kakizaki T, Kato T, Fukino N, Ishida M, Hatakeyama K, Matsumoto S (2011) Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breed Sci 61:151–159CrossRefGoogle Scholar
  184. Kato T, Hatakeyama K, Fukino N, Matsumoto S (2012) Identification of a clubroot resistance locus conferring resistance to a Plasmodiophora brassicae classified into pathotype group 3 in Chinese cabbage (Brassica rapa L.). Breed Sci 62:282–287.  https://doi.org/10.1270/jsbbs.62.282CrossRefPubMedPubMedCentralGoogle Scholar
  185. Kato T, Hatakeyama K, Fukino N, Matsumoto S (2013) Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. Breed Sci 63:116–124PubMedPubMedCentralCrossRefGoogle Scholar
  186. Kaur N, Murphy JB (2012) Enhanced isoflavone biosynthesis in transgenic cowpea (Vigna unguiculata l.) Callus. Plant Mol Biol Biotechnol 3:1–8Google Scholar
  187. Kayum MA, Jung H-J, Park J-I, Ahmed NU, Saha G, Yang T-J, Nou I-S (2015) Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa. Mol Genet Genomics 290:79–95.  https://doi.org/10.1007/s00438-014-0898-1CrossRefPubMedGoogle Scholar
  188. Kayum MA, Park J-I, Nath UK, Biswas MK, Kim H-T, Nou I-S (2017a) Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biol 17:23.  https://doi.org/10.1186/s12870-017-0979-5CrossRefPubMedPubMedCentralGoogle Scholar
  189. Kayum MA, Park J-I, Nath UK, Saha G, Biswas MK, Kim H-T, Nou I-S (2017b) Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 18:885.  https://doi.org/10.1186/s12864-017-4277-2
  190. Kebede B, Cheema K, Greenshields DL, Li C, Selvaraj G, Rahman H (2012) Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa. Genome 55:813–823.  https://doi.org/10.1139/g2012-066CrossRefPubMedGoogle Scholar
  191. Keith B, Dong XN, Ausubel FM, Fink GR (1991) Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci USA 88:8821–8825.  https://doi.org/10.1073/pnas.88.19.8821CrossRefPubMedGoogle Scholar
  192. Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C, Kumar N, Liu Z, Maurel T, Moore B, McDowall MD, Maheswari U, Naamati G, Newman V, Ong CK, Paulini M, Pedro H, Perry E, Russell M, Sparrow H, Tapanari E, Taylor K, Vullo A, Williams G, Zadissia A, Olson A, Stein J, Wei S, Tello-Ruiz M, Ware D, Luciani A, Potter S, Finn RD, Urban M, Hammond-Kosack KE, Bolser DM, De Silva N, Howe KL, Langridge N, Maslen G, Staines DM, Yates A (2018) Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46:D802–D808.  https://doi.org/10.1093/nar/gkx1011CrossRefPubMedGoogle Scholar
  193. Kershen DL (2010) Trade and commerce in improved crops and food: an essay on food security. N Biotechnol 27:623–627.  https://doi.org/10.1016/j.nbt.2010.06.009CrossRefPubMedGoogle Scholar
  194. Khan MA, Rabbani MA, Munir M, Ajmal SK, Malik MA (2008) Assessment of genetic variation within Indian Mustard (Brassica juncea) germplasm using random amplified polymorphic DNA markers. J Integr Plant Biol 50:385–392.  https://doi.org/10.1111/j.1744-7909.2007.00630.xCrossRefPubMedGoogle Scholar
  195. Khayat PN, Jamaati-e-Somarin S, Zabihi-e-Mahmoodabad R, Yari A, Khayatnezhad M, Gholamin R (2010) Screening of salt tolerance canola cultivars (Brassica napus L.). World Appl Sci J 10:817–820Google Scholar
  196. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822.  https://doi.org/10.1038/35093585CrossRefPubMedGoogle Scholar
  197. Kiefer M, Schmickl R, German DA, Mandáková T, Lysak MA, Al-Shehbaz IA, Franzke A, Mummenhoff K, Stamatakis A, Koch MA (2014) BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. Plant Cell Physiol 55:e3–e3.  https://doi.org/10.1093/pcp/pct158CrossRefPubMedGoogle Scholar
  198. Kim H, Choi SR, Bae J, Hong CP, Lee SY, Hossain MJ, Van Nguyen D, Jin M, Park B-S, Bang J-W, Bancroft I, Lim YP (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genom 10:432.  https://doi.org/10.1186/1471-2164-10-432CrossRefGoogle Scholar
  199. Kim JS, Chung TY, King GJ, Jin M, Yang T-J, Jin Y-M, Kim H-I, Park B-S (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39.  https://doi.org/10.1534/genetics.106.060152CrossRefPubMedPubMedCentralGoogle Scholar
  200. Kim J, Jun KM, Kim JS, Chae S, Pahk Y-M, Lee T-H, Sohn S-I, Lee SI, Lim M-H, Kim C-K, Hur Y, Nahm BH, Kim Y-K (2017) RapaNet: a web tool for the co-expression analysis of Brassica rapa Genes. Evol Bioinform Online 13:1176934317715421.  https://doi.org/10.1177/1176934317715421CrossRefPubMedPubMedCentralGoogle Scholar
  201. Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-King J, Staines D, Derwent P, Kerhornou A, Kersey P, Flicek P (2011) Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford).  https://doi.org/10.1093/database/bar030PubMedPubMedCentralCrossRefGoogle Scholar
  202. Kitamoto N, Yui S, Nishikawa K, Takahata Y, Yokoi S (2014) A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196:213–223.  https://doi.org/10.1007/s10681-013-1025-9CrossRefGoogle Scholar
  203. Kloppenburg JR (1988) First the seed: the political economy of plant biotechnology. Cambridge University Press, CambridgeGoogle Scholar
  204. Knee EM, Rivero L, Crist D, Grotewold E, Scholl R (2011) Germplasm and molecular resources. Genetics and genomics of the Brassicaceae. Springer, New York, NY, pp 437–467CrossRefGoogle Scholar
  205. Knudsen S (2004) Guide to analysis of DNA microarray data, 2nd edn. Wiley-Liss, Hoboken NJ.  https://doi.org/10.1002/0471670278CrossRefGoogle Scholar
  206. Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102:425–430.  https://doi.org/10.1007/s001220051663CrossRefGoogle Scholar
  207. Kole C, Teutonico R, Mengistu A, Williams PH, Osborn TC (1996) Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa. Phytopathology 86:367–369CrossRefGoogle Scholar
  208. Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002a) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breeding 9:201–210.  https://doi.org/10.1023/a:1019759512347CrossRefGoogle Scholar
  209. Kole C, Williams PH, Rimmer SR, Osborn TC (2002b) Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Brassica rapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome 45:22–27PubMedCrossRefGoogle Scholar
  210. Kole C, Kole P, Osborn TC (1997) A high resolution map around VFR2, a vernalization responsive flowering time gene in Brassica rapa. In: Plant and animal genome conference, San Diego, p 107Google Scholar
  211. Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102(2-3):425-430CrossRefGoogle Scholar
  212. Kole C (2017) Combating climate change for FNEE security. International Conference on the Status of Plant & Animal Genome Research, San Diego, CA, 14-18 January 2017Google Scholar
  213. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73.  https://doi.org/10.1093/nar/gkt1181CrossRefPubMedPubMedCentralGoogle Scholar
  214. Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: An information aesthetic for comparative genomics. Genome Res.  https://doi.org/10.1101/gr.092759.109PubMedPubMedCentralCrossRefGoogle Scholar
  215. Kuginuki Y, Ajisaka H, Yui M, Yoshikawa H, Hida K, Hirai M (1997) RAPD markers linked to a clubroot-resistance locus in Brassica rapa L. Euphytica 98:149–154.  https://doi.org/10.1023/a:1003147815692CrossRefGoogle Scholar
  216. Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230.  https://doi.org/10.1016/j.envint.2014.10.019CrossRefPubMedGoogle Scholar
  217. Kumar A, Elston J (1992) Genotypic differences in leaf water relations between Brassica juncea and B. napus. Ann Bot 70:3–9.  https://doi.org/10.1093/oxfordjournals.aob.a088436CrossRefGoogle Scholar
  218. Kumar K, Kumar M, Kim S-R, Ryu H, Cho Y-G (2013b) Insights into genomics of salt stress response in rice. Rice 6:27.  https://doi.org/10.1186/1939-8433-6-27CrossRefPubMedPubMedCentralGoogle Scholar
  219. Kumar M, Lee S-C, Kim J-Y, Kim S-J, Aye SS, Kim S-R (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol 57:383–393.  https://doi.org/10.1007/s12374-014-0487-1CrossRefGoogle Scholar
  220. Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166:507–520.  https://doi.org/10.1016/j.jplph.2008.08.001CrossRefPubMedGoogle Scholar
  221. Kumar A, Singh DP (1998) Use of physiological indices as a screening technique for drought tolerance in Oilseed Brassica species. Ann Bot 81:413–420.  https://doi.org/10.1006/anbo.1997.0573CrossRefGoogle Scholar
  222. Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013a) Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079–1089.  https://doi.org/10.1007/s00709-013-0484-0CrossRefPubMedGoogle Scholar
  223. Kumar PR (1999) Rapeseed mustard research in India: 21st century strategies. In: 10th International Rapeseed Congress, Canberra, AustraliaGoogle Scholar
  224. Lakra BS, Saharan GS (1989) Correlation of leaf and staghead infection intensities of white rust with yield and yield components of mustard. Indian J Mycol Plant Pathol 19:279–281Google Scholar
  225. Lam H-M, Xu X, Liu X, Chen W, Yang G, Wong F-L, Li M-W, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS-M, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059.  https://doi.org/10.1038/ng.715CrossRefPubMedGoogle Scholar
  226. Larcher W (2001) Ökophysiologie der Pflanzen. Eugen Ulmer, Stuttgart, p 302Google Scholar
  227. Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Science & Business MediaGoogle Scholar
  228. Lee J, Lim Y-P, Han C-T, Nou I-S, Hur Y (2013a) Genome-wide expression profiles of contrasting inbred lines of Chinese cabbage, Chiifu and Kenshin, under temperature stress. Genes Genom 35:273–288.  https://doi.org/10.1007/s13258-013-0088-2CrossRefGoogle Scholar
  229. Lee S-C, Lim M-H, Kim JA, Lee S-I, Kim JS, Jin M, Kwon S-J, Mun J-H, Kim Y-K, Kim HU, Hur Y, Park B-S (2008) Transcriptome Analysis in Brassica rapa under the abiotic stresses using Brassica 24 K Oligo microarray. Mol Cells 26:595–605PubMedGoogle Scholar
  230. Lee T-H, Tang H, Wang X, Paterson AH (2013b) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:D1152–D1158.  https://doi.org/10.1093/nar/gks1104CrossRefPubMedGoogle Scholar
  231. Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tárraga A, Cheng Y, Cleland I, Faruque N, Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N, Plaister S, Radhakrishnan R, Reddy K, Sobhany S, Ten Hoopen P, Vaughan R, Zalunin V, Cochrane G (2011) The European nucleotide archive. Nucleic Acids Res 39:D28–D31.  https://doi.org/10.1093/nar/gkq967CrossRefPubMedGoogle Scholar
  232. Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J, Fu T (2012) A Large Insertion in bHLH Transcription Factor BrTT8 Resulting in Yellow Seed Coat in Brassica rapa. PLoS ONE 7:e44145.  https://doi.org/10.1371/journal.pone.0044145CrossRefPubMedPubMedCentralGoogle Scholar
  233. Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa Linkage Map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311–323.  https://doi.org/10.1093/dnares/dsp020CrossRefPubMedPubMedCentralGoogle Scholar
  234. Li X, Ramchiary N, Dhandapani V, Choi SR, Hur Y, Nou I-S, Yoon MK, Lim YP (2013) Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica Species. DNA Res 20:1–16.  https://doi.org/10.1093/dnares/dss029CrossRefPubMedGoogle Scholar
  235. Li Y, Zhou G, Ma J, Jiang W, Jin L, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang S, Zuo Q, Shi X, Li Y, Zhang W, Hu Y, Kong G, Hong H, Tan B, Song J, Liu Z, Wang Y, Ruan H, Yeung CKL, Liu J, Wang H, Zhang L, Guan R, Wang K, Li W, Chen S, Chang R, Jiang Z, Jackson SA, Li R, Qiu L (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052.  https://doi.org/10.1038/nbt.2979CrossRefPubMedPubMedCentralGoogle Scholar
  236. Li CW (1982) The origin, evolution, taxonomy and hybridization of Chinese cabbage. In: Talekar NS, Griggs TD (eds) Chinese cabbage. In: Proceedings of the 1st international AVRDC symposium, Taiwan, pp 1–10Google Scholar
  237. Li J, Zou X, Zhang L, Cao L, Chen L (2016) Linkage map construction using SSR markers and QTL analyses of stem expansion traits in Brassica juncea. Sci Hortic 209(1):67–72CrossRefGoogle Scholar
  238. Lim YP, Plaha P, Choi SR, Uhm T, Hong CP, Bang JW, Hur YK (2006) Toward unraveling the structure of Brassica rapa genome. Physiol Plant 126:585–591.  https://doi.org/10.1111/j.1399-3054.2006.00647.xCrossRefGoogle Scholar
  239. Lin Y, Guo W, Xu Z, Jia Z (2012) Cold resistance and changes on MDA and soluble sugar of leaves of ligustrun lucidum ait in winter. Chin Agric Sci Bull 28:68–72Google Scholar
  240. Lin K, Kools H, de Groot PJ, Gavai AK, Basnet RK, Cheng F, Wu J, Wang X, Lommen A, Hooiveld GJEJ, Bonnema G, Visser RGF, Muller MR, Leunissen JAM (2011) MADMAX—management and analysis database for multiple~omics experiments. J Integr Bioinform 8:160.  https://doi.org/10.2390/biecoll-jib-2011-160CrossRefPubMedGoogle Scholar
  241. Lin K, Zhang N, Severing EI, Nijveen H, Cheng F, Visser RG, Wang X, de Ridder D, Bonnema G (2014) Beyond genomic variation—comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genom 15:250.  https://doi.org/10.1186/1471-2164-15-250CrossRefGoogle Scholar
  242. Lionneton E, Ravera S, Sanchez L, Aubert G, Delourme R, Ochatt S (2002) Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea). Genome 45:1203–1215.  https://doi.org/10.1139/g02-09CrossRefPubMedGoogle Scholar
  243. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T-J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park B-S, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T-H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930.  https://doi.org/10.1038/ncomms4930CrossRefPubMedPubMedCentralGoogle Scholar
  244. Liu Y, Zhang Y, Xing J, Liu Z, Feng H (2013) Mapping quantitative trait loci for yield-related traits in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Euphytica 193:221–234.  https://doi.org/10.1007/s10681-013-0931-1CrossRefGoogle Scholar
  245. Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397–409.  https://doi.org/10.1007/s00122-011-1592-xCrossRefPubMedGoogle Scholar
  246. Lou P, Zhao J, He H, Hanhart C, Carpio DPD, Verkerk R, Custers J, Koornneef M, Bonnema G (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol 179:1017–1032.  https://doi.org/10.1111/j.1469-8137.2008.02530.xCrossRefPubMedGoogle Scholar
  247. Lou P, Zhao J, Kim JS, Shen S, Carpio D, Pino D, Song X, Jin M, Vreugdenhil D, Wang X, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016.  https://doi.org/10.1093/jxb/erm255CrossRefPubMedPubMedCentralGoogle Scholar
  248. Love CG, Graham NS, Lochlainn SÓ, Bowen HC, May ST, White PJ, Broadley MR, Hammond JP, King GJ (2010) A Brassica exon array for whole-transcript gene expression profiling. PLoS ONE 5:e12812.  https://doi.org/10.1371/journal.pone.0012812CrossRefPubMedPubMedCentralGoogle Scholar
  249. Lu G, Cao J, Yu X, Xiang X, Chen H (2008) Mapping QTLs for root morphological traits in Brassica rapa L. based on AFLP and RAPD markers. J Appl Genet 49:23–31PubMedCrossRefGoogle Scholar
  250. Lu C, Napier JA, Clemente TE, Cahoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 22:252–259.  https://doi.org/10.1016/j.copbio.2010.11.006CrossRefPubMedGoogle Scholar
  251. Luo Y, Dong D, Su Y, Wang X, Peng Y, Peng J, Zhou C (2018) Transcriptome analysis of Brassica juncea var. tumida Tsen responses to Plasmodiophora brassicae primed by the biocontrol strain Zhihengliuella aestuarii. Funct Integr Genomics 18 (3):301–314CrossRefGoogle Scholar
  252. Lutz W, Sanderson W, Scherbov S (2001) The end of world population growth. Nature 412:543–545.  https://doi.org/10.1038/35087589CrossRefPubMedGoogle Scholar
  253. Maghari BM, Ardekani AM (2011) Genetically modified foods and social concerns. Avicenna J Med Biotechnol 3:109–117PubMedPubMedCentralGoogle Scholar
  254. Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003) Molecular mapping of seed aliphatic glucosinolates in Brassica juncea. Genome 46:753–760.  https://doi.org/10.1139/g03-051CrossRefPubMedGoogle Scholar
  255. Mailer RJ, Cornish PS (1987) Effects of water stress on glucosinolate and oil concentrations in the seeds of rape (Brassica napus L.) and turnip rape (Brassica rapa L. var. silvestris [Lam.] Briggs). Aust J Exp Agric 27:707–711.  https://doi.org/10.1071/ea9870707CrossRefGoogle Scholar
  256. Mao Y, Wu F, Yu X, Bai J, He Y (2013) miR319a-targeted BrpTCP genes modulate head shape in Brassica rapa by differential cell division arrest in leaf regions. Plant Physiol 164:710–720.  https://doi.org/10.1104/pp.113.228007CrossRefPubMedPubMedCentralGoogle Scholar
  257. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res.  https://doi.org/10.1101/gr.079558.108PubMedPubMedCentralCrossRefGoogle Scholar
  258. Marshall DJ, Hayward A, Eales D, Imelfort M, Stiller J, Berkman PJ, Clark T, McKenzie M, Lai K, Duran C, Batley J, Edwards D (2010) Targeted identification of genomic regions using TAGdb. Plant Methods 6:19.  https://doi.org/10.1186/1746-4811-6-19CrossRefPubMedPubMedCentralGoogle Scholar
  259. Martínez-Ballesta MDC, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14:11607–11625.  https://doi.org/10.3390/ijms140611607CrossRefGoogle Scholar
  260. Maryam A, Nasreen S (2012) A review: water logging effects on morphological, anatomical, physiological and biochemical attributes of food and cash crops. Environ Sci. 8Google Scholar
  261. Matsumoto E, Yasui C, Ohi M, Tsukada M (1998) Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 104:79.  https://doi.org/10.1023/a:1018370418201CrossRefGoogle Scholar
  262. McDonald G, Bovill W, Huang C, Lightfoot D (2013) Nutrient use efficiency. In: Kole C (ed) Genomics and breeding for climate-resilient crops. Springer, Berlin, Heidelberg, pp 333–393CrossRefGoogle Scholar
  263. McGrath JM, Quiros CF (1992) Genetic diversity at isozyme and RFLP loci in Brassica campestris as related to crop type and geographical origin. Theor Appl Genet 83:783–790.  https://doi.org/10.1007/bf00226698CrossRefPubMedGoogle Scholar
  264. McVetty PBE, Austin RB, Morgan CL (1989) A comparison of the growth, photosynthesis, stomatal conductance and water use efficiency of Moricandia and Brassica Species. Ann Bot 64:87–94.  https://doi.org/10.1093/oxfordjournals.aob.a087812CrossRefGoogle Scholar
  265. Mei J, Fu Y, Qian L, Xu X, Li J, Qian W (2011) Effectively widening the gene pool of oilseed rape (Brassica napus L.) by using Chinese B. rapa in a ‘virtual allopolyploid’ approach. Plant Breed 130:333–337.  https://doi.org/10.1111/j.1439-0523.2011.01850.xCrossRefGoogle Scholar
  266. Mendham NJ, Shipway PA, Scott RK (1981) The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). J Agric Sci 96:389–416.  https://doi.org/10.1017/s002185960006617xCrossRefGoogle Scholar
  267. Micheletto S, Rodriguez-Uribe L, Hernandez R, Richins RD, Curry J, O’Connell MA (2007) Comparative transcript profiling in roots of Phaseolus acutifolius and P. vulgaris under water deficit stress. Plant Sci 173:510–520.  https://doi.org/10.1016/j.plantsci.2007.08.003CrossRefGoogle Scholar
  268. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248.  https://doi.org/10.1101/gr.5681207CrossRefPubMedPubMedCentralGoogle Scholar
  269. Ministry of Environment, Forest and Climate Change—Genetic Engineering Appraisal Committee (2018) In: Proceedings of the 134th meeting of the genetic engineering appraisal committee. Available at: http://www.geacindia.gov.in/decisions-of-GEAC-meetings.aspx
  270. Miyaji N, Shimizu M, Miyazaki J, Osabe K, Sato M, Ebe Y, Takada S, Kaji M, Dennis ES, Fujimoto R, Okazaki K (2017) Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L. Plant Cell Rep 36:1841–1854.  https://doi.org/10.1007/s00299-017-2198-9CrossRefPubMedGoogle Scholar
  271. Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252.  https://doi.org/10.1007/s00299-006-0241-3CrossRefPubMedGoogle Scholar
  272. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458.  https://doi.org/10.1073/pnas.1215985110CrossRefPubMedGoogle Scholar
  273. Morrison MJ, McVETTY PBE, Shaykewich CF (1989) The determination and verification of a baseline temperature for the growth of westar summer rape. Can J Plant Sci 69:455–464.  https://doi.org/10.4141/cjps89-057CrossRefGoogle Scholar
  274. Muangprom A, Osborn TC (2004) Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet 108:1378–1384.  https://doi.org/10.1007/s00122-003-1551-2CrossRefPubMedGoogle Scholar
  275. Mukherjee AK, Mohapatra T, Varshney A, Sharma R, Sharma RP (2001) Molecular mapping of a locus controlling resistance to Albugo candida in Indian mustard. Plant Breed 120:483–487CrossRefGoogle Scholar
  276. Munir S, Hussain E, Bhatti KH, Nawaz K, Hussain K, Rashid R, Hussain I (2013) Assessment of inter-cultivar variations for salinity tolerance in winter radish (Raphanus sativus L.) using photosynthetic attributes as effective selection criteria. World Appl Sci J 21:384–388Google Scholar
  277. Murukarthick J, Sampath P, Lee SC, Choi B-S, Senthil N, Liu S, Yang T-J (2014) BrassicaTED—a public database for utilization of miniature transposable elements in Brassica species. BMC Res Notes 7:379.  https://doi.org/10.1186/1756-0500-7-379CrossRefPubMedPubMedCentralGoogle Scholar
  278. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202.  https://doi.org/10.1105/tpc.109.068437CrossRefPubMedPubMedCentralGoogle Scholar
  279. NBPGR (2018) ICAR—NBPGR Genebank. http://genebank.nbpgr.ernet.in/CropgroupCrops.aspx. Accessed July 12 2018
  280. Nagaoka T, Doullah MA, Matsumoto S, Kawasaki S, Ishikawa T, Hori H et al (2010) Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theor Appl Genet 120:1335–1346PubMedCrossRefGoogle Scholar
  281. Nanda R, Bhargava SC, Tomar DPS, Rawson HM (1996) Phenological development of Brassica campestris, B. juncea, B. napus and B. carinata grown in controlled environments and from 14 sowing dates in the field. Field Crops Res 46:93–103.  https://doi.org/10.1016/0378-4290(95)00090-9CrossRefGoogle Scholar
  282. Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210.  https://doi.org/10.1016/s0014-5793(99)01451-9CrossRefPubMedGoogle Scholar
  283. Narusaka M, Abe H, Kobayashi M, Kubo Y, Narusaka Y (2006) Comparative analysis of expression profiles of counterpart gene sets between Brassica rapa and Arabidopsis thaliana during fungal pathogen Colletotrichum higginsianum infection. Plant Biotechnol 23:503–508.  https://doi.org/10.5511/plantbiotechnology.23.503CrossRefGoogle Scholar
  284. Nasri M, Khalatbari M, Zahedi H, Paknejad F, Moghadam HRT (2008) Evaluation of micro and macro elements in drought stress condition in cultivars of rapeseed (Brassica napus L.). Am J Agric Biol Sci 3(3):579–583CrossRefGoogle Scholar
  285. Nath U, Crawford BCW, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407.  https://doi.org/10.1126/science.1079354CrossRefPubMedGoogle Scholar
  286. Nath UK, Kim H-T, Khatun K, Park J-I, Kang K-K, Nou I-S (2016) Modification of fatty acid profiles of rapeseed (Brassica napus L.) oil for using as food, industrial feed-stock and biodiesel. Plant Breed Biotech 4:123–134.  https://doi.org/10.9787/pbb.2016.4.2.123CrossRefGoogle Scholar
  287. Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C (2009) Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor Appl Genet 118:765–773.  https://doi.org/10.1007/s00122-008-0936-7CrossRefPubMedGoogle Scholar
  288. Nazir N, Ashraf M, Rasul E (2001) Genomic relationships in oilseeds Brassicas with respect to salt tolerance-photosynthetic capacity and ion relations. Pak J Bot 33:483–501Google Scholar
  289. Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in Arabidopsis Siliques. Plant Cell 12:1863–1878.  https://doi.org/10.1105/tpc.12.10.1863CrossRefPubMedPubMedCentralGoogle Scholar
  290. Nishioka M, Tamura K, Hayashi M, Fujimori Y, Ohkawa Y, Kuginuki Y, Harada K (2005) Mapping of QTLs for bolting time in Brassica rapa (syn. campestris) under different environmental conditions. Breed Sci 55:127–133.  https://doi.org/10.1270/jsbbs.55.127CrossRefGoogle Scholar
  291. Nozaki T, Kumazaki A, Koba T, Ishikawa K, Ikehashi H (1997) Linkage analysis among loci for RAPDs, isozymes and some agronomic traits in Brassica campestris L. Euphytica 95:115.  https://doi.org/10.1023/a:1002981208509CrossRefGoogle Scholar
  292. Ohashi Y, Nakayama N, Saneoka H, Fujita K (2006) Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biol Plant 50(1):138–141CrossRefGoogle Scholar
  293. Oram R, Salisbury P, Kirk J, Burton W (1999) Brassica juncea breeding. In: Salisbury PA, Potter TD, McDonald G, Green AG (eds) Org Comm 10th International Rapeseed Congress, Canberra, ACT, Australia, pp 37–40Google Scholar
  294. Osborn TC, Kole C, Parkin I a. P, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129Google Scholar
  295. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263.  https://doi.org/10.1038/nature01958CrossRefPubMedGoogle Scholar
  296. Panda N, Khush GA (1995) Host plant resistance to insects. CAB Int, WallingfordGoogle Scholar
  297. Panjabi-Massand P, Yadava SK, Sharma P, Kaur A, Kumar A, Arumugam N, Sodhi YS, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2010) Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasm of oilseed mustard Brassica juncea. Theor Appl Genet 121:137–145.  https://doi.org/10.1007/s00122-010-1297-6CrossRefPubMedGoogle Scholar
  298. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113PubMedPubMedCentralCrossRefGoogle Scholar
  299. Paritosh K, Yadava SK, Gupta V, Panjabi-Massand P, Sodhi YS, Pradhan AK, Pental D (2013) RNA-seq based SNPs in some agronomically important oleiferous lines of Brassica rapa and their use for genome-wide linkage mapping and specific-region fine mapping. BMC Genom 14:463.  https://doi.org/10.1186/1471-2164-14-463CrossRefGoogle Scholar
  300. Paritosh K, Gupta V, Yadava SK, Singh P, Pradhan AK, Pental D (2014) RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa) and B (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns. BMC Genomics 15(1):396.  https://doi.org/10.1186/1471-2164-15-396PubMedPubMedCentralCrossRefGoogle Scholar
  301. Park B-J, Liu Z, Kanno A, Kameya T (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553–558.  https://doi.org/10.1016/j.plantsci.2005.05.008CrossRefGoogle Scholar
  302. Patel SR, Awasthi A, Tomar RKS (2004) Assessment of yield losses in mustard (Brassica juncea L.) due to mustard aphids (Lipaphis erysimi Kalt.) under different thermal environment in eastern central India. App Ecol Environ Res 2(1):1–15CrossRefGoogle Scholar
  303. Pental D (2010) Personal communicationGoogle Scholar
  304. Peschard K (2014) Farmers’ rights and food sovereignty: critical insights from India. J Peasant Stud 41:1085–1108.  https://doi.org/10.1080/03066150.2014.937338CrossRefGoogle Scholar
  305. Petrie GA, Vanterpool TC (1974) Fungi associated with hypertophies caused by infection of cruciferae by Albugo cruciferarum. Canadian Plant Disease Survey 54:37–42Google Scholar
  306. Piao ZY, Deng YQ, Choi SR, Park YJ, Lim YP (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp.pekinensis). Theor Appl Genet 108:1458–1465.  https://doi.org/10.1007/s00122-003-1577-5CrossRefPubMedGoogle Scholar
  307. Piao Z, Ramchiary N, Lim YP (2009) Genetics of clubroot resistance in Brassica species. J Plant Growth Regul 28:252–264.  https://doi.org/10.1007/s00344-009-9093-8CrossRefGoogle Scholar
  308. Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J, Schomburg D (2017) BRENDA in 2017: new perspectives and new tools in BRENDA. Nucleic Acids Res 45:D380–D388.  https://doi.org/10.1093/nar/gkw952CrossRefPubMedGoogle Scholar
  309. Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253.  https://doi.org/10.1371/journal.pone.0032253CrossRefPubMedPubMedCentralGoogle Scholar
  310. Potter T (2011) Brassica juncea in South Australia: where will it be grown and how does it fit into rotations? In: Proceedings of the 17th Australian Research Assembly on Brassicas (ARAB17), Wagga Wagga, NSW, 139–142Google Scholar
  311. Prabhu KV, Somers DJ, Rakow G, Gugel RK (1998) Molecular markers linked to white rust resistance in mustard Brassica juncea. Theor Appl Genet 97:865–870.  https://doi.org/10.1007/s001220050966CrossRefGoogle Scholar
  312. Pradhan AK, Pental D (2011) Genetics of Brassica juncea. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, New York, NY, pp 323–345CrossRefGoogle Scholar
  313. Pradhan AK, Sodhi YS, Mukhopadhyay A, Pental D (1993) Heterosis breeding in Indian mustard (Brassica juncea L. Czern & Coss): analysis of component characters contributing to heterosis for yield. Euphytica 69:219–229.  https://doi.org/10.1007/bf00022368CrossRefGoogle Scholar
  314. Prasad KVSK, Sharmila P, Kumar PA, Saradhi PP (2000) Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol Breed 6:489–499.  https://doi.org/10.1023/a:1026542109965CrossRefGoogle Scholar
  315. Pterson (2007) BACMan. http://www.plantgenome.uga.edu/bacman/brassica/BACMan. Accessed 17 July 2018
  316. Purty RS, Kumar G, Singla-Pareek SL, Pareek A (2008) Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants 14:39–49.  https://doi.org/10.1007/s12298-008-0004-4CrossRefPubMedPubMedCentralGoogle Scholar
  317. Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128:710–721.  https://doi.org/10.1111/j.1399-3054.2006.00804.xCrossRefGoogle Scholar
  318. Qaim M (2010) Benefits of genetically modified crops for the poor: household income, nutrition, and health. N Biotechnol 27:552–557.  https://doi.org/10.1016/j.nbt.2010.07.009CrossRefPubMedGoogle Scholar
  319. Qian B, Gameda S, de Jong R, Falloon P, Gornall J (2010) Comparing scenarios of Canadian daily climate extremes derived using a weather generator. Clim Res 41:131–149.  https://doi.org/10.3354/cr00845CrossRefGoogle Scholar
  320. Qian B, Jing Q, Bélanger G, Shang J, Huffman T, Liu J, Hoogenboom G (2018) Simulated canola yield responses to climate change and adaptation in Canada. Agron J 110:133–146CrossRefGoogle Scholar
  321. Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C (2006) Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet 113:49–54.  https://doi.org/10.1007/s00122-006-0269-3CrossRefPubMedGoogle Scholar
  322. Qiu NW, Liu Q, Wang FD, Zhao N, Sun KY, Miao XM, Zhao LJ, Li LL, Gao JW (2015) Long-term observation on salt tolerance of Chinese cabbage at different development stages. Plant Physiol J. 51:1597–1603Google Scholar
  323. Qiu N, Liu Q, Li J, Zhang Y, Wang F, Gao J (2017) Physiological and Transcriptomic Responses of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) to Salt Stress. Int J Mol Sci 18:1953.  https://doi.org/10.3390/ijms18091953PubMedCentralCrossRefPubMedGoogle Scholar
  324. Rahman M, McVetty PBE, Li G (2007) Development of SRAP, SNP and Multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet 115:1101–1107.  https://doi.org/10.1007/s00122-007-0636-8CrossRefPubMedGoogle Scholar
  325. Rahman M, de Jiménez MM (2016) Designer Oil Crops. In: SK Gupta (ed) Breeding oilseed crops for sustainable production. Elsevier Inc. pp 33–53Google Scholar
  326. Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151.  https://doi.org/10.1007/s11032-006-9052-zCrossRefGoogle Scholar
  327. Rajarammohan S, Kumar A, Gupta V, Pental D, Pradhan AK, Kaur J (2017) Genetic architecture of resistance to Alternaria brassicae in Arabidopsis thaliana: QTL mapping reveals two major resistance-conferring loci. Front Plant Sci 8:260.  https://doi.org/10.3389/fpls.2017.00260CrossRefPubMedPubMedCentralGoogle Scholar
  328. Rakow G (2004) Species origin and economic importance of Brassica. Biotechnol. Agric Forestr 54:3–11CrossRefGoogle Scholar
  329. Ramanna A, Smale M (2004) Rights and access to plant genetic resources under India’s New Law. Dev Policy Rev 22(4):423–442CrossRefGoogle Scholar
  330. Ramchiary N, Lim YP (2011) Genetics of Brassica rapa L. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 215–260CrossRefGoogle Scholar
  331. Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2007) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet 115:807–817.  https://doi.org/10.1007/s00122-007-0610-5CrossRefPubMedGoogle Scholar
  332. Rao GU, Jain A, Shivanna KR (1992) Effects of high temperature stress on Brassica Pollen: viability, germination and ability to set fruits and seeds. Ann Bot 69:193–198.  https://doi.org/10.1093/oxfordjournals.aob.a088329CrossRefGoogle Scholar
  333. Ray K, Bisht NC, Pental D, Burma PK (2007) Development of barnase/barstar transgenics for hybrid seed production in Indian oilseed mustard (Brassica juncea L. Czern & Coss) using a mutant acetolactate synthase gene conferring resistance to imidazolinone-based herbicide “Pursuit”. Curr Sci 93:1390–1396Google Scholar
  334. Raymer PL (2002) Canola: an emerging oilseed crop. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, VA, pp 122–126Google Scholar
  335. Rommens CM (2010) Barriers and paths to market for genetically engineered crops. Plant Biotechnol J 8:101–111.  https://doi.org/10.1111/j.1467-7652.2009.00464.xCrossRefPubMedGoogle Scholar
  336. Roy S, Sinhamahapatra SP (2011) Relationship between seed yield and yield components in bilocular and tetralocular yellow sarson (Brassica rapa). Indian J Agric Sci 81(7):643–647Google Scholar
  337. Rozema J, Flowers T (2008) Crops for a Salinized World. Science 322:1478–1480.  https://doi.org/10.1126/science.1168572CrossRefPubMedGoogle Scholar
  338. Rustagi A, Kumar D, Shekhar S, Yusuf MA, Misra S, Sarin NB (2014) Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to Fungal phytopathogens. Mol Biotechnol 56:535–545.  https://doi.org/10.1007/s12033-013-9727-8CrossRefPubMedGoogle Scholar
  339. Saha B, Mishra S, Awasthi JP, Sahoo L, Panda SK (2016b) Enhanced drought and salinity tolerance in transgenic mustard [Brassica juncea (L.) Czern & Coss.] overexpressing Arabidopsis group 4 late embryogenesis abundant gene (AtLEA4-1). Environ Exp Bot 128:99–111.  https://doi.org/10.1016/j.envexpbot.2016.04.010CrossRefGoogle Scholar
  340. Saha G, Park J-I, Jung H-J, Ahmed NU, Kayum MA, Chung M-Y, Hur Y, Cho Y-G, Watanabe M, Nou I-S (2015) Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genom 16:178.  https://doi.org/10.1186/s12864-015-1349-zCrossRefGoogle Scholar
  341. Saha G, Park J-I, Kayum MA, Nou I-S (2016a) A Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of TIFY Family Genes in Brassica rapa. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.00936
  342. Sahni S, Ganie SH, Narula A, Srivastava PS, Singh HB (2013) Ectopic expression of Atleafy in Brassica juncea cv. Geeta for early flowering. Physiol Mol Biol Plants 19:455–459.  https://doi.org/10.1007/s12298-013-0180-8CrossRefPubMedPubMedCentralGoogle Scholar
  343. Sainger M, Sainger PA, Chaudhary D, Jaiwal R, Singh RP, Dhankher OP, Jaiwal PK (2015) GM crops for developing world in the era of climate change: for increase of farmer’s income, poverty alleviation, nutrition and health. Genetic manipulation in plants for mitigation of climate change. Springer, New Delhi, pp 223–241CrossRefGoogle Scholar
  344. Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M (2006) Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet 114:81.  https://doi.org/10.1007/s00122-006-0412-1CrossRefPubMedGoogle Scholar
  345. Sakai A, Larcher W (1987) Freezing injuries in plants In: Sakai A, Larcher W (eds) Frost survival of plants: response and adaptation to freezing stress, Springer, Berlin, pp 39–58Google Scholar
  346. Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E (2008) Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 117:759–767.  https://doi.org/10.1007/s00122-008-0817-0CrossRefPubMedGoogle Scholar
  347. Santos MR, Dias JS, Silva MJ, Ferreira-Pinto MM (2006) Resistance to white rust in pak choi and Chinese cabbage at the cotyledon stage. Comm Agric Appl Biol Sci 71:963–971Google Scholar
  348. Saxena RK, Edwards D, Varshney RK (2014) Structural variations in plant genomes. Brief Funct Genomics 13:296–307.  https://doi.org/10.1093/bfgp/elu016CrossRefPubMedPubMedCentralGoogle Scholar
  349. Schatz MC, Maron LG, Stein JC, Wences AH, Gurtowski J, Biggers E, Lee H, Kramer M, Antoniou E, Ghiban E, Wright MH, Chia J, Ware D, McCouch SR, McCombie WR (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15:506.  https://doi.org/10.1186/s13059-014-0506-zCrossRefPubMedPubMedCentralGoogle Scholar
  350. Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161.  https://doi.org/10.1111/pbi.12645CrossRefPubMedPubMedCentralGoogle Scholar
  351. Schranz ME, Quijada P, Sung SB, Lukens L, Amasino RM, Osborn TC (2002) Characterization and effects of the replicated time gene FLC in Brassica rapa. Genetics 162:1457–1468PubMedPubMedCentralGoogle Scholar
  352. Sharghi Y, Rad AHS, Band AA, Noormohammadi G, Zahedi H (2011) Yield and yield components of six canola (Brassica napus L.) cultivars affected by planting date and water deficit stress. Afr J Biotechnol 10:9309–9313.  https://doi.org/10.5897/ajb11.048CrossRefGoogle Scholar
  353. Sharma R, Aggarwal RA, Kumar R, Mohapatra T, Sharma RP (2002) Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea). Genome 45:467–472.  https://doi.org/10.1139/g02-001CrossRefPubMedGoogle Scholar
  354. Sharma R, Mishra M, Gupta B, Parsania C, Singla-Pareek SL, Pareek A (2015) De Novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea. PLoS ONE 10:e0126783.  https://doi.org/10.1371/journal.pone.0126783CrossRefPubMedPubMedCentralGoogle Scholar
  355. Sharma A, Mohapatra T, Sharma RP (1994) Molecular mapping and character tagging in Brassica juncea—I. Degree, nature and linkage relationship of RFLPs and their association with quantitative traits. J Plant Biochem Biotechnol 3:85–89.  https://doi.org/10.1007/bf03321956CrossRefGoogle Scholar
  356. Sharma P, Sardana V (2013) Screening of Indian mustard (Brassica juncea) for thermo tolerance at seedling and terminal stages. J Oilseed Brassica 4:61–67Google Scholar
  357. Sharma P, Kumar A, Meena PD, Goyal P, Salisbury P, Gurung A et al. (2009) Search for resistance to Sclerotinia sclerotiorum in exotic and indigenous Brassica germplasm. In: 16th Australian Research Assembly on Brassicas, Ballarat, VictoriaGoogle Scholar
  358. Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, Nakazono M, Colmer TD (2011) Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot 107:89–99.  https://doi.org/10.1093/aob/mcq221CrossRefPubMedGoogle Scholar
  359. Shrestha R, Matteis L, Skofic M, Portugal A, McLaren G, Hyman G, Arnaud E (2012) Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the crop ontology developed by the crop communities of practice. Front Physiol 3:326.  https://doi.org/10.3389/fphys.2012.00326CrossRefPubMedPubMedCentralGoogle Scholar
  360. Siddique KHM, Loss SP, Regan KL, Jettner RL (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust J Agric Res 50:375–388.  https://doi.org/10.1071/a98096CrossRefGoogle Scholar
  361. Siddiqui MH, Mohammad F, Khan MN (2009) Morphological and physio-biochemical characterization of Brassica juncea (L.) Czern. & Coss. genotypes under salt stress. J Plant Interact 4:67–80CrossRefGoogle Scholar
  362. Sinaki JM, Heravan EM, Ra AHS, Noormohammadi G, Zarei G (2007) The effects of water deficit during growth stages of canola (Brassica napus L.). Am Eurasian J Agric Environ Sci 4:417–422Google Scholar
  363. Singh SK, Kakani VG, Brand D, Baldwin B, Reddy KR (2008) Assessment of cold and heat tolerance of winter-grown Canola (Brassica napus L.) cultivars by Pollen-based parameters. J Agron Crop Sci 194:225–236.  https://doi.org/10.1111/j.1439-037x.2008.00309.xCrossRefGoogle Scholar
  364. Singh A, Meena NL (2004) Effect of nitrogen and sulphur on growth, yield attributes and seed yield of mustard (Brassica juncea) in eastern plains of Rajasthan. Indian J Agron 49(3):186–188Google Scholar
  365. Singh BK, Nandan D, Ambawat S, Ram B, Kumar A, Singh T, Meena HS, Kumar V, Singh VV, Rai PK, Singh D (2015) Validation of molecular markers for marker-assisted pyramiding of white rust resistance loci in Indian Mustard (Brassica juncea L.). Can J Plant Sci 95:939–945.  https://doi.org/10.4141/cjps-2014-215CrossRefGoogle Scholar
  366. Singh CP, Sachan GC (1994) Assessment of yield losses in yellow sarson due to mustard aphids Lipaphis erysimi Kalt. J Oilseeds Res 11:179–184Google Scholar
  367. Singh R, Sharma SK (2007) Evaluation, maintenance, and conservation of germplasm. In: Advances in botanical research. Academic Press, pp 465–481Google Scholar
  368. Sinha S, Raxwal VK, Joshi B, Jagannath A, Katiyar-Agarwal S, Goel S, Kumar A, Agarwal M (2015) De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.). Front Plant Sci 6.  https://doi.org/10.3389/fpls.2015.00932
  369. Sivaraman I, Arumugam N, Sodhi YS, Gupta V, Mukhopadhyay A, Pradhan AK, Burma PK, Pental D (2004) Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2. Mol Breed 13:365–375.  https://doi.org/10.1023/b:molb.0000034092.47934.d6CrossRefGoogle Scholar
  370. Smith JAC, Popp M, Lu¨ttge U, Cram WJ, Diaz M, Griffiths H, Lee HSJ, Medina E, Scha¨fer C, Stimmel KH, Thonke B (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. Water relations and gas exchange of mangroves. New Phytol 111:293–307.  https://doi.org/10.1111/j.1469-8137.1989.tb00693.xCrossRefGoogle Scholar
  371. Soengas P, Hand P, Vicente JG, Pole JM, Pink DAC (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114(4):637–645.  https://doi.org/10.1007/s00122-006-0464-2CrossRefPubMedGoogle Scholar
  372. Somers D, Rakow G, Rimmer S (2002) Brassica napus DNA markers linked to white rust resistance in Brassica juncea. Theor Appl Genet 104:1121–1124.  https://doi.org/10.1007/s00122-001-0812-1CrossRefPubMedGoogle Scholar
  373. Song X, Liu G, Huang Z, Duan W, Tan H, Li Y, Hou X (2016) Temperature expression patterns of genes and their coexpression with LncRNAs revealed by RNA-Seq in non-heading Chinese cabbage. BMC Genom 17:297.  https://doi.org/10.1186/s12864-016-2625-2CrossRefGoogle Scholar
  374. Song KM, Osborn TC, Williams PH (1988a) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPS) Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75:784–794CrossRefGoogle Scholar
  375. Song KM, Osborn TC, Williams PH (1988b) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPS) preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600PubMedCrossRefGoogle Scholar
  376. Song K, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 79:497–506.  https://doi.org/10.1007/bf00226159CrossRefPubMedGoogle Scholar
  377. Song K, Slocum MK, Osborn TC (1995) Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theor Appl Genet 90:1–10.  https://doi.org/10.1007/bf00220989CrossRefPubMedGoogle Scholar
  378. Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734.  https://doi.org/10.1371/journal.pgen.1000734CrossRefPubMedPubMedCentralGoogle Scholar
  379. Srivastava A, Gupta V, Pental D, Pradhan AK (2001) AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea. Theor Appl Genet 102:193–199.  https://doi.org/10.1007/s001220051635CrossRefGoogle Scholar
  380. Srivastava S, Srivastava AK, Sablok G, Deshpande TU, Suprasanna P (2015) Transcriptomics profiling of Indian mustard (Brassica juncea) under arsenate stress identifies key candidate genes and regulatory pathways. Front Plant Sci 6.  https://doi.org/10.3389/fpls.2015.00646
  381. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, Lewis S (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610.  https://doi.org/10.1101/gr.403602CrossRefPubMedPubMedCentralGoogle Scholar
  382. Steponkus PL (1980) A unified concept of stress in plants? In: Rains DW, Valentine RC, Hollaender A (eds) Genetic engineering of osmoregulation. Plenum Press, New York, pp 235–255CrossRefGoogle Scholar
  383. Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:14570–14575.  https://doi.org/10.1073/pnas.95.24.14570CrossRefPubMedPubMedCentralGoogle Scholar
  384. Stünzi JT, Kende H (1989) Gas composition in the internal air spaces of deepwater rice in relation to growth induced by submergence. Plant Cell Physiol 30:49–56.  https://doi.org/10.1093/oxfordjournals.pcp.a077716CrossRefGoogle Scholar
  385. Sun VG (1946) The evaluation of taxonomic characters of cultivated Brassica with a key to species and varieties. I. The characters. Bull Torr Bot 73:244–281CrossRefGoogle Scholar
  386. Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H (2013) SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700.  https://doi.org/10.1371/journal.pone.0058700CrossRefPubMedPubMedCentralGoogle Scholar
  387. Sun CB (2014) Characterization of the small RNA transcriptome in plant–microbe Brassica/Erwinia interactions by high-throughput sequencing. Biotechnol Lett 36(2): 371–381PubMedCrossRefGoogle Scholar
  388. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6:e21800.  https://doi.org/10.1371/journal.pone.0021800CrossRefPubMedPubMedCentralGoogle Scholar
  389. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002.  https://doi.org/10.1007/s00122-003-1309-xCrossRefPubMedGoogle Scholar
  390. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319.  https://doi.org/10.1534/genetics.104.038968CrossRefPubMedPubMedCentralGoogle Scholar
  391. ‘t Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, de Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucl Acids Res 36:1–12.  https://doi.org/10.1093/nar/gkn705PubMedPubMedCentralCrossRefGoogle Scholar
  392. Tahira R, Ullah I, Saleem M (2013) Evaluation of genetic diversity of Raya (Brassica juncea) through RAPD markers. Int J Agric Biol 15:1163–1168Google Scholar
  393. Talekar NS, Shelton AM (1993) Biology, ecology, and management of the diamondback moth. Annu Rev Entomol 38:275–301.  https://doi.org/10.1146/annurev.en.38.010193.001423CrossRefGoogle Scholar
  394. Tan S, Zhong Y, Hou H, Yang S, Tian D (2012) Variation of presence/absence genes among Arabidopsis populations. BMC Evol Biol 12:86.  https://doi.org/10.1186/1471-2148-12-86CrossRefPubMedPubMedCentralGoogle Scholar
  395. Tang H, Bomhoff MD, Briones E, Zhang L, Schnable JC, Lyons E (2015) SynFind: compiling syntenic regions across any set of genomes on demand. Genome Biol Evol 7:3286–3298.  https://doi.org/10.1093/gbe/evv219CrossRefPubMedPubMedCentralGoogle Scholar
  396. Tanhuanpää P, Erkkilä M, Tenhola-Roininen T, Tanskanen J, Manninen O (2015) SNP diversity within and among Brassica rapa accessions reveals no geographic differentiation. Genome 59:11–21.  https://doi.org/10.1139/gen-2015-0118CrossRefPubMedGoogle Scholar
  397. Tanhuanpää P, Schulman A (2002) Mapping of genes affecting linolenic acid content in Brassica rapa ssp. oleifera. Mol Breed 10:51–62.  https://doi.org/10.1023/a:1020357211089CrossRefGoogle Scholar
  398. Tateno Y, Imanishi T, Miyazaki S, Fukami-Kobayashi K, Saitou N, Sugawara H, Gojobori T (2002) DNA data bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Res 30:27–30.  https://doi.org/10.1093/nar/30.1.27CrossRefPubMedPubMedCentralGoogle Scholar
  399. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Ros IM y, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome.” Proc Natl Acad Sci U S A 102:13950–13955.  https://doi.org/10.1073/pnas.0506758102CrossRefGoogle Scholar
  400. Teutonico RA, Osborn TC (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet 89:885–894.  https://doi.org/10.1007/bf00224514CrossRefPubMedGoogle Scholar
  401. Teutonico RA, Osborn TC (1995) Mapping loci controlling vernalization requirement in Brassica rapa. Theoret Appl Genetics 91:1279–1283.  https://doi.org/10.1007/bf00220941CrossRefGoogle Scholar
  402. Teutonico RA, Yandell B, Satagopan JM, Ferreira ME, Palta JP, Osborn TC (1995) Genetic-analysis and mapping of genes-controlling freezing tolerance in oilseed Brassica. Mol Breed 1:329–339CrossRefGoogle Scholar
  403. Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129.  https://doi.org/10.1093/nar/gkx382CrossRefPubMedPubMedCentralGoogle Scholar
  404. Tiwari AS, Petrie GA, Downey RK (1988) Inheritance of resistance to Albugo candida race 2 in mustard (Brassica juncea (L.) Czern.). Can J Plant Sci 68:297–300.  https://doi.org/10.4141/cjps88-039CrossRefGoogle Scholar
  405. Trick M, Cheung F, Drou N, Fraser F, Lobenhofer EK, Hurban P, Magusin A, Town CD, Bancroft I (2009) A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol 9:50.  https://doi.org/10.1186/1471-2229-9-50CrossRefPubMedPubMedCentralGoogle Scholar
  406. U N (1935) Genomic analysis of Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  407. USDA (2018) Oilseeds—World markets and trade. https://apps.fas.usda.gov/psdonline/circulars/oilseeds. Accessed 11 July 2018
  408. Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, Hayashida N (2012) Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol 80:621–629PubMedCrossRefGoogle Scholar
  409. Uitdewilligen JGAML, Wolters A-MA, D’hoop BB, Borm TJA, Visser RGF, Eck HJ van (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8:e62355.  https://doi.org/10.1371/journal.pone.0062355PubMedPubMedCentralCrossRefGoogle Scholar
  410. Upadhyay A, Mohapatra T, Pai RA, Sharma RP (1996) Molecular mapping and character tagging in mustard (Brassica juncea) II. Association of RFLP markers with seed coat colour and quantitative traits. J Plant Biochem Biotechnol 5:17–22.  https://doi.org/10.1007/bf03262973CrossRefGoogle Scholar
  411. Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371.  https://doi.org/10.1016/j.tplants.2011.03.004CrossRefPubMedGoogle Scholar
  412. Varshney A, Mohapatra T, Sharma RP (2004) Development and validation of CAPS and AFLP markers for white rust resistance gene in Brassica juncea. Theor Appl Genet 109:153–159.  https://doi.org/10.1007/s00122-004-1607-yCrossRefPubMedGoogle Scholar
  413. Verboven P, Pedersen O, Herremans E, Ho QT, Nicolaï BM, Colmer TD, Teakle N (2012) Root aeration via aerenchymatous phellem: three-dimensional micro-imaging and radial O2 profiles in Melilotus siculus. New Phytol 193:420–431.  https://doi.org/10.1111/j.1469-8137.2011.03934.xCrossRefPubMedGoogle Scholar
  414. Verma U, Bhowmik TP (1989) Inheritance of resistance to a Brassica juncea pathotype of Albugo Candida in B. napus. Can J Plant Pathol 11:443–444.  https://doi.org/10.1080/07060668909501095CrossRefGoogle Scholar
  415. Verma PR, Petrie GA (1980) Effect of seed infestation and flower bud inoculation on systemic infection of turnip rape by Albugo Candida. Can J Plant Sci 60:267–271.  https://doi.org/10.4141/cjps80-038CrossRefGoogle Scholar
  416. Vezzani S (2018) The international regulatory framework for the use of GMOs and products thereof as food aid. Eur J Risk Regul 9(1):120–136.  https://doi.org/10.1017/err.2017.58CrossRefGoogle Scholar
  417. Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18.  https://doi.org/10.1111/j.1364-3703.2012.00833.xCrossRefPubMedGoogle Scholar
  418. Walton G, Si P, Bowden W (1999) Environmental impact on canola yield and oil. In: Proceedings of the 10th International Rapeseed Congress, Canberra, Australia. Available from: http://www.regional.org.au/au/gcirc/2/136.htm. Accessed 1 July 2018
  419. Wang G et al (2016c) Fine mapping of polycyetic gene (Bjmc2) in Brassica juncea L. Acta Agronomica Sinica 42:1735–1742CrossRefGoogle Scholar
  420. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63.  https://doi.org/10.1038/nrg2484CrossRefPubMedPubMedCentralGoogle Scholar
  421. Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49–e49.  https://doi.org/10.1093/nar/gkr1293CrossRefPubMedPubMedCentralGoogle Scholar
  422. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B-S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J-S, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S-J, Choi S-R, Lee T-H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011a) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039.  https://doi.org/10.1038/ng.919CrossRefPubMedGoogle Scholar
  423. Wang Y, Xiao L, Guo S, An F, Du D (2016b) Fine mapping and whole-genome resequencing identify the seed coat color gene in Brassica rapa. PLoS ONE 11:e0166464.  https://doi.org/10.1371/journal.pone.0166464CrossRefPubMedPubMedCentralGoogle Scholar
  424. Wang L, Yu X, Wang H, Lu Y-Z, de Ruiter M, Prins M, He Y-K (2011b) A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa). BMC Genom 12:289.  https://doi.org/10.1186/1471-2164-12-289CrossRefGoogle Scholar
  425. Wang A, Hu J, Huang X, Li X, Zhou G, Yan Z (2016a) Comparative transcriptome analysis reveals heat-responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis). Front Plant Sci 7: 939.  https://doi.org/10.3389/fpls.2016.00939
  426. Warwick SI, James T, Falk KC (2008) AFLP-based molecular characterization of Brassica rapa and diversity in Canadian spring turnip rape cultivars. Plant Genetic Resources 6:11–21.  https://doi.org/10.1017/s1479262108923819CrossRefGoogle Scholar
  427. Wei X, Xu W, Yuan Y, Yao Q, Zhao Y, Wang Z, Jiang W, Zhang X (2016) Genome-wide Investigation of microRNAs and Their Targets in Brassica rapa ssp. pekinensis Root with Plasmodiophora brassicae Infection. Hortic Plant J 2:209–216.  https://doi.org/10.1016/j.hpj.2016.11.004CrossRefGoogle Scholar
  428. Wu J, Yuan Y-X, Zhang X-W, Zhao J, Song X, Li Y, Li X, Sun R, Koornneef M, Aarts MGM, Wang X-W (2008) Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Soil 310:25–40.  https://doi.org/10.1007/s11104-008-9625-1CrossRefGoogle Scholar
  429. Wu J, Wei K, Cheng F, Li S, Wang Q, Zhao J, Bonnema G, Wang X (2012) A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol 12:151.  https://doi.org/10.1186/1471-2229-12-151PubMedPubMedCentralCrossRefGoogle Scholar
  430. Xiao D, Wang HG, Basnet RK, Zhao JJ, Lin K, Hou XL, Bonnema G (2014) Genetic dissection of leaf development in Brassica rapa using a ‘genetical genomics’ approach. Plant Physiol 164(3):1309–1325.  https://doi.org/10.1104/pp.113.227348CrossRefPubMedPubMedCentralGoogle Scholar
  431. Xiao L, Zhao Z, Du D, Yao Y, Xu L, Tang G (2012) Genetic characterization and fine mapping of a yellow-seeded gene in Dahuang (a Brassica rapa landrace). Theor Appl Genet 124:903–909.  https://doi.org/10.1007/s00122-011-1754-xCrossRefPubMedGoogle Scholar
  432. Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DPD, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G (2013a) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64:4503–4516.  https://doi.org/10.1093/jxb/ert264CrossRefPubMedPubMedCentralGoogle Scholar
  433. Xiao L, Zhao H, Zhao Z, Du D, Xu L, Yao Y, Zhao Z, Xing X, Shang G, Zhao H (2013b) Genetic and physical fine mapping of a multilocular gene Bjln1 in Brassica juncea to a 208-kb region. Mol Breed 32:373–383.  https://doi.org/10.1007/s11032-013-9877-1CrossRefGoogle Scholar
  434. Xie Q, Lou P, Hermand V, Aman R, Park HJ, Yun D-J, Kim WY, Salmela MJ, Ewers BE, Weinig C, Khan SL, Schaible DLP, McClung CR (2015) Allelic polymorphism of GIGANTEA is responsible for naturally occurring variation in circadian period in Brassica rapa. Proc Natl Acad Sci U S A 112:3829–3834.  https://doi.org/10.1073/pnas.1421803112CrossRefPubMedPubMedCentralGoogle Scholar
  435. Xu P, Lv Z, Zhang X, Wang X, Pu Y, Wang H, Yi B, Wen J, Ma C, Tu J, Fu T, Shen J (2014) Identification of molecular markers linked to trilocular gene (mc1) in Brassica juncea L. Mol Breed 33:425–434.  https://doi.org/10.1007/s11032-013-9960-7CrossRefGoogle Scholar
  436. Xu P, Cao S, Hu K, Wang X, Huang W, Wang G, Lv Z, Liu Z, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J (2017) Trilocular phenotype in Brassica juncea L. resulted from interruption of CLAVATA1 gene homologue (BjMc1) transcription. Sci Rep 7:3498.  https://doi.org/10.1038/s41598-017-03755-0
  437. Yadava SK, Arumugam N, Mukhopadhyay A, Sodhi YS, Gupta V, Pental D, Pradhan AK (2012) QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines. Theor Appl Genet 125(7):1553–1564PubMedCrossRefGoogle Scholar
  438. Yadava SK, Paritosh K, Panjabi-Massand P, Gupta V, Chandra A, Sodhi YS, Pradhan AK, Pental D (2014) Tetralocular ovary and high silique width in yellow sarson lines of Brassica rapa (subspecies trilocularis) are due to a mutation in Bra034340 gene, a homologue of CLAVATA3 in Arabidopsis. Theor Appl Genet 127:2359–2369.  https://doi.org/10.1007/s00122-014-2382-zCrossRefPubMedGoogle Scholar
  439. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620.  https://doi.org/10.1016/j.tplants.2005.10.002CrossRefPubMedGoogle Scholar
  440. Yang KA, Lim CJ, Hong JK, Jin ZL, Hong JC, Yun D-J, Chung WS, Lee SY, Cho MJ, Lim CO (2005) Identification of Chinese cabbage genes up-regulated by prolonged cold by using microarray analysis. Plant Sci 168:959–966.  https://doi.org/10.1016/j.plantsci.2004.11.011CrossRefGoogle Scholar
  441. Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, Zhang M (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232.  https://doi.org/10.1038/ng.3657CrossRefPubMedGoogle Scholar
  442. Yao W, Li G, Zhao H, Wang G, Lian X, Xie W (2015) Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol 16:187.  https://doi.org/10.1186/s13059-015-0757-3CrossRefPubMedPubMedCentralGoogle Scholar
  443. Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989.  https://doi.org/10.1093/nar/gku1162CrossRefPubMedGoogle Scholar
  444. Yin D, Chen S, Chen F, Jiang J (2013) Ethylene promotes induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema spp. Mol Biol Rep 40:4581–4590.  https://doi.org/10.1007/s11033-013-2550-2CrossRefPubMedGoogle Scholar
  445. Young HS, Shogo I, Takato I (2013) Flowering time regulation: photoperiod and temperature sensing in leaves. Trends Plant Sci 18:575–583CrossRefGoogle Scholar
  446. Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y (2012b) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038.  https://doi.org/10.1093/jxb/err337CrossRefPubMedGoogle Scholar
  447. Yu SC, Wang YJ, Zheng XY (2003a) Mapping and analysis QTL controlling heat tolerance in Brassica campestris L. ssp. pekinensis. Acta Hortic Sin 30:417–420Google Scholar
  448. Yu SC, Wang YJ, Zheng XY (2003b) Mapping and analysis QTL controlling some morphological traits in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Acta Genet Sin 30:1153–1160PubMedGoogle Scholar
  449. Yu X, Wang H, Zhong W, Bai J, Liu P, He Y (2013a) QTL mapping of leafy heads by genome resequencing in the RIL population of Brassica rapa. PLoS ONE 8:e76059.  https://doi.org/10.1371/journal.pone.0076059CrossRefPubMedPubMedCentralGoogle Scholar
  450. Yu X, Yang J, Li X, Liu X, Sun C, Wu F, He Y (2013b) Global analysis of cis-natural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa. BMC Plant Biol 13:208.  https://doi.org/10.1186/1471-2229-13-208CrossRefPubMedPubMedCentralGoogle Scholar
  451. Yu F, Zhang X, Huang Z, Chu M, Song T, Falk KC, Deora A, Chen Q, Zhang Y, McGregor L, Gossen BD, McDonald MR, Peng G (2016) Identification of genome-wide variants and discovery of variants associated with Brassica rapa Clubroot resistance gene rcr1 through bulked segregant RNA sequencing. PLoS ONE 11:e0153218.  https://doi.org/10.1371/journal.pone.0153218CrossRefPubMedPubMedCentralGoogle Scholar
  452. Yu F, Zhang X, Peng G, Falk KC, Strelkov SE, Gossen BD (2017) Genotyping-by-sequencing reveals three QTL for clubroot resistance to six pathotypes of Plasmodiophora brassicae in Brassica rapa. Sci Rep 7:4516.  https://doi.org/10.1038/s41598-017-04903-2CrossRefPubMedPubMedCentralGoogle Scholar
  453. Yu S, Zhang F, Yu Y, Zhang D, Zhao X, Wang W (2012a) transcriptome profiling of dehydration stress in the Chinese Cabbage (Brassica rapa L. ssp. pekinensis) by tag sequencing. Plant Mol Biol Rep 30:17–28.  https://doi.org/10.1007/s11105-011-0313-6CrossRefGoogle Scholar
  454. Yu S, Zhang F, Zhao X, Yu Y, Zhang D (2011) Sequence-characterized amplified region and simple sequence repeat markers for identifying the major quantitative trait locus responsible for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Breed 130:580–583.  https://doi.org/10.1111/j.1439-0523.2011.01874.xCrossRefGoogle Scholar
  455. Yu J, Zhao M, Wang X, Tong C, Huang S, Tehrim S, Liu Y, Hua W, Liu S (2013c) Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genom 14:664.  https://doi.org/10.1186/1471-2164-14-664CrossRefGoogle Scholar
  456. Yu J, Ke T, Tehrim S, Sun F, Liao B, Hua W (2015) PTGBase: an integrated database to study tandem duplicated genes in plants. Database (Oxford).  https://doi.org/10.1093/database/bav017
  457. Yuan Y-X, Wu J, Sun R-F, Zhang X-W, Xu D-H, Bonnema G, Wang X-W (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60:1299–1308.  https://doi.org/10.1093/jxb/erp010CrossRefPubMedPubMedCentralGoogle Scholar
  458. Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ (2012) Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J Econ Entomol 105:1115–1129.  https://doi.org/10.1603/ec12107CrossRefPubMedGoogle Scholar
  459. Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W (2018) Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC Plant Biol 18:52.  https://doi.org/10.1186/s12870-018-1242-4
  460. Zhang X, Li R, Chen L, Niu S, Chen L, Gao J, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J (2018b) Fine-mapping and candidate gene analysis of the Brassica juncea white-flowered mutant Bjpc2 using the whole-genome resequencing. Mol Genet Genomics 293:359–370.  https://doi.org/10.1007/s00438-017-1390-5CrossRefPubMedGoogle Scholar
  461. Zhang J, Li H, Zhang M, Hui M, Wang Q, Li L, Zhang L (2013) Fine mapping and identification of candidate Br-or gene controlling orange head of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breed 32:799–805.  https://doi.org/10.1007/s11032-013-9907-zCrossRefGoogle Scholar
  462. Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014a) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64:60–73.  https://doi.org/10.1270/jsbbs.64.60CrossRefPubMedPubMedCentralGoogle Scholar
  463. Zhang L-M, Luo H, Liu Z-Q, Zhao Y, Luo J-C, Hao D-Y, Jing H-C (2014b) Genome-wide patterns of large-size presence/absence variants in sorghum. J Integr Plant Biol 56:24–37.  https://doi.org/10.1111/jipb.12121CrossRefPubMedGoogle Scholar
  464. Zhang W, Mirlohi SS, Li X, He Y (2018a) Identification of functional single-nucleotide polymorphisms affecting leaf hair number in Brassica rapa. Plant Physiol 177(2):490–503.  https://doi.org/10.1104/pp.18.00025CrossRefPubMedGoogle Scholar
  465. Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813.  https://doi.org/10.1093/nar/gkp818CrossRefPubMedGoogle Scholar
  466. Zhang N, Zhao J, Lens F, Visser J de, Menamo T, Fang W, Xiao D, Bucher J, Basnet RK, Lin K, Cheng F, Wang X, Bonnema G (2014c) Morphology, carbohydrate composition and vernalization response in a genetically diverse collection of Asian and European Turnips (Brassica rapa subsp. rapa). PLoS One 9:e114241.  https://doi.org/10.1371/journal.pone.0114241PubMedPubMedCentralCrossRefGoogle Scholar
  467. Zhang Y, Zhang D, Yu H, Lin B, Fu Y, Hua S (2016) Floral initiation in response to planting date reveals the key role of floral meristem differentiation prior to budding in Canola (Brassica napus L.). Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.01369
  468. Zhao J, Artemyeva A, Del Carpio DP, Basnet RK, Zhang N, Gao J, Li F, Bucher J, Wang X, Visser RGF, Bonnema G (2010) Design of a Brassica rapa core collection for association mapping studies. Genome 53:884–898.  https://doi.org/10.1139/g10-082CrossRefPubMedGoogle Scholar
  469. Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J-L, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S (2017a) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A 114:9326–9331.  https://doi.org/10.1073/pnas.1701762114CrossRefPubMedPubMedCentralGoogle Scholar
  470. Zhao Y, Ofori A, Lu C (2009) Genetic diversity of European and Chinese oilseed Brassica rapa cultivars from different breeding periods. Agric Sci China 8:931–938.  https://doi.org/10.1016/s1671-2927(08)60297-7CrossRefGoogle Scholar
  471. Zhao J, Paulo M-J, Jamar D, Lou P, van Eeuwijk F, Bonnema G, Vreugdenhil D, Koornneef M (2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome 50:963–973.  https://doi.org/10.1139/g07-078CrossRefPubMedGoogle Scholar
  472. Zhao J, Wang X, Deng B, Lou P, Wu J, Sun R, Xu Z, Vromans J, Koornneef M, Bonnema G (2005) Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet 110:1301–1314.  https://doi.org/10.1007/s00122-005-1967-yCrossRefPubMedGoogle Scholar
  473. Zhao Z, Xiao L, Xu L, Xing X, Tang G, Du D (2017b) Fine mapping the BjPl1 gene for purple leaf color in B2 of Brassica juncea L. through comparative mapping and whole-genome re-sequencing. Euphytica 213:80.  https://doi.org/10.1007/s10681-017-1868-6
  474. Źróbek-Sokolnik A (2012) Temperature stress and responses of plants. Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, NY, pp 113–134CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Priya Panjabi
    • 1
  • Satish Kumar Yadava
    • 2
  • Nitin Kumar
    • 3
    • 4
  • Rajkumar Bangkim
    • 1
  • Nirala Ramchiary
    • 4
    Email author
  1. 1.Department of BotanyUniversity of Delhi North CampusNew DelhiIndia
  2. 2.Center for Genetic Manipulation of Crop Plants, University of Delhi South CampusNew DelhiIndia
  3. 3.Department of Bioengineering and TechnologyInstitute of Science and Technology, Gauhati UniversityGuwahatiIndia
  4. 4.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations