Advertisement

Progress Toward Development of Climate-Smart Flax: A Perspective on Omics-Assisted Breeding

  • S. M. Shivaraj
  • Priyanka Dhakate
  • Humira Sonah
  • Tri Vuong
  • Henry T. Nguyen
  • Rupesh DeshmukhEmail author
Chapter

Abstract

Flax or linseed is one of the oldest crops that is economically valued for both fiber and oil. The bast fiber derived from flax is having high tensile strength, which is used for the production of linen clothes. Its seed oil contains a high amount of polyunsaturated fatty acids, which is beneficial for human health. Flax is the third largest fiber-yielding crop and one of the five major oil producing crops in the world. Like other crop plants, flax faces many biotic and abiotic stresses that can affect its productivity. Conventional breeding methods in flax focused on stabilizing yield and other important traits. Consequently, application of molecular markers to analyze genetic diversity in flax and identify quantitative trait loci (QTLs) for different agronomic traits augmented flax breeding. After the revolutionary improvements in sequencing technology, several plant genomes have been sequenced including flax. However, less effort has been made to utilize the available genetic resources for flax improvement. The available resources provide an opportunity to utilize advanced tools like genome-wide association studies (GWAS) and genomic selection to increase the precision of plant selection for flax breeding. In addition to breeding, genetic engineering techniques allow the introduction of novel traits by manipulating candidate genes such as transcription factors, protein-encoding genes, and transporters. A holistic approach involving diverse bioinformatics, breeding, and genetic engineering technologies will greatly facilitate the introduction of climate-smart traits into flax varieties to sustain their productivity in the scenario of global climate change.

Keywords

Agronomic traits Fiber flax Genetic diversity Genomic resources Linum usitatissimum Stress tolerance 

References

  1. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39:139–146CrossRefGoogle Scholar
  3. Agrawal S, Narware H, Sahu R (1991) Inheritance of Fusarium wilt resistance in linseed. J Oilseeds Res 8:231–233Google Scholar
  4. Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447CrossRefGoogle Scholar
  5. Ansari A, Razmjoo J, Karimmojeni H (2016) Mycorrhizal colonization and seed treatment with salicylic acid to improve physiological traits and tolerance of flaxseed (Linum usitatissimum L.) plants grown under drought stress. Acta Physiol Plant 38:34Google Scholar
  6. Ashry N, Mansour M, Aly A, Zayed S (2002) Genetic studies on powdery mildew resistance of flax, yield and some yield components. Egypt J Agri Res 80:1525–1537Google Scholar
  7. Asgarinia P, Cloutier S, Duguid S, Rashid K, Mirlohi A, Banik M, Saeidi G (2013) Mapping quantitative trait loci for powdery mildew resistance in flax (Linum usitatissimum L.). Crop Sci 53:2462–2472Google Scholar
  8. Ayadi M, Cavez D, Miled N, Chaumont F, Masmoudi K (2011) Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol Biochem 49:1029–1039PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bailey KL, Gossen BD, Gugel RK, Morrall RAA (2009) Diseases of flax. In: Bailey KL, Gossen BD, Gugel RK, Morall RAA (eds) Diseases of field crops in Canada. Canadian Phytopathological Society, Saskatoon, Saskatchewan, pp 147–154Google Scholar
  10. Belkadhi A, De Haro A, Obregon S, Chaïbi W, Djebali W (2015) Positive effects of salicylic acid pretreatment on the composition of flax plastidial membrane lipids under cadmium stress. Environ Sci Pollut Res 22:1457–1467CrossRefGoogle Scholar
  11. Belkadhi A, De Haro A, Soengas P, Obregon S, Cartea ME, Chaibi W, Djebali W (2014) Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.). J Plant Interact 9:647–654CrossRefGoogle Scholar
  12. Belkadhi A, De Haro A, Soengas P, Obregon S, Cartea ME, Djebali W, Chaïbi W (2013) Salicylic acid improves root antioxidant defense system and total antioxidant capacities of flax subjected to cadmium. OMICS 17:398–406PubMedCrossRefGoogle Scholar
  13. Bickel C, Gadani S, Lukacs M, Cullis C (2011) SSR markers developed for genetic mapping in flax (Linum usitatissimum L.). Res Rep Biol 2011:23–29Google Scholar
  14. Bickel C, Lukacs M, Cullis C (2012) The loci controlling plasticity in flax. Research Rep Biol 2012:1–11Google Scholar
  15. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Bioch Biophys Acta Gen Sub 1840:1596–1604CrossRefGoogle Scholar
  16. Bhati J, Sonah H, Jhang T, Singh NK, Sharma TR (2010) Comparative analysis and EST mining reveals high degree of conservation among five species. Comp Funct Genomics 2010:1–13Google Scholar
  17. Bots M, Vergeldt F, Wolters-Arts M, Weterings K, van As H, Mariani C (2005) Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiol 137:1049–1056PubMedPubMedCentralCrossRefGoogle Scholar
  18. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amer J Hum Genet 32:314Google Scholar
  19. Brown J, De Decker M, Fieldes M (2008) A comparative analysis of developmental profiles for DNA methylation in 5-azacytidine-induced early-flowering flax lines and their control. Plant Sci 175:217–225CrossRefGoogle Scholar
  20. Brutch NB (2002) The flax genetic resources collection held at the Vavilov Institute, Russian Federation. In: Maggioni LM, Pavelek M, van Soest LJM, Lipman E (eds) Flax genetic resources in Europe. IPGRI, Rome, Italy, pp 61–65Google Scholar
  21. Carter J (1993) Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal Foods World 38(10):753–759Google Scholar
  22. Chaudhary J, Patil GB, Sonah H, Deshmukh RK, Vuong TD, Valliyodan B, Nguyen HT (2015) Expanding omics resources for improvement of soybean seed composition traits. Fron Plant Sci 6:1021Google Scholar
  23. Chen Y, Hausner G, Kenaschuk E, Procunier D, Dribnenki P, Penner G (1998) Identification of microspore-derived plants in anther culture of flax (Linum usitatissimum L.) using molecular markers. Plant Cell Rep 18:44–48CrossRefGoogle Scholar
  24. Chen Y, Schneeberger RG, Cullis CA (2005) A site-specific insertion sequence in flax genotrophs induced by environment. New Phytol 167:171–180PubMedCrossRefGoogle Scholar
  25. Cheng J-Z, Zhou Y-P, Lv T-X, Xie C-P, Tian C-E (2017) Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol Mol Biol Plants 23:477–485PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cloutier S, Miranda E, Ward K, Radovanovic N, Reimer E, Walichnowski A, Datla R, Rowland G, Duguid S, Ragupathy R (2012) Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor Appl Genet 125:685–694PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cloutier S, Niu Z, Datla R, Duguid S (2009) Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet 119:53–63PubMedCrossRefGoogle Scholar
  28. Cloutier S, Ragupathy R, Niu Z, Duguid S (2011) SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol Breed 28:437–451CrossRefGoogle Scholar
  29. Cui XH, Hao FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cullis C (1976) Environmentally induced changes in ribosomal RNA cistron number in flax. Heredity 36:73CrossRefGoogle Scholar
  31. Cullis CA (2007) Flax. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 2. Springer. Berlin, Heidelberg, pp 275–295Google Scholar
  32. Cunnane SC, Ganguli S, Menard C, Liede AC, Hamadeh MJ, Chen Z-Y, Wolever TM, Jenkins DJ (1993) High α-linolenic acid flaxseed (Linum usitatissimum): some nutritional properties in humans. Brit J Nutr 69:443–453PubMedCrossRefGoogle Scholar
  33. Darapuneni MK, Morgan GD, Ibrahim AM, Duncan RW (2014) Effect of vernalization and photoperiod on flax flowering time. Euphytica 195:279–285CrossRefGoogle Scholar
  34. Dash PK, Cao Y, Jailani AK, Gupta P, Venglat P, Xiang D, Rai R, Sharma R, Thirunavukkarasu N, Abdin MZ (2014) Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum). GM Crops Food 5:106–119PubMedPubMedCentralCrossRefGoogle Scholar
  35. Deng X, Long S, He D, Li X, Wang Y, Hao D, Qiu C, Chen X (2011) Isolation and characterization of polymorphic microsatellite markers from flax (Linum usitatissimum L.). Afr J Biotechnol 10:734–739Google Scholar
  36. Deng X, Long S, He D, Li X, Wang Y, Liu J, Chen X (2010) Development and characterization of polymorphic microsatellite markers in Linum usitatissimum. J Plant Res 123:119PubMedCrossRefGoogle Scholar
  37. Deokar AA, Tar’an B (2016) Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.). Front Plant Sci 7:1802Google Scholar
  38. Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244PubMedPubMedCentralCrossRefGoogle Scholar
  39. Deshmukh RK, Sonah H, Bélanger RR (2016) Plant aquaporins: genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Front Plant Sci 7Google Scholar
  40. Deshmukh RK, Vivancos J, Guerin V, Sonah H, Labbe C, Belzile F, Belanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315PubMedCrossRefGoogle Scholar
  41. Deyholos MK (2006) Bast fiber of flax (Linum usitatissimum L.): biological foundations of its ancient and modern uses. Israel J Plant Sci 54:273–280CrossRefGoogle Scholar
  42. Diederichsen A (2001) Comparison of genetic diversity of flax (Linum usitatissimum L.) between Canadian cultivars and a world collection. Plant Breed 120:360–362CrossRefGoogle Scholar
  43. Diederichsen A (2007) Ex situ collections of cultivated flax (Linum usitatissimum L.) and other species of the genus Linum L. Genet Resour Crop Evol 54:661–678CrossRefGoogle Scholar
  44. Diederichsen A, Fu Y (2008) Flax genetic diversity as the raw material for future success. In: International conference on flax and other bast plants, Saskatchewan, p 270Google Scholar
  45. Diederichsen A, Kusters PM, Kessler D, Bainas Z, Gugel RK (2013) Assembling a core collection from the flax world collection maintained by plant gene resources of Canada. Genet Resour Crop Evol 60:1479–1485CrossRefGoogle Scholar
  46. Diederichsen A, Richards K (2003) Cultivated flax and the genus Linum L. In: Muir AD, Westcott ND (eds) Flax: the genus Linum. CRC Press, Boca Raton, pp 22–54Google Scholar
  47. Diederichsen A, Rozhmina T, Zhuchenko A, Richards K (2006) Screening for broad adaptation in 96 flax (Linum usitatissimum L.) accessions under dry and warm conditions in Canada and Russia. Plant Genet Resour Newsl 146:9–16Google Scholar
  48. Diederichsen A, Rozhmina TA, Kudrjavceva LP (2008) Variation patterns within 153 flax (Linum usitatissimum L.) genebank accessions based on evaluation for resistance to fusarium wilt, anthracnose and pasmo. Plant Genet Resour 6:22–32CrossRefGoogle Scholar
  49. Diederichsen A, Ulrich A (2009) Variability in stem fibre content and its association with other characteristics in 1177 flax (Linum usitatissimum L.) genebank accessions. Indust Crops Prod 30:33–39CrossRefGoogle Scholar
  50. Dillman A (1953) Classification of flax varieties, 1946 US Dept. of Agriculture, 1953. Series Information: Technical Bulletin/United States Department of Agriculture no. 1064Google Scholar
  51. Dmitriev AA, Kudryavtseva AV, Krasnov GS, Koroban NV, Speranskaya AS, Krinitsina AA, Belenikin MS, Snezhkina AV, Sadritdinova AF, Kishlyan NV (2016) Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress. BMC Plant Biol 16:237Google Scholar
  52. Durrant A, Jones T (1971) Reversion of induced changes in amount of nuclear DNA in Linum. Heredity 27:431CrossRefGoogle Scholar
  53. El-Beltagi H, Salama Z, El Hariri D (2008) Some biochemical markers for evaluation of flax cultivars under salt stress conditions. J Nat Fibers 5:316–330CrossRefGoogle Scholar
  54. Evans G (1968) Nuclear changes in flax. Heredity 23:25–38CrossRefGoogle Scholar
  55. Evans G, Durrant A, Rees H (1966) Associated nuclear changes in the induction of flax genotrophs. Nature 212:697CrossRefGoogle Scholar
  56. Everaert I, De Riek J, De Loose M, VAN WAES J, Van Bockstaele E (2001) Most similar variety grouping for distinctness evaluation of flax and linseed (Linum usitatissimum L.) varieties by means of AFLP and morphological data. Plant Var Seeds 14:69–87Google Scholar
  57. Fieldes M (1994) Heritable effects of 5-azacytidine treatments on the growth and development of flax (Linum usitatissimum) genotrophs and genotypes. Genome 37:1–11PubMedCrossRefGoogle Scholar
  58. Fieldes M, Harvey C (2004) Differences in developmental programming and node number at flowering in the 5-azacytidine-induced early flowering flax lines and their controls. Intl J Plant Sci 165:695–706CrossRefGoogle Scholar
  59. Fieldes M, Schaeffer S, Krech M, Brown J (2005) DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theor Appl Genet 111:136–149PubMedCrossRefGoogle Scholar
  60. Flexas J, Ribas‐Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439PubMedCrossRefPubMedCentralGoogle Scholar
  61. Flor H (1965) Tests for allelism of rust-resistance genes in flax. Crop Sci 5:415–418CrossRefGoogle Scholar
  62. Fu Y-B, Diederichsen A, Richards K, Peterson G (2002a) Genetic diversity within a range of cultivars and landraces of flax (Linum usitatissimum L.) as revealed by RAPDs. Genet Resour Crop Evol 49:167–174Google Scholar
  63. Fu Y-B, Peterson G, Diederichsen A, Richards K (2002b) RAPD analysis of genetic relationships of seven flax species in the genus Linum L. Genet Resour Crop Evol 49:253–259CrossRefGoogle Scholar
  64. Fu Y-B, Rowland GG, Duguid SD, Richards KW (2003) RAPD analysis of 54 North American flax cultivars. Crop Sci 43:1510–1515CrossRefGoogle Scholar
  65. Gao Z, He X, Zhao B, Zhou C, Liang Y, Ge R, Shen Y, Huang Z (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51:767–775PubMedCrossRefPubMedCentralGoogle Scholar
  66. Gebauer SK, Psota TL, Harris WS, Kris-Etherton PM (2006) n − 3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Amer Clin Nutr 83:1526S–1535SPubMedCrossRefGoogle Scholar
  67. Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta Gene Struct Expr 1769:276–286CrossRefGoogle Scholar
  68. Goldsbrough PB, Cullis CA (1981) Characterisation of the genes for ribosomal RNA in flax. Nucl Acids Res 9:1301–1310PubMedCrossRefGoogle Scholar
  69. Grant CA, Dribnenki JCP, Bailey LD (2000) Cadmium and zinc concentrations and ratios in seed and tissue of solin (cv LinolaTM 947) and flax (cvs McGregor and Vimy) as affected by nitrogen and phosphorus fertiliser and Provide (Penicillium bilaji). J Sci Food Agri 80:1735–1743CrossRefGoogle Scholar
  70. Green AG, Chen Y, Singh SP, Dribnenki (2008) Flax. In: Kole c, Hall TC (eds) Compendium of transgenic crop plants: transgenic oilseed crops. Blackwell Publishing, Chicester, UK, pp 200–226Google Scholar
  71. Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16:277–286PubMedPubMedCentralCrossRefGoogle Scholar
  72. Guo Y, Qiu C-s, Long S-h, Deng X, Hao D-m, Wang Y-f (2013) The effect of salinity-alkalinity stress on seed gGermination of main flax cultivars in different region (Linum usitatissimum L.). Seed 12:001Google Scholar
  73. Gupta US (2007) Physiology of stressed crops. Science Publishers, Georgia, USAGoogle Scholar
  74. Hall C, Tulbek M, Xu Y (2006) Flaxseed. Adv Food Nutr Res 51:1–97Google Scholar
  75. Harper J (1990) Pests, pathogens and plant communities: an introduction. In: Burdon JJ, Leather SR (eds) Pests, pathogens and plant communities. Blackwell Scientific Publications, Oxford, pp 3–14Google Scholar
  76. Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211:266–271CrossRefGoogle Scholar
  77. Henry AW (1930) Inheritance of immunity from flax rust. Phytopathology 20Google Scholar
  78. Hu W, Yuan Q, Wang Y, Cai R, Deng X, Wang J, Zhou S, Chen M, Chen L, Huang C (2012) Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol 53:2127–2141PubMedCrossRefPubMedCentralGoogle Scholar
  79. Ivanov S, Rashevskaya T, Makhonina M (2011) Flaxseed additive application in dairy products production. Proced Food Sci 1:275–280CrossRefGoogle Scholar
  80. Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007a) Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64:621–632PubMedCrossRefPubMedCentralGoogle Scholar
  81. Jang JY, Rhee JY, Kim DG, Chung GC, Lee JH, Kang H (2007b) Ectopic expression of a foreign aquaporin disrupts the natural expression patterns of endogenous aquaporin genes and alters plant responses to different stress conditions. Plant Cell Physiol 48:1331–1339PubMedPubMedCentralCrossRefGoogle Scholar
  82. Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Güçlü J, Vinh J, Heyes J, Franck KI, Schäffner AR, Bouchez D (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522CrossRefGoogle Scholar
  83. Jordan MC, McHughen A (1988) Glyphosate tolerant flax plants from Agrobacterium mediated gene transfer. Plant Cell Rep 7:281–284PubMedCrossRefGoogle Scholar
  84. Kadam S, Abril A, Dhanapal AP, Koester RP, Vermerris W, Jose S, Fritschi FB (2017) Characterization and regulation of aquaporin genes of sorghum [Sorghum bicolor (L.) Moench] in response to waterlogging stress. Front Plant Sci 8:862Google Scholar
  85. Kale SM, Pardeshi VC, Kadoo NY, Ghorpade PB, Jana MM, Gupta VS (2012) Development of genomic simple sequence repeat markers for linseed using next-generation sequencing technology. Mol Breed 30:597–606CrossRefGoogle Scholar
  86. Kaplan ME, Simmons ER, Hawkins JC, Ruane LG, Carney JM (2015) Influence of cadmium and mycorrhizal fungi on the fatty acid profile of flax (Linum usitatissimum) seeds. J Sci Food Agri 95:2528–2532CrossRefGoogle Scholar
  87. Keijzer P, Metz P (1992) Breeding of flax for fibre production in Western Europe. In: Sharma H, Van Sumere C (eds) The biology and processing of flax. M Publications, Belfast, Northern Ireland, pp 33–66Google Scholar
  88. Katsuhara M, Hanba YT (2008) Barley plasma membrane intrinsic proteins (PIP aquaporins) as water and CO2 transporters. Pflügers Archiv-European J Physiol 456:687–691PubMedPubMedCentralCrossRefGoogle Scholar
  89. Katsuhara M, Koshio K, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K (2003) Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants Plant. Cell Physiol 44:1378–1383PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kenaschuk EO (2005) High linolenic acid flax. Google PatentsGoogle Scholar
  91. Kenaschuk EO, Rowland GG (1993) Flax. In: Slinkard AE, Knott DR (eds) Harvest of gold: the history of field crop breeding in Canada. University of Saskatchewan, Saskatoon, Saskatchewan, pp 173–176Google Scholar
  92. Kumar S, You FM, Duguid S, Booker H, Rowland G, Cloutier S (2015) QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). Theor Appl Genet 128:965–984PubMedCrossRefGoogle Scholar
  93. Kutuzova SN (1998) “Genetika l‟na”, [Genetics of flax]. In: Dragavcev VA, Fadeeva TS (eds) Genetika kul‟turnych rastenij (len, kartofel‟, morkov‟, zelennye kul‟tury, gladiolus, jablona, ljucerna), [Genetics of cultivated plants (flax, potato, carrot, leafy vegetables, gladiolas, apple, alfalfa). VIR, St. Petersburg, pp 6–52Google Scholar
  94. Lay CL, Dybing CD (1989) Linseed. In: Robbelen G (ed) Oil crops of the world. McGraw-Hill, New York, pp 416–430Google Scholar
  95. Lee SH, Chung GC, Zwiazek JJ (2009) Effects of irradiance on cell water relations in leaf bundle sheath cells of wild-type and transgenic tobacco (Nicotiana tabacum) plants overexpressing aquaporins. Plant Sci 176:248–255CrossRefGoogle Scholar
  96. Li C, Huang Y, Huang R, Wu Y, Wang W (2017) The genetic architecture of amylose biosynthesis in maize kernel. Plant Biotechnol J 16(2):688–695.  https://doi.org/10.1111/pbi.12821(Epub 15 Sep 2017)
  97. Liu C, Fukumoto T, Matsumoto T, Gena P, Frascaria D, Kaneko T, Katsuhara M, Zhong S, Sun X, Zhu Y (2013) Aquaporin OsPIP1; 1 promotes rice salt resistance and seed germination. Plant Physiol Biochem 63:151–158PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lin W, Peng Y, Li G, Arora R, Tang Z, Su W, Cai W (2007) Isolation and functional characterization of PgTIP1, a hormone-autotrophic cells-specific tonoplast aquaporin in ginseng. J Exp Bot 58:947–956PubMedCrossRefGoogle Scholar
  99. Lorenc-Kukuła K, Amarowicz R, Oszmiański J, Doermann P, Starzycki M, Skała J, Żuk M, Kulma A, Szopa J (2005) Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J Agri Food Chem 53:3685–3692PubMedCrossRefGoogle Scholar
  100. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691PubMedCrossRefGoogle Scholar
  101. Månsby E, Ov Díaz, Von Bothmer R (2000) Preliminary study of genetic diversity in Swedish flax (Linum usitatissimum). Genet Resour Crop Evol 47:417–424 CrossRefGoogle Scholar
  102. Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624CrossRefGoogle Scholar
  103. McHughen A (1987) Salt tolerance through increased vigor in a flax line (STS-II) selected for salt tolerance in vitro. Theor Appl Genet 74:727–732PubMedCrossRefGoogle Scholar
  104. McHughen A, Holm F (1995) Development and preliminary field testing of a glufosinate-ammonium tolerant transgenic flax. Can J Plant Sci 75:117–120CrossRefGoogle Scholar
  105. Morgan TH (1911) Chromosomes and associative inheritance. Science 34:636–638PubMedCrossRefGoogle Scholar
  106. Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mpofu S, Rashid K (2001) Vegetative compatibility groups within Fusarium oxysporum f. sp. lini from Linum usitatissimum (flax) wilt nurseries in western Canada. Can J Bot 79:836–843Google Scholar
  108. Negishi T, Oshima K, Hattori M, Kanai M, Mano S, Nishimura M, Yoshida K (2012) Tonoplast-and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS One 7:e43189PubMedPubMedCentralCrossRefGoogle Scholar
  109. Nizar MA, Mulani R (2015) Genetic diversity in indigenous and exotic linseed germplasm (Linum usitatissimum L.). Elect J Plant Breed 6:848–854Google Scholar
  110. Oh T, Gorman M, Cullis C (2000) RFLP and RAPD mapping in flax (Linum usitatissimum). Theor Appl Genet 101:590–593CrossRefGoogle Scholar
  111. Oomah BD (2001) Flaxseed as a functional food source. J Sci Food Agri 81:889–894CrossRefGoogle Scholar
  112. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726PubMedCrossRefGoogle Scholar
  113. Pavelek M, Lipman E (2010) Report of a working group on fibre crops (flax and hemp). Second meeting, Šumperk – Velké Losiny, Czech Republic. Bioversity International, Rome, Italy, pp 7–9, July 2010Google Scholar
  114. Pellizzon MA, Billheimer JT, Bloedon LT, Szapary PO, Rader DJ (2007) Flaxseed reduces plasma cholesterol levels in hypercholesterolemic mouse models. J Amer Coll Nutr 26:66–75PubMedCrossRefGoogle Scholar
  115. Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740PubMedPubMedCentralCrossRefGoogle Scholar
  116. Portyankin D, Karachan V (1999) Resistance to Fusarium wilt of perspective fiber flax varieties. Zenidirbyste Mokslo Darbai 79:308–314Google Scholar
  117. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222CrossRefGoogle Scholar
  118. Przybylski R (2005) Flax oil and high linolenic oils. In: Shahidi F (ed) Bailey’s industrial oil and fat products. John Wiley and Sons Inc, Hoboken, pp 281–301Google Scholar
  119. Quéro A, Fliniaux O, Elboutachfaiti R, Petit E, Guillot X, Hawkins S, Courtois J, Mesnard F (2015) β-Aminobutyric acid increases drought tolerance and reorganizes solute content and water homeostasis in flax (Linum usitatissimum). Metabolomics 11:1363–1375CrossRefGoogle Scholar
  120. Rachinskaya O, Lemesh V, Muravenko O, Yurkevich OY, Guzenko E, Bol’sheva N, Bogdanova M, Samatadze T, Popov K, Malyshev S (2011) Genetic polymorphism of flax Linum usitatissimum based on the use of molecular cytogenetic markers. Russ J Genet 47:56–65CrossRefGoogle Scholar
  121. Rajwade AV, Arora RS, Kadoo NY, Harsulkar AM, Ghorpade PB, Gupta VS (2010) Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay. Mol Biotechnol 45:161–170PubMedCrossRefGoogle Scholar
  122. Rashid K, Duguid S (2005) Inheritance of resistance to powdery mildew in flax. Can J Plant Pathol 27:404–409CrossRefGoogle Scholar
  123. Rashid KY (2003) Principal diseases of flax. In: Muir AD, Westcott ND (eds) Flax the genus Linum. Taylor and Francis Ltd, London, pp 92–123Google Scholar
  124. Rashid KY, Desjardins ML, Duguid S (2010) Diseases of flax in Manitoba and Saskatchewan in 2009. Can Plant Dis Surv 90:136–137Google Scholar
  125. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484PubMedCrossRefGoogle Scholar
  126. Roose-Amsaleg C, Cariou-Pham E, Vautrin D, Tavernier R, Solignac M (2006) Polymorphic microsatellite loci in Linum usitatissimum. Mol Ecol Resour 6:796–799CrossRefGoogle Scholar
  127. Russell GE (2013) Plant breeding for pest and disease resistance. Butterworth-Heinemann, LondonGoogle Scholar
  128. Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2; 2 a key to isohydric to anisohydric conversion?. New Phytol 181:651–661PubMedCrossRefPubMedCentralGoogle Scholar
  129. Saskston WE (1959) Pasmo—past, present, and future. In: Proceedings of the Flax Institute of the United States, Fargo, North Dakota, USA, pp 3–5, 19 Nov 1959Google Scholar
  130. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417PubMedCrossRefGoogle Scholar
  131. Shivaraj SM, Deshmukh R, Bhat JA, Sonah H, Bélanger RR (2017a) Understanding aquaporin transport system in eelgrass (Zostera marina L.), an aquatic plant species. Front plant science 8:1334Google Scholar
  132. Shivaraj SM, Deshmukh RK, Rai R, Bélanger R, Agrawal PK, Dash PK (2017b) Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 7:46137Google Scholar
  133. Shivaraj SM, Jain A, Singh A (2018) Highly preserved roles of Brassica MIR172 in polyploid Brassicas: ectopic expression of variants of Brassica MIR172 accelerates floral transition. Mol Genet Genomics 1–18Google Scholar
  134. Simopoulos A (2000) Human requirement for N-3 polyunsaturated fatty acids. Poult Sci 79:961–970PubMedCrossRefGoogle Scholar
  135. Singh J (2004) Field evaluation of linseed, Linum usitatissimum L. germplasm for resistance to alteranaria and powdery mildew diseases. J Oilseeds Res 21:208–209Google Scholar
  136. Singh K, Mridula D, Rehal J, Barnwal P (2011) Flaxseed: a potential source of food, feed and fiber. Critl Rev Food Science Nutr 51:210–222CrossRefGoogle Scholar
  137. Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122:1385–1397PubMedCrossRefGoogle Scholar
  138. Smykalova I, Vrbova M, Tejklova E, Vetrovcova M, Griga M (2010) Large scale screening of heavy metal tolerance in flax/linseed (Linum usitatissimum L.) tested in vitro. Indust Crops Prod 32:527–533CrossRefGoogle Scholar
  139. Sonah H, Deshmukh RK, Labbé C, Bélanger RR (2017) Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 7:2771PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sonah H, O’Donoughue L, Cober E, Rajcan I, Belzile F (2015) Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol J 3:10Google Scholar
  141. Song L, Nguyen N, Deshmukh RK, Patil GB, Prince SJ, Valliyodan B, Mutava R, Pike SM, Gassmann W, Nguyen HT (2016) Soybean TIP gene family analysis and characterization of GmTIP1; 5 and GmTIP2; 5 water transport activity. Front Plant Sci 7:1564Google Scholar
  142. Soto-Cerda BJ, Carrasco RA, Aravena GA, Urbina HA, Navarro CS (2011a) Identifying novel polymorphic microsatellites from cultivated flax (Linum usitatissimum L.) following data mining. Plant Mol Biol Rep 29:753–759CrossRefGoogle Scholar
  143. Soto-Cerda BJ, Diederichsen A, Duguid S, Booker H, Rowland G, Cloutier S (2014a) The potential of pale flax as a source of useful genetic variation for cultivated flax revealed through molecular diversity and association analyses. Mol Breed 34:2091–2107PubMedPubMedCentralCrossRefGoogle Scholar
  144. Soto-Cerda BJ, Diederichsen A, Ragupathy R, Cloutier S (2013) Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biol 13:78PubMedPubMedCentralCrossRefGoogle Scholar
  145. Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S (2014b) Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. Theor Appl Genet 127:881–896PubMedCrossRefGoogle Scholar
  146. Soto-Cerda BJ, Saavedra HU, Navarro CN, Ortega PM (2011b) Characterization of novel genic SSR markers in Linum usitatissimum (L.) and their transferability across eleven Linum species. Elect J Biotechnol 14:4Google Scholar
  147. Soudek P, Katrušáková A, Sedláček L, Petrová Š, Kočí V, Maršík P, Griga M, Vaněk T (2010) Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Arch Environ Contamin Toxicol 59:194–203PubMedCrossRefGoogle Scholar
  148. Spielmeyer W, Green A, Bittisnich D, Mendham N, Lagudah E (1998a) Identification of quantitative trait loci contributing to Fusarium wilt resistance on an AFLP linkage map of flax (Linum usitatissimum). Theor Appl Genet 97:633–641CrossRefGoogle Scholar
  149. Spielmeyer W, Lagudah E, Mendham N, Green A (1998b) Inheritance of resistance to flax wilt (Fusarium oxysporum f. sp. lini Schlecht) in a doubled haploid population of Linum usitatissimum L. Euphytica 101:287–291CrossRefGoogle Scholar
  150. Sundar I (2011) Food security through biodiversity conservation. In: IACSIT (ed) International conference on Asia Agriculture and Animal. IPCBEE, Singapore, pp 131–138Google Scholar
  151. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465PubMedCrossRefGoogle Scholar
  152. Tawfik RS, Badr A, Sammour R, Ibrahim U, Matter M, Sakr M (2016) Improvement of flax drought tolerance using gene transfer. Plant Tiss Cult Biotechnol 26:197–207CrossRefGoogle Scholar
  153. Tomar RSS, Deshmukh RK, Bhojaraja NK, Tomar SMS, Vinod, Miedaner T (2014) Development of chloroplast-specific microsatellite markers for molecular characterization of alloplasmic lines and phylogenetic analysis in wheat. Plant Breeding 133(1):12–18CrossRefGoogle Scholar
  154. Touré A, Xueming X (2010) Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Compr Rev Food Sci Food Saf 9:261–269CrossRefGoogle Scholar
  155. Tyagi S, Mazumdar PA, Mayee P, Shivaraj SM, Anand S, Singh A, Madhurantakam C, Sharma P, Das S, Kumar A, Singh A (2018a) Natural variation in Brassica FT homeologs influences multiple agronomic traits including flowering time, silique shape, oil profile, stomatal morphology and plant height in B. juncea. Plant Science 277:251–266PubMedCrossRefGoogle Scholar
  156. Tyagi S, Sri T, Singh A, Mayee P, Shivaraj SM, Sharma P, Singh A (2018b) UPPRESSOR OF OVEREXPRESSION OF CONSTANS1 influences flowering time, lateral branching, oil quality, and seed yield in Brassica juncea cv. Varuna. Funct Integr Genomics 1–18Google Scholar
  157. Tyerman S, Niemietz C, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194PubMedCrossRefGoogle Scholar
  158. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737PubMedPubMedCentralCrossRefGoogle Scholar
  159. Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657CrossRefGoogle Scholar
  160. Uysal H, Fu Y-B, Kurt O, Peterson GW, Diederichsen A, Kusters P (2010) Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR markers. Genet Resour Crop Evol 57:1109–1119CrossRefGoogle Scholar
  161. Van Soest L, Bas N (2002) Current status of the CGN Linum collection. In: Maggioni L, Pavelek M, Soest LJM, Lipman E (eds) Report of an ECP/GR ad hoc meeting on flax genetic resources. IPGRI, Prague, Czech Republic. IPGRI, Rome, Italy, 7–8 Dec 2001Google Scholar
  162. Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chronica botanica, pp 1–366CrossRefGoogle Scholar
  163. Vuong T, Sonah H, Meinhardt C, Deshmukh R, Kadam S, Nelson R, Shannon J, Nguyen H (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genom 16:593CrossRefGoogle Scholar
  164. Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67PubMedPubMedCentralGoogle Scholar
  165. Wang LL, Chen AP, Zhong NQ, Liu N, Wu XM, Wang F, Yang CL, Romero MF, Xia GX (2014) The Thellungiella salsuginea tonoplast aquaporin TsTIP1; 2 functions in protection against multiple abiotic stresses. Plant Cell Physiol 55:148–161PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718PubMedCrossRefGoogle Scholar
  167. Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473PubMedCrossRefGoogle Scholar
  168. Wei W, Qian D, Qiaoling J (2013) Effects of NaCl stress on the biochemical characteristics in six species fiber flax seeding. Chin Agri Sci Bull 18:017Google Scholar
  169. Wiesnerova D, Wiesner I (2004) ISSR-based clustering of cultivated flax germplasm is statistically correlated to thousand seed mass. Mol Biotechnol 26:207–214PubMedCrossRefGoogle Scholar
  170. Wojtasik W, Kulma A, Dymińska L, Hanuza J, Żebrowski J, Szopa J (2013) Fibres from flax overproducing β-1, 3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity. BMC Biotechnol 13:10PubMedPubMedCentralCrossRefGoogle Scholar
  171. Wróbel-Kwiatkowska M, Starzycki M, Zebrowski J, Oszmiański J, Szopa J (2007) Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. J Biotechnol 128:919–934PubMedCrossRefGoogle Scholar
  172. Wróbel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107:41–54PubMedCrossRefGoogle Scholar
  173. Xu C, Wang M, Zhou L, Quan T, Xia G (2013) Heterologous expression of the wheat aquaporin gene TaTIP2; 2 compromises the abiotic stress tolerance of Arabidopsis thaliana. PLoS One 8:e79618PubMedPubMedCentralCrossRefGoogle Scholar
  174. Xu Y, Hu W, Liu J, Zhang J, Jia C, Miao H, Xu B, Jin Z (2014) A banana aquaporin gene, MaPIP1; 1, is involved in tolerance to drought and salt stresses. BMC Plant Biol 14:1PubMedPubMedCentralCrossRefGoogle Scholar
  175. You FM, Booker HM, Duguid SD, Jia G, Cloutier S (2016) Accuracy of genomic selection in biparental populations of flax (Linum usitatissimum L.). Crop J 4:290–303CrossRefGoogle Scholar
  176. Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495PubMedCrossRefGoogle Scholar
  177. Yu Y, Huang W, Chen H, Wu G, Yuan H, Song X, Kang Q, Zhao D, Jiang W, Liu Y (2014) Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline–alkaline stress by digital gene expression. Gene 549:113–122PubMedCrossRefGoogle Scholar
  178. Yu Y, Wu G, Yuan H, Cheng L, Zhao D, Huang W, Zhang S, Zhang L, Chen H, Zhang J (2016) Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. BMC Plant Biol 16:124Google Scholar
  179. Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PloS one 7:e52439PubMedPubMedCentralCrossRefGoogle Scholar
  180. Zhang J, Xie Y, Dang Z, Wang L, Li W, Zhao W, Zhao L, Dang Z (2016) Oil content and fatty acid components of oilseed flax under different environments in China. Agron J 108:365–372CrossRefGoogle Scholar
  181. Zhuchenko A, Rozhmina T (2000) Mobilization of flax genetic resources. VILAR and VNIIL. Starica:224Google Scholar
  182. Żuk M, Kulma A, Dymińska L, Szołtysek K, Prescha A, Hanuza J, Szopa J (2011) Flavonoid engineering of flax potentiate its biotechnological application. BMC Biotechnol 11:10Google Scholar
  183. Zuk M, Prescha A, Stryczewska M, Szopa J (2012) Engineering flax plants to increase their antioxidant capacity and improve oil composition and stability. J Agri Food Chem 60:5003–5012PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. M. Shivaraj
    • 1
  • Priyanka Dhakate
    • 2
  • Humira Sonah
    • 1
    • 3
  • Tri Vuong
    • 4
  • Henry T. Nguyen
    • 4
  • Rupesh Deshmukh
    • 3
    Email author
  1. 1.University LavalQuebec CityCanada
  2. 2.National Institute of Plant Genome ResearchNew DelhiIndia
  3. 3.National Agri-Food Biotechnology InstituteMohaliIndia
  4. 4.Division of Plant SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations