Sunflower and Climate Change: Possibilities of Adaptation Through Breeding and Genomic Selection

  • Dragana MiladinovićEmail author
  • Nada Hladni
  • Aleksandra Radanović
  • Siniša Jocić
  • Sandra Cvejić


Due to its ability to grow in different agroecological conditions and its moderate drought tolerance, sunflower may become the oil crop of preference in the future, especially in the light of global environmental changes. In the field conditions, sunflower crop is often simultaneously challenged by different biotic and abiotic stresses, and understanding the shared mechanisms contributing to two or more stresses occurring individually or simultaneously is important to improve crop productivity under foreseeable complex stress situations. Exploitation of the available plant genetic resources in combination with the use of modern molecular tools for genome-wide association studies (GWAS) and application of genomic selection (GS) could lead to considerable improvements in sunflower, especially with regard to different stresses and better adaptation to the climate change. In this chapter we present a review of climate-smart (CS) traits and respective genetic resources and tools for their introduction into the cultivated sunflower, thus making it the oil crop resilient to the extreme climatic conditions and well-known and emerging pests and diseases.


Helianthus annuus Climate change Stress resistance Breeding MAS Genomic selection New techniques 



This study was supported by Ministry of Education, Science and Technological Development of Republic of Serbia, project TR31025, Provincial Secretariat for Higher Education and Science of Vojvodina, project 114-451-2126/2016-03, Serbian-German bilateral cooperation project No. 451-03-01732/2017-09/3 and COST Action CA 16212. The authors would like to thank Tanja Vunjak for the help with correction of English grammar and language of the manuscript.


  1. Abdi N, Darvishzadeh R, Jafari M, Pirzad A, Haddadi P (2012) Genetic analysis and QTL mapping of agro-morphological traits in sunflower (Helianthus annuus L.) under two contrasting water treatment conditions. Plant Omics 5(2):149Google Scholar
  2. Abida PS, Sashidhar VR, Manju RV, Prasad TG, Sudharshana L (1994) Root-shoot communication in drying soil is mediated by the stress hormones abscisic acid and cytokinin synthesized in the roots. Curr Sci 66:668–672Google Scholar
  3. Abou Alfadil T, Kiani SP, Dechamp-Guillaume G, Gentzbittel L, Sarrafi A (2007) QTL mapping of partial resistance to Phoma basal stem and root necrosis in sunflower (Helianthus annuus L.). Plant Sci 72(4):815–823CrossRefGoogle Scholar
  4. Aćimović M, Štraser N (1981) Phomopsis sp.—a new parasite in sunflower. Helia 4:43–58Google Scholar
  5. Aćimović M (1998) Sunflower Diseases. Institut za ratarstvo i povrtarstvo, Novi Sad (In Serbian)Google Scholar
  6. Adiredjo AL, Navaud O, Munos S, Langlade NB, Lamaze T, Grieu P (2014) Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios. PLoS ONE 9(7):e101218CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aegerter BJ, Nuñez JJ, Davis RM (2003) Environmental factors effecting rose downy mildew and development of a forecasting model for a nursery production system. Plant Dis 87(6):732–738CrossRefGoogle Scholar
  8. Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37:407–415CrossRefGoogle Scholar
  9. Alexandrov VA, Hoogenboom G (2000) The impact of climate variability and change on crop yield in Bulgaria. Agri For Meteorol 104:315–327CrossRefGoogle Scholar
  10. Allen LH Jr (1997) Mechanisms and rates of O2 transfer to and through submerged rhizomes and roots via aerenchyma. Soil Crop Sci Soc Florida Proc 56:41–54Google Scholar
  11. Al-Khatib K, Baumgartner JR, Peterson DE, Currie RS (1998) Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Sci 46:403–407Google Scholar
  12. Al-Khatib, K, Baumgartner JR, Currie RS (1999) Survey of common sunflower (Helianthus annuus) resistance to ALS inhibiting herbicides in Northeast Kansas. In: Proceedings of 21th sunflower research workshop, National Sunflower Association, Bismark, ND, 14–15 Jan 1999Google Scholar
  13. Alvarez D, Luduena P, Frutos E (1992) Variability and genetic advance in sunflower. In: Proceedings of 13th international sunflower conference Pisa, Italy, 7–11 Sept 1992Google Scholar
  14. Akram MS, Ashraf M, Akram NA (2009) Effectiveness of potassium sulphate in mitigating salt-induced adverse effects on different physio-biochemical attributes in sunflower (Helianthus annuus L.). FLORA 204(6):471–483Google Scholar
  15. Amoozadeh M, Darvishzadeh R, Davar R, Abdollahi Mandoulakani B, Haddadi P, Basirnia A (2015) Quantitative trait loci associated with isolate specific and isolate non-specific partial resistance to Sclerotinia sclerotiorum in sunflower. J Agric Sci Technol 17(1):213–226Google Scholar
  16. Angadi SV, Entz MH (2002) Root system and water use patterns of sunflower. Agron J 94:136–145CrossRefGoogle Scholar
  17. Ashraf M, Harris JC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16CrossRefGoogle Scholar
  18. Ashraf M, Tufail M (1995) Variation in salinity tolerance in sunflower (Helianthus annuus L.). J Agron Crop Sci 174:351–362CrossRefGoogle Scholar
  19. Atlagić J, Terzić S (2014) Sunflower genetic resources—Interspecific hybridization and cytogenetics in prebreeding. In: Arribas JI (ed) Sunflowers: growth and development, environmental influences and pests/diseases. Nova Science Publishers, New York, pp 95–130Google Scholar
  20. Bachlava E, Radwan OE, Abratti G, Tang S, Gao W, Heesacker AF, Bazzalo ME, Zambelli A, Leon AJ, Knapp SJ (2011) Downy mildew (Pl8 and Pl14) and rust (RAdv) resistance genes reside in close proximity to tandemly duplicated clusters of non-TIR-like NBS-LRR-encoding genes on sunflower chromosomes 1 and 13. Theor Appl Genet 122(6):1211–1221CrossRefGoogle Scholar
  21. Bachlava E, Tang S, Pizarro G, Schuppert GF, Brunick RK, Draeger D, Leon A, Hahn V, Knapp SJ (2010) Pleiotropy of the branching locus (B) masks linked and unlinked quantitative trait loci affecting seed traits in sunflower. Theor Appl Genet 120(4):829–842CrossRefGoogle Scholar
  22. Bachlava E, Taylor CA, Tang S, Bowers JE, Mandel JR, Burke JM, Knapp SJ (2012) SNP discovery and development of a high-density genotyping array for sunflower. PLoS ONE 7(1):e29814CrossRefPubMedPubMedCentralGoogle Scholar
  23. Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Brière C, Owens GL, Carrère S, Mayjonade B, Legrand L et al (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148–152CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339CrossRefGoogle Scholar
  25. Bajehbaj AA (2010) The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. Afr J Biotechnol 9(12):1764–1770CrossRefGoogle Scholar
  26. Baligar V C, Fageria NK (1997) Nutrient use efficiency in acid soils: nutrient management and plant use efficiency. In: Monitz AC, Furlani AMC, Fageria NK, Rosolem CA, Cantarells H (eds) Plant-soil interactions at low pH: sustainable agriculture and forestry production. Brazilian Soil Science Society Compinas, Brazil, pp 75–93Google Scholar
  27. Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32(7–8):921–950CrossRefGoogle Scholar
  28. Basten CJ, Weir BS, Zeng ZB (2002) QTL Cartographer Version 1.16: Program in Statistical Genetics, Department of Statistics, North Carolina State University, USAGoogle Scholar
  29. Bazzalo ME, Bridges I, Galella T, Grondona M, León A, Scott A, Bidney D, Cole G, D’Hautefeuille J-L, Lu G, Mancl M, Scelonge C, Soper J, Sosa-Dominguez G, Wang L (2000) Sclerotinia head rot resistance conferred by wheat oxalate oxidase gene in transgenic sunflower. In: Proceedings of the 15th international sunflower conference, Toulouse, France, 12–15 June 2000Google Scholar
  30. Beard B (1977) Germplasm resources of oilseed crops: sunflower, soybeans, and flax. Calif Agri 31:16–17Google Scholar
  31. Bellard C, Leclerc C, Courchamp F (2014) Impact of sea level rise on the 10 insular biodiversity hotspots. Glob Ecol Biogeogr 23(2):203–212CrossRefGoogle Scholar
  32. Bennett PM (2004) Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Meth Mol Biol 266:71–113Google Scholar
  33. Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkholz A, Barnes SR, Rufener GK, Lee M, Caligari PD (1995) Molecular marker analysis of Helianthus annuus L. 2. Construction of an RFLP linkage map for cultivated sunflower. Theor Appl Genet 91(2):195–199CrossRefPubMedGoogle Scholar
  34. Berry ST, Leon AJ, Peerbolte R, Challis C, Livini C, Jones R, Feingold S (1997) Presentation of the Advanta sunflower RFLP linkage map for public research. In: Proceedings of 19th sunflower research workshop, National Sunflower Association, Bismark, ND, 9–10 Jan 1997Google Scholar
  35. Bert PF, Dechamp-Guillaume G, Serre F, Jouan I, de Labrouhe DT, Nicolas P, Vear F (2004a) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.). Theor Appl Genet 109(4):865–874CrossRefPubMedGoogle Scholar
  36. Bert PF, Dechamp-Guillaume G, Serre F, Jouan I, de Labrouhe DT, Nicolas P, Vear F (2004b) Comparative genetic analysis of quantitative traits in sunflower. Theor Appl Genet 109(4):865–874CrossRefPubMedGoogle Scholar
  37. Bert PF, De Labrouhe DT, Philippon J, Mouzeyar S, Jouan I, Nicolas P, Vear F (2001) Identification of a second linkage group carrying genes controlling resitance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.). Theor Appl Genet 103(6–7):992–997CrossRefGoogle Scholar
  38. Bert PF, Jouan I, Tourvieille de Labrouhe D, Serre F, Nicolas P, Vear F (2002) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.). 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theor Appl Genet 105:985–993CrossRefPubMedGoogle Scholar
  39. Blackman BK (2013) Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication. J Exp Bot 64(2):421–431CrossRefPubMedGoogle Scholar
  40. Blackman BK, Michaels SD, Rieseberg LH (2011) Connecting the sun to flowering in sunflower adaptation. Mol Ecol 20(17):3503–3512PubMedPubMedCentralGoogle Scholar
  41. Blamey FPC, Asher CJ, Edwards DG (1987) Hydrogen and aluminium tolerance. In: Proceedings of the second international symposium on genetic aspects of plant mineral nutrition, University of Wisconsin, Madison, WI, 16–20 June 1985CrossRefGoogle Scholar
  42. Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313CrossRefPubMedGoogle Scholar
  43. Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Austral J Agric Res 56:1159–1168CrossRefGoogle Scholar
  44. Bordat A, Marchand G, Langlade NB, Pouilly N, Muños S, Dechamp-Guillaume G, Vincourt P, Bret-Mestries E (2017) Different genetic architectures underlie crop responses to the same pathogen: the {Helianthus annuus * Phoma macdonaldii} interaction case for black stem disease and premature ripening. BMC Plant Biol 17(1)Google Scholar
  45. Bouzidi MF, Badaoui S, Cambon F, Vear F, De Labrouhe DT, Nicolas P, Mouzeyar S (2002) Molecular analysis of a major locus for resistance to downy mildew in sunflower with specific PCR-based markers. Theor Appl Genet 104(4):592–600CrossRefPubMedGoogle Scholar
  46. Brouder SM, Volenec JJ (2008) Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant 133(4):705–724CrossRefPubMedGoogle Scholar
  47. Brouillette LC, Donovan LA (2011) Relative growth rate and functional traits of a hybrid species reflect adaptation to a low-fertility habitat. Int J Plant Sci 172:509–520CrossRefGoogle Scholar
  48. Bulos M, Ramos ML, Altieri E, Sala CA (2013) Molecular mapping of a sunflower rust resistance gene from HAR6. Breed Sci 63(1):141–146CrossRefPubMedPubMedCentralGoogle Scholar
  49. Bulos M, Vergani PN, Altieri E (2014) Genetic mapping, marker assisted selection and allelic relationships for the Pu6 gene conferring rust resistance in sunflower. Breed Sci 64(3):206–212CrossRefPubMedPubMedCentralGoogle Scholar
  50. Burke JM, Tang S, Knapp S, Rieseberg LH (2002) Genetic analysis of sunflower domestication. Genet 162:1257–1267Google Scholar
  51. Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3: Genes|Genomes|Genetics 2(7):721–729CrossRefPubMedPubMedCentralGoogle Scholar
  52. Burrus M, Molinier J, Himber C, Hunold R, Bronner R, Rousselin P, Hahne G (1996) Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) shoot apices: transformation pattern. Mol Breed 2:329–338CrossRefGoogle Scholar
  53. Bowsher AW, Milton EF, La Donovan (2016) Comparison of desert-adapted Helianthus niveus (Benth.) Brandegee ssp. tephrodes (A. Gray) Heiser to cultivated H. annuus L. for putative drought avoidance traits at two ontogenetic stages. Helia 39(64):1–19CrossRefGoogle Scholar
  54. Cadic E, Coque M, Vear F, Grezes-Besset B, Pauquet J, Piquemal J, Lippi Y, Blanchard P, Romestant M, Pouilly N, Rengel D (2013) Combined linkage and association mapping of flowering time in sunflower (Helianthus annuus L.). Theor Appl Genet 126(5):1337–1356CrossRefPubMedGoogle Scholar
  55. Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutrit Soil Sci 168(4):521–530CrossRefGoogle Scholar
  56. Canavar Ö, Götz KP, Ellmer F, Chmielewski FM, Kaynak MA (2014) Determination of the relationship between water use efficiency, carbon isotope discrimination and proline in sunflower genotypes under drought stress. Austral J Crop Sci 8:232–242Google Scholar
  57. Cantamutto M, Poverene M (2010) Transgenic sunflower. In: Hu J, Seiler G, Kole C (eds) Genetics, genomics and breeding of sunflower. Science Publishers, New York, pp 279–312CrossRefGoogle Scholar
  58. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA (2004) Mapping complex disease loci in whole-genome association studies. Nature 429(6990):446–452CrossRefPubMedGoogle Scholar
  59. Castro C, Leite RMVBC (2018) Main aspects of sunflower production in Brazil. Oilseeds Fats Crops Lipids 25(1):D104Google Scholar
  60. Celik I, Bodur S, Frary A, Doganlar S (2016) Genome-wide SNP discovery and genetic linkage map construction in sunflower (Helianthus annuus L.) using a genotyping by sequencing (GBS) approach. Mol Breed 36:133Google Scholar
  61. Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, Knapp SJ, Burke JM (2008) A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). Plant Cell 20(11):2931–2945CrossRefPubMedPubMedCentralGoogle Scholar
  62. Cheng JD, An YL, Sun RF (2009) Drought and salt-alkali resistance gene P5CS transformed into sunflower inbred lines. Biotechnol Bull 3:65–69Google Scholar
  63. Chiementi CA, Pearson J, Hal AJ (2002) Osmotic adjustment and yield maintenance under drought in sunflower. Field Crops Res 75:235–246CrossRefGoogle Scholar
  64. Christov M (1995) Development of new sunflower forms by treating seeds with gamma rays. In: Proceedings of the first balkan symposium on breeding and cultivation of wheat, sunflower and legume crops, Albena, Bulgaria, 26–29 June 1995Google Scholar
  65. Clark RB, Duncan RR (1991) Improvement of plant mineral nutrition through breeding. Field Crop Res 27:219–240CrossRefGoogle Scholar
  66. Cockerell TDA (1929) Hybrid sunflowers. Amer Nat 63:470–475CrossRefGoogle Scholar
  67. Colledge S, Conolly J (eds) (2007) The origins and spread of domestic plants in South-West Asia and Europe. UCL Institute of Archaeology/Left Coast Press, CAGoogle Scholar
  68. Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681CrossRefGoogle Scholar
  69. Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442CrossRefPubMedPubMedCentralGoogle Scholar
  70. Condon AG (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460CrossRefPubMedPubMedCentralGoogle Scholar
  71. Connor DJ, Hall AJ (1997) Sunflower physiology. In: Schneiter AA (ed) Sunflower science and technology, agronomy monograph no 35, ASSA, CSSA SSSA, Madison, WI, pp 113–182Google Scholar
  72. Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modelling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231CrossRefPubMedGoogle Scholar
  73. Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y (eds) Climate change: the scientific basis. Cambridge University Press, Cambridge, pp 526–582Google Scholar
  74. Cvejić S, Jocić S, Jocković M, Imerovski I, Dimitrijević A, Miladinović D, Prodanović S (2015) New genetic variability in sunflower inbred lines created by mutagenesis. Rom Agric Res 32:1–8Google Scholar
  75. Cvejić S, Miladinović D, Jocić S (2014) Mutation breeding for changed oil quality in sunflower. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, Wageningen, pp 77–96CrossRefGoogle Scholar
  76. Cvetkova F (1970) Initial material for breeding by gamma and X irradiation. Genet Plant Breed 3:231–237 (In Bulgarian)Google Scholar
  77. Dağüstü N, Fraser P, Enfissi E, Bramley P (2008) Screening for high callus induction and Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.). Biotechnol Biotechnol Equip 22:933–937CrossRefGoogle Scholar
  78. Darvishzadeh R (2016) Population structure, linkage disequilibrium and association mapping for morphological traits in sunflower (Helianthus annuus L.). Biotechnol Biotechnol Equip 30(2):236–246CrossRefGoogle Scholar
  79. Darvishzadeh R, Kiani SP, Dechamp-Guillaume G, Gentzbittel L, Sarrafi A (2007) Quantitative trait loci associated with isolate specific and isolate nonspecific partial resistance to Phoma macdonaldii in sunflower. Plant Pathol 56(5):855–861CrossRefGoogle Scholar
  80. Davar R, Darvishzadeh R, Rezaee Danesh Y, Kholghi M, Azizi M, Shah DA (2012) Single sequence repeat markers associated with partial resistance in sunflower to Phoma macdonaldii. Phytopathol Mediterr 1:541–588Google Scholar
  81. Debaeke P, Casadebaig P, Flenet F, Langlade N (2017) Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. Oilseeds Fats Crops Lipids 24(1):D102Google Scholar
  82. de Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481CrossRefPubMedGoogle Scholar
  83. Degener J, Melchinger EA, Hahn V (1999) Inheritance of resistance to Phomopsis in sunflower: Study of leaf and stem resistance after artificial and natural infection. Helia 22:105–115Google Scholar
  84. de la Haba P, de la Mata L, Molina E, Agüera E (2014) High temperature promotes early senescence in primary leaves of sunflower (Helianthus annuus L.) plants. Can J Plant Sci 94:659–669CrossRefGoogle Scholar
  85. Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082CrossRefGoogle Scholar
  86. de Oliveira MF, Neto AT, Leite RMVBC, Castiglioni VBR, Arias CAA (2004) Mutation breeding in sunflower for resistance to Alternaria leaf spot. Helia 27:41–50Google Scholar
  87. Di Caterina R, Giuliani MM, Rotunno T, De Caro A, Flagella Z (2007) Influence of salt stress on seed yield and oil quality of two sunflower hybrids. Ann Appl Biol 151:145–154CrossRefGoogle Scholar
  88. Dimitrijević A, Horn R (2018) Sunflower hybrid breeding: from markers to genomic selection. Front Plant Sci 8:2238CrossRefPubMedPubMedCentralGoogle Scholar
  89. Dimitrijević A, Imerovski I, Miladinović D, Jocić S, Miklič V (2011) Use of molecular markers in identification of non-TIR-NBS-LRR RGA linked to downy mildew resistance locus Pl5/Pl8 in sunflower (Helianthus annuus L.). In: Proceedings of the 19th symposium of the serbian plant physiology society, Banja Vrujci, Serbia, 13–15 June 2011Google Scholar
  90. Dimitrijević A, Imerovski I, Miladinović D, Tančić S, Dušanić N, Jocić S, Miklič V (2010) Use of SSR markers in identification of sunflower isogenic lines in late generations of backcrossing. Helia 33(53):191–198CrossRefGoogle Scholar
  91. Dozet B (1990) Resistance to Diaporthe/Phomopsis helianthi Muntanola-Cvetković et al. in wild sunflower species. In: Proceedings of 12th sunflower research workshop, Fargo, ND, 8–9 Jan 1990Google Scholar
  92. Dussle CM, Hahn V, Knapp SJ, Bauer E (2004) Plarg from Helianthus argophyllus is unlinked to other known downy mildew resistance genes in sunflower. Theor Appl Genet 109(5):1083–1086CrossRefPubMedGoogle Scholar
  93. Edelist C, Raffoux X, Falque M, Dillmann C, Sicard D, Rieseberg LH, Karrenberg S (2009) Differential expression of candidate salt-tolerance genes in the halophyte Helianthus paradoxus and its glycophyte progenitors H. annuus and H. petiolaris (Asteraceae). Am J Bot 96:1830–1838CrossRefPubMedGoogle Scholar
  94. El-Kheir MSAA, Kandil AS, El-Zeiny HA (2000) Growth, yield and some physiological processes of sunflower plants as affected by paclobutrazol treatments under salt stress conditions. Egypt J Agron 22:107–124Google Scholar
  95. El-Khoury A, Seidou O, Lapen DR, Sunohara M, Que Z, Mohammadian M, Bahram M (2014) Prediction of land-use conversions for use in watershed-scale hydrological modeling: a Canadian case study. Can Geog 58:499–516CrossRefGoogle Scholar
  96. Else MA, Coupland D, Dutton L, Jackson MB (2001) Hydraulic and chemical signalling in flooded and well-drained Castor oil (Ricinus communis L.) plants. Physiol Plant 111:46–54CrossRefGoogle Scholar
  97. Encheva J, Shindrova P (2011) Developing mutant sunflower lines (Helianthus annuus L.) through induced mutagenesis and study of their combining ability. Helia 34:107–122CrossRefGoogle Scholar
  98. Encheva J, Shindrova P, Penchev E (2008) Developing mutant sunflower lines (Helianthus annuus L.) through induced mutagenesis. Helia 31(48):61–72CrossRefGoogle Scholar
  99. Escandón AS, Hahne G (1991) Genotype and composition of culture medium are factors important in the selection for transformed sunflower (Helianthus annuus) callus. Physiol Plant 81:367–376CrossRefGoogle Scholar
  100. Everett NP, Robinson KEP, Mascarenhas D (1987) Genetic engineering of sunflower (Helianthus annuus L.). Bio/Technology 5:1201–1204Google Scholar
  101. Fernández-Martínez JM, Melero-Vara JM, Muñoz-Ruz J, Ruso J, Domínguez J (2000) Selection of wild and cultivated sunflower for resistance to a new broomrape race that overcomes resistance to Or5 gene. Crop Sci 40:550–555CrossRefGoogle Scholar
  102. Fernández-Martínez JM, Pérez-Vich B, Velasco L (2009) Sunflower. In: Vollmann J, Rajcan I (eds) Oilcrops (handbook of plant breeding). Springer, New York, pp 155–232Google Scholar
  103. Fick GN (1976) Genetics of floral colour and morphology in sunflowers. J Hered 67:227–230CrossRefGoogle Scholar
  104. Fick GN, Miller JF (1997) Sunflower breeding. In: Scheiter AA (ed) Sunflower Production and Technology. ASA, Madison, WI, pp 395–440Google Scholar
  105. Flagella Z, Giuliani MM, Rotunno T, Di Caterina R, De Caro A (2004) Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. Eur J Agron 21:267–272CrossRefGoogle Scholar
  106. Flavell R (2010) From genomics to crop breeding. Nat Biotechnol 28:144–145CrossRefPubMedGoogle Scholar
  107. Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger MJ, Wang SW (2001) Observed climate variability and change. In: Houghton JT, Ding Y (eds) Climate change: the scientific basis. Cambridge University Press, Cambridge, pp 99–181Google Scholar
  108. Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924CrossRefPubMedPubMedCentralGoogle Scholar
  109. Fusari CM, Di Rienzo JA, Troglia C, Nishinakamasu V, Moreno MV, Maringolo C, Quiroz F, Álvarez D, Escande A, Hopp E, Heinz R (2012) Association mapping in sunflower for Sclerotinia head rot resistance. BMC Pant Biol 12(1):93CrossRefGoogle Scholar
  110. Fusari CM, Lia VV, Hopp HE, Heinz RA, Paniego NB (2008) Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC Plant Biol 8(1):7CrossRefPubMedPubMedCentralGoogle Scholar
  111. García-Vila M, Fereres E, Prieto MH, Ruz C, Soriano MA (2012) Sunflower. In: Steduto P, Hsiao TC, Fereres E, Raes D (eds) Crop Yield Response to Water. FAO, Rome, pp 164–173Google Scholar
  112. Gavrilova VA, Rozhkova VT, Anisimova IN (2014) Sunflower genetic collection at the Vavilov institute of plant industry. Helia 37(60):1–16CrossRefGoogle Scholar
  113. Gedil MA (1999) Marker development, genome mapping, and cloning of candidate disease resistance genes in sunflower, Helianthus annuus L. Dissertation, Oregon State University, ORGoogle Scholar
  114. Gedil MA, Slabaugh MB, Berry S, Johnson R, Michelmore R, Miller J, Gulya T, Knapp SJ (2001a) Candidate disease resistance genes in sunflower cloned using conserved nucleotide-binding site motifs: Genetic mapping and linkage to the downy mildew resistance gene Pl1. Genome 44(2):205–212CrossRefPubMedGoogle Scholar
  115. Gedil MA, Wye C, Berry ST, Seger B, Peleman J, Jones R, Leon A, Slabaugh MB, Knapp SJ (2001b) An integrated restriction fragment length polymorphism—amplified fragment length polymorphism linkage map for cultivated sunflower. Genome 44:213–221CrossRefPubMedGoogle Scholar
  116. Gentzbittel L, Mestries E, Mouzeyar S, Mazeyrat F, Badaoui S, Vear F, De Labrouhe DT, Nicolas P (1999) A composite map of expressed sequences and phenotypic traits of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet 99(1–2):218–234CrossRefGoogle Scholar
  117. Gentzbittel L, Mouzeyar S, Badaoui S, Mestries E, Vear F, De Labrouhe DT, Nicolas P (1998) Cloning of molecular markers for disease resistance in sunflower. Helianthus annuus L. Theor Appl Genet 96(3–4):519–525CrossRefPubMedPubMedCentralGoogle Scholar
  118. Gentzbittel L, Vear F, Zhang YX, Berville A, Nicolas P (1995) Development of a consensus linkage RFLP map of cultivated sunflower (H. annuus L). Theor Appl Genet 90(7–8):1079–1086CrossRefPubMedPubMedCentralGoogle Scholar
  119. Gimenez C, Connor DJ, Rueda F (1994) Canopy development, photosynthesis and radiation-use efficiency in sunflower in response to nitrogen. Field Crops Res 38(1):15–27CrossRefGoogle Scholar
  120. Griffin KL, Seemann JR (1996) Plants, CO2 and photosynthesis in the 21st century. Chem Biol 3:245–254CrossRefPubMedPubMedCentralGoogle Scholar
  121. Griveau Y, Serieys H, Belhassen E (1992) Resistance evaluation of interspecific and cultivated progenies of sunflower infected by Diaporthe helianthi. In: Proceedings of 13th international sunflower conference, Pisa, Italy, 7–11 Sep 1992Google Scholar
  122. Gong L, Gulya TJ, Markell SG, Hulke BS, Qi LL (2013a) Genetic mapping of rust resistance genes in confection sunflower line HAR6 and oilseed line RHA 397. Theor Appl Genet 126(8):2039–2049CrossRefPubMedPubMedCentralGoogle Scholar
  123. Gong L, Hulke BS, Gulya TJ, Markell SG, Qi LL (2013b) Molecular tagging of a novel rust resistance gene R12 in sunflower (Helianthus annuus L.). Theor Appl Genet 126(1):93–99CrossRefPubMedPubMedCentralGoogle Scholar
  124. Goyne PJ, Schneiter AA, Cleary KC, Creelman RA, Stegmeier WD, Wooding FJ (1989) Sunflower genotype response to photoperiod and temperature in field environments. Agron J 81:826–831CrossRefGoogle Scholar
  125. Graham RD (1984) Breeding for nutritional characteristics in cereals. In: Tinker PB, Lauchli A (eds) Advances in Plant Nutrition. Praiger Publisher, New York, pp 57–102Google Scholar
  126. Grayburn WS, Vick BA (1995) Transformation of sunflower (Helianthus annuus L.) following wounding with glass beads. Plant Cell Rep 14:285–289CrossRefPubMedPubMedCentralGoogle Scholar
  127. Girigaj K, Bentur MG, Parameshwarappa KG (2004) Genetic amelioration for earliness and high test weight through induced chemical mutagenesis in restorer lines of sunflower. In: Proceedings of 16th international sunflower conference, Fargo, ND, 29 Aug–2 Sep 2004Google Scholar
  128. Gulya TJ, Venette R, Venette JR, Lamey HA (1990) Sunflower rust. NDSU Ext Ser Bull 4:98Google Scholar
  129. Gundaev AI (1971) Basic principles of sunflower selection. In: Genetic principles of plant selection, Nauka, Moskow, pp 417–465Google Scholar
  130. Gupta P, Rustgi S, Kulwal P (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57(4):461–485CrossRefPubMedPubMedCentralGoogle Scholar
  131. Hall AJ (2001) Sunflower ecophysiology: some unresolved issues. Oilseeds Fats Crops Lipids 8:15–21Google Scholar
  132. Hall AJ, Connor DJ, Sadras VO (1995) Radiation-use efficiency of sunflower crops: effects of specific leaf nitrogen and ontogeny. Field Crop Res 41:65–77CrossRefGoogle Scholar
  133. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443CrossRefPubMedPubMedCentralGoogle Scholar
  134. Heesacker A, Kishore VK, Gao W, Tang S, Kolkman JM, Gingle A, Matvienko M, Kozik A, Michelmore RM, Lai Z, Rieseberg LH (2008) SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor Appl Genet 117(7):1021–1029CrossRefPubMedPubMedCentralGoogle Scholar
  135. Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690CrossRefGoogle Scholar
  136. Henry RJ, Nevo E (2014) Exploring natural selection to guide breeding for agriculture. Plant Biotechnol J 12:655–662CrossRefPubMedPubMedCentralGoogle Scholar
  137. Herve D, Fabre F, Berrios EF, Leroux N, Chaarani GA, Planchon C, Sarrafi A, Gentzbittel L (2001) QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. J Exp Bot 52(362):1857–1864CrossRefPubMedPubMedCentralGoogle Scholar
  138. Hewezi T, Léger M, El Kayal W, Gentzbittel L (2006) Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. J Exp Bot 57:3109–3122CrossRefPubMedPubMedCentralGoogle Scholar
  139. Hladni N (2010) Genes and sunflower yield. Andrejević Foundation, Belgrade, SerbiaGoogle Scholar
  140. Hladni N (2016) Present status and future prospects of global confectionery sunflower production. In: Proceedings of 19th international sunflower conference, Edirne, Turkey, May 29–3 June 2006Google Scholar
  141. Hladni N, Miklič V. (2012). Old and new trends of using genetic resources in sunflower plant breeding with the aim of preserving biodiversity. In: Proceedings of 4th joint uns—psu international conference on bioscience: biotechnology and biodiversity, Novi Sad, Serbia, 18–20 June 2012Google Scholar
  142. Hladni N, Miladinović D, Jocić S, Miklič V, Marjanović Jeromela A (2018) The use of crop wild relatives in sunflower breeding for drought response. In: Proceedings of international symposium—sunflower and climate change, Toulouse, France, 5–6 Feb 2018Google Scholar
  143. Holloway JL, Knapp SJ (1993) GMendel 3.0 users guide, department of crop and soil science, Oregon State University, Corvallis, OR, USAGoogle Scholar
  144. Hu J (2006) Defining the sunflower (Helianthus annuus L.) linkage group ends with the Arabidopsis-type telomere sequence repeat-derived markers. Chromosome Res 14:535–548CrossRefPubMedPubMedCentralGoogle Scholar
  145. Hu J, Yue B, Vick BA (2007) Integration of trap markers onto a sunflower ssr marker linkage map constructed from 92 recombinant inbred lines. Helia 30(46):25–36CrossRefGoogle Scholar
  146. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defence responses in sunflower. Plant Physiol 133:170–181CrossRefPubMedPubMedCentralGoogle Scholar
  147. Huguet IN (2006) Occurrence of Phomopsis helianthi in Argentina and Uruguay. Helia 44:121–126CrossRefGoogle Scholar
  148. Hunold R, Burrus M, Bronner R, Duret JP, Hahne G (1995) Transient gene expression in sunflower (Helianthus annuus L.) following microprojectile bombardment. Plant Sci 105:95–109CrossRefGoogle Scholar
  149. Hussain MM, Rauf S, Riaz MA, Al-Khayri JM, Monneveux P (2017) Determination of drought tolerance related traits in Helianthus argophyllus, Helianthus annuus and their hybrids. Breed Sci 67(3):257–267CrossRefPubMedPubMedCentralGoogle Scholar
  150. Ikeda M, Matsumura M, Kamada H (2005) Suitability of small and branching sunflower varieties for molecular genetic experiments and their transformation by Agrobacterium infection. Plant Biotechnol 22:97–104CrossRefGoogle Scholar
  151. Imerovski I, Dimitrijević A, Miladinović D, Jocić S, Dedić B, Cvejić S, Šurlan-Momirović G (2014) Identification and validation of breeder-friendly DNA markers for Plarg gene in sunflower. Mol Breed 34(3):779–788CrossRefGoogle Scholar
  152. Imerovski I, Dimitrijević A, Miladinović D, Jocić S, Miklič V (2011) Introduction of downy mildew reisstances gene into sunflower and their detection by molecular analysis. In: Proceedings of 52 meeting—production and processing of oil crops. Herceg Novi, Montenegro, 5–10 June 2011 (In Serbian)Google Scholar
  153. ISAAA (2018) The international service for the acquisition of agri-biotechnol applications, USA. Assessed 25 May 2018
  154. Islam MA, Macdonald SE (2004) Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees 18:35–42CrossRefGoogle Scholar
  155. Ivanov P, Petakov V, Nikolova V, Petchev E (1988) Sunflower breeding for high palmitic acid content in the oil. In: Proceedings of the 12th international sunflower conference, Novi Sad, Yugoslavia, 25–29 July 1988Google Scholar
  156. Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58(12):3091–3097CrossRefPubMedPubMedCentralGoogle Scholar
  157. Jacob J, Sujatha M, Varaprasad SK (2016) Screening of cultivated and wild Helianthus species reveals herbicide tolerance in wild sunflowers and allelic variation at Ahasl1 (acetohydroxy acid synthase 1 large subunit) locus. Plant Genet Resour 1:1–9Google Scholar
  158. Jamaux I, Steinmetz A, Belhassen E (1997) Looking for molecular and physiological markers of osmotic adjustment in sunflower. New Phytol 137(1):117–127CrossRefGoogle Scholar
  159. Jambhulkar SJ (2002) An extreme dwarf mutant in sunflower. Curr Sci 83:116Google Scholar
  160. Jan CC (1986) The inheritance of early maturity and short-stature of H. annuus line. In: Proceedings of 9th sunflower research workshop, Fargo, ND, 10 Dec 1986Google Scholar
  161. Jan CC, Liu Z, Seiler GJ, Velasco L, Perez-Vich B, Fernandez-Martinez J (2014) Broomrape (Orobanche cumana Wallr.) resistance breeding utilizing wild Helianthus species. Helia 37:141–150CrossRefGoogle Scholar
  162. Jan CC, Vick BA, Miller JK, Kahler AL, Butler ETI (1998) Construction of a RFLP linkage map for cultivated sunflower. Theor Appl Genet 96(1):15–22CrossRefGoogle Scholar
  163. Janmohammadi M, Seifi A, Pasandi M, Sabaghnia N (2016) The impact of organic manure and nano-inorganic fertilizers on the growth, yield and oil content of sunflowers under well-watered conditions. Biologija 62:227–241Google Scholar
  164. Jayasekera GAU, Reid DM, Yeung EC (1989) Fates of ethanol during flooding of sunflower roots. Can J Bot 68:2408–2414CrossRefGoogle Scholar
  165. Jocić S, Cvejić S, Hladni N, Miladinović D, Miklič V (2010) Development of sunflower genotypes resistant to downy mildew. Helia 33(53):173–180CrossRefGoogle Scholar
  166. Jocić S, Lačok N, Miklič V, Škorić D, Griveau Y (2004) Testing of two isolates of Diaporthe/Phomopsis helianthi in a population of sunflower recombinant inbred lines. Helia 27:129–136CrossRefGoogle Scholar
  167. Jocić S, Malidža G, Cvejić S, Hladni N, Miklič V, Škorić D (2011) Development of sunflower hybrids tolerant to tribenuron methyl. Genetika 43:175–182CrossRefGoogle Scholar
  168. Jocić S, Miladinović D, Imerovski I, Dimitrijević A, Cvejić S, Nagl N, Kondić-Špika A (2012) Towards sustainable downy mildew resistance in sunflower. Helia 35(56):61–72CrossRefGoogle Scholar
  169. Jocić S, Miladinović D, Kaya Y (2015) Breeding and genetics of sunflower. In: Martínez-Force E, Dunford NT, Salas JJ (eds) Sunflower: chemistry, production, processing, and utilization. AOCS Press, Urbana, IL, pp 1–26Google Scholar
  170. Jocić S, Saftić-Panković D, Hladni N, Cvejić S, Radeka I, Miklič V (2009) Sunflower breeding for resistance to downy mildew. Ratar Povrt 46(1):181–188Google Scholar
  171. Johnson JM, Franzluebbers AJ, Weyers SL, Reicosky DC (2007) Agricultural opportunities to mitigate greenhouse gas emissions. Environ Pollut 150(1):107–124CrossRefPubMedPubMedCentralGoogle Scholar
  172. Kalaydzhyan AA, Khlevnoy LV, Neshchadim NN, Golovin VP, Vartanyan VV, Burdun AM (2007) Rossiyskiy solnechnyy tsvetok. Sovet. Kuban, Krasnodar (In Russian)Google Scholar
  173. Kantar MB, Sosa CC, Khoury CK, Castañeda-Álvarez NP, Achicanoy HA, Bernau V, Kane NC, Marek L, Seiler G, Rieseberg LH (2015) Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front Plant Sci 6:841Google Scholar
  174. Karrenberg S, Edelist C, Lexer C, Rieseberg L (2006) Response to salinity in the homoploid hybrid species Helianthus paradoxus and its progenitors H. annuus and H. petiolaris. New Phytol 170:615–629CrossRefPubMedPubMedCentralGoogle Scholar
  175. Katerji N, Van Hoorn JW, Hamdy A, Karam F, Mastroruilli M (1994) Effect of salinity on emergence and on water stress and early seedling growth of sunflower and maize. Agric Wat Mang 26:81–91CrossRefGoogle Scholar
  176. Kaya Y (2016) Sunflower. In: Gupta SK (ed) Breeding oilseed crops for sustainable production, 1st edition opportunities and constraints, 1st edn. Academic Press, San Diego, CA, pp 55–88CrossRefGoogle Scholar
  177. Kaya Y, Jocić S, Miladinović D (2012) Sunflower. In: Gupta SK (ed) Technological innovations in major oil crops, vol 1. Breeding. Springer, New York, NY, pp 85–129CrossRefGoogle Scholar
  178. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–327CrossRefGoogle Scholar
  179. Khan AK, Iqbal I, Ahmad I, Nawaz H, Nawaz M (2014) Role of proline to induce salinity tolerance in sunflower (Helianthus annuus L.). Sci Tech Dev 33:88–93Google Scholar
  180. Khan A, Sovero V, Gemenet D (2016) Genome-assisted breeding for drought resistance. Currt Genom 17(4):330–342CrossRefGoogle Scholar
  181. Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374CrossRefPubMedPubMedCentralGoogle Scholar
  182. Kiani SP, Grieu P, Maury P, Hewezi T, Gentzbittel L, Sarrafi A (2007a) Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor Appl Genet 114(2):193–207Google Scholar
  183. Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007b) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172(4):773–787CrossRefGoogle Scholar
  184. Kiani SP, Maury P, Sarrafi A, Grieu P (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175(4):565–573Google Scholar
  185. Kiani SP, Maury P, Nouri L, Ykhlef N, Grieu P, Sarrafi A (2009) QTL analysis of yield-related traits in sunflower under different water treatments. Plant Breed 128(4):363–373CrossRefGoogle Scholar
  186. Kinman ML (1970) New developments in the USDA and state experiment station sunflower breeding programs. In: Proceedings of 4th international sunflower conference, Memphis, TN, 25–28 July 1970Google Scholar
  187. Kirches E, Frey N, Schnabl H (1991) Transient gene expression in sunflower mesophyll protoplasts. Bot Acta 104:212–216CrossRefGoogle Scholar
  188. Kramer PJ (1951) Causes injury to plants resulting from flooding of the soil. Plant Physiol 26:722–736CrossRefPubMedPubMedCentralGoogle Scholar
  189. Kumar APK, Boualem A, Bhattacharya A, Parikh S, Desai N, Zambelli A, Leon A, Chatterjee M, Bendahmane A (2013) SMART—Sunflower mutant population and reverse genetic tool for crop improvement. BMC Plant Biol 13:38–46CrossRefPubMedPubMedCentralGoogle Scholar
  190. Kumar M, Sundaresha S, Rohini S (2011) Transgenic sunflower (Helianthus annuus L.) with enhanced resistance to a fungal pathogen A. helianthi. Transgen Plant J 5(1):50–56Google Scholar
  191. Lai Z, Livingstone K, Zou Y, Church SA, Knapp SJ, Andrews J, Rieseberg LH (2005) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111(8):1532–1544CrossRefPubMedPubMedCentralGoogle Scholar
  192. Lambrides CJ, Chapman SC, Shorter R (2004) Genetic variation for carbon isotope discrimination in sunflower: association with transpiration efficiency and evidence forcytoplasmic inheritance. Crop Sci 44:1642–1653CrossRefGoogle Scholar
  193. Lander ES, Green R Abrahamson J, Barlow A, Daly M J, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedPubMedCentralGoogle Scholar
  194. Lane BG, Bernier F, Dratewka K, Shafai R, Kennedy TD, Pyne C, Munro JR, Vaughan T, Walters D, Altomare F (1991) Homologies between members of the germin gene family in hexaploid wheat and similarities between these wheat germins and certain Physarum spherulins. J Biol Chem 266:10461–10469PubMedGoogle Scholar
  195. Langar K, Griveau Y, Kaan F, Serieys H, Vares D, Berville A (2002) Evaluation of parameters accounting for Phomopsis resistance using natural infection and artificial inoculation on recombinant inbred lines from a cross between susceptible and resistant sunflower. Eur J Plant Pathol 108(4):307–315CrossRefGoogle Scholar
  196. Langar K, Griveau Y, Serieys H, Berville A (2000) Analyse genetique de la resistance au Phomopsis (Diaporthe helianthi Munt. -Cvet. et al) chez le tournesol cultive (Helianthus annuus L.). In: Proceedings of 15th international sunflower conference, Toulouse, France, 12–15 June 2000Google Scholar
  197. Langar K, Griveau Y, Serieys H, Kann F, Berville A, Seiler GJ (2004) Mapping components of resistance to Phomopsis (Diaporthe helianthi) in a population of sunflower recombinant inbred lines. In: Proceedings of the 16th International Sunflower Conference, Fargo, ND, 29 Aug–2 Sep 2004Google Scholar
  198. Langar K, Griveau Y, Vares D, Berville A (1997) Evaluation of resistance to Phomopsis (Diaporthe helianthi Munt. -Cvet. et al.) on wild species, cultivators and inbreeds of sunflower (Helianthus spp.) with artificial and seminatural infections, Proceedings of the 10th mediterranean phytopathological union, Montpellier, France, 1–5 June 1997Google Scholar
  199. Laparra H, Burrus M, Hunold R, Damm B, Bravo-Angel AM, Bronner R, Hahne G (1995) Expression of foreign genes in sunflower (Helianthus annuus L.)—evaluation of three gene transfer methods. Euphytica 85:63–74CrossRefGoogle Scholar
  200. Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evolut Systemat 41:321–350CrossRefGoogle Scholar
  201. Lawson WR, Goulter KC, Henry RJ, Kong GA, Kochman JK (1996) RAPD markers for a sunflower rust resistance gene. Austral J Agric Res 47(3):395–401CrossRefGoogle Scholar
  202. Lawson WR, Goulter KC, Henry RJ, Kong GA, Kochman JK (1998) Marker-assisted selection for two rust resistance genes in sunflower. Mol Breed 4(3):227–234CrossRefGoogle Scholar
  203. Leclercq P (1966) Une sterilite male utilisable pour la production d’hybrides simples de tournesol. Ann Amelior Plant 16:135–144Google Scholar
  204. Leclercq P (1971) La stérilité mâle cytoplasmique du tournesol. 1. Premières études sur la restauration de la fertilité. Ann Amelior Plant 21:45–54Google Scholar
  205. Leclercq P (1985) Dwarf sunflowers. In: Proceedings of the sixth meeting of eucarpia section of oil and protein crops, Cordoba, Spain, 10–15 June 1985Google Scholar
  206. Lenssen JPM, Van De Steeg HM, De Kroon H (2004) Does disturbance favour weak competitors? mechanisms of changing plant abundance after flooding. J Veg Sci 15:305–314CrossRefGoogle Scholar
  207. Leon AJ, Andrade FH, Lee M (2000) Genetic mapping of factors affecting quantitative variation for flowering in sunflower. Crop Sci 40:404–407CrossRefGoogle Scholar
  208. Leon AJ, Lee M, Andrade FH (2001) Quantitative trait loci for growing degree days to flowering and photoperiod response in sunflower (Helianthus annuus L.). Theor Appl Genet 102:497–503CrossRefGoogle Scholar
  209. Lewi D, Hopp HE, Escandón A (2006) Sunflower (Helianthus annuus L.) Meth Mol Biol 343:291–297Google Scholar
  210. Lexer C, Lai Z, Rieseberg LH (2004) Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytol 161:225–233CrossRefPubMedPubMedCentralGoogle Scholar
  211. Lexer C, Welch ME, Durphy JL, Rieseberg LH (2003) Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: Implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol Ecol 12:1225–1235CrossRefPubMedGoogle Scholar
  212. Li N, Shi J, Wang X, Liu G, Wang H (2014) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol 4(1):114CrossRefPubMedPubMedCentralGoogle Scholar
  213. Liu Z, Cai X, Seiler GJ, Gulya TJ, Rashid KY, Jan CC (2010) Developing Sclerotinia resistant sunflower germplasm utilizing wild perennial Helianthus species Sunbio. In: Proceedings of 8th european sunflower biotechnology conference, Antalya, Turkey, 1–3 Mar 2010Google Scholar
  214. Liu Z, Gulya TJ, Seiler GJ, Vick BA, Jan CC (2012) Molecular mapping of the Pl16 downy mildew resistance gene from HA-R4 to facilitate marker-assisted selection in sunflower. Theor Appl Genet 125(1):121–131CrossRefPubMedGoogle Scholar
  215. Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R, Plieske J, Polley A, Luerßen H, Wieckhorst S, Mascher M, Hahn V, Ouzunova M, Schon CC, Ganal W (2016) Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet 129(2):317–329CrossRefPubMedGoogle Scholar
  216. Lofgren JR, Ramaraje Urs NV (1982) Chemically induced mutations in sunflower. In: Proceedings of the 10th international sunflower conference, Surfers Paradise, Australia, 14–18 Mar 1982Google Scholar
  217. Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921CrossRefGoogle Scholar
  218. Lu G, Bidney D, Bao Z, Hu X, Wang J, Vortherms T, Scelonge C, Wang L, Shao A, Bruce W, Duvick J (2000) Constitutive promoters and Sclerotinia disease resistance in sunflower. In: Proceedings of the 15th international sunflower conference, Toulouse, France, 12–15 June 2000Google Scholar
  219. Ludwig F, Rosenthal DM, Johnston JA, Kane N, Gross BL, Lexer C (2004) Selection on leaf ecophysiological traits in a desert hybrid helianthus species and early-generation hybrids. Evolution 58:2682–2692CrossRefPubMedPubMedCentralGoogle Scholar
  220. Ma GJ, Markell SG, Song QJ, Qi LL (2017) Genotyping-by-sequencing targeting of a novel downy mildew resistance gene Pl20 from wild Helianthus argophyllus for sunflower (Helianthus annuus L.). Theor Appl Genet 130(7):1519–1529CrossRefGoogle Scholar
  221. Ma MR, Tyro SD (2016) Analysis of organic manure and nano-fertilizers impacts on sunflower (Helianthus annuus L.). Curr Opin Agri 5(1):1–4Google Scholar
  222. Machacek C (1979) Study of the inheritance of earliness in sunflower (Helianthus annuus L.). Genet Slechteni 15:225–232Google Scholar
  223. Malone-Schoneberg JB, Scelonge SC, Burrus M, Bidney DL (1994) Stable transformation of sunflower using Agrobacterium and split embryonic axis explants. Plant Sci 103:199–207CrossRefGoogle Scholar
  224. Mandel JR, Dechaine JM, Marek LF, Burke JM (2011) Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123:693–704CrossRefGoogle Scholar
  225. Mandel JR, Nambeesan S, Bowers JE, Marek LF, Ebert D, Rieseberg LH, Knapp SJ, Burke JM (2013) Association mapping and the genomic consequences of selection in sunflower. PLoS Genet 9(3):e1003378CrossRefPubMedPubMedCentralGoogle Scholar
  226. Mangin B, Bonnafous F, Blanchet N, Boniface M-C, Bret-Mestries E, Carrère S et al (2017a) Genomic prediction of sunflower hybrids oil content. Front Plant Sci 8:1633CrossRefPubMedPubMedCentralGoogle Scholar
  227. Mangin B, Casadebaig P, Cadic E, Blanchet N, Boniface MC, Carrère S, André T (2017b) Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association. Plant Cell Environ 40(10):2276–2291CrossRefPubMedGoogle Scholar
  228. Marek LF (2016) Sunflower genetic resources. In: Proceedings of the 19th international sunflower conference, Edirne, Turkey, 29 May–3 June 2016Google Scholar
  229. Markulj Kulundžić A, Kovačević J, Viljevac Vuletić M, Josipović A, Liović I, Mijić A, Matoša Kočar M (2016) Impact of abiotic stress on photosynthetic efficiency and leaf temperature in sunflower. Poljoprivreda 22(2):17–22CrossRefGoogle Scholar
  230. Meliala C, Vear F, Tourvieille de Labrouhe D (2000) Relation between date of infection of sunflower downy mildew (Plasmopara halstedii) and symptoms development. Helia 23(32):35–44Google Scholar
  231. Mestries E, Gentzbittel L, de Labrouhe DT, Nicolas P, Vear F (1998) Analyses of quantitative trait loci associated with resistance to shape Sclerotinia sclerotiorum in sunflowers (shape Helianthus annuus L.) using molecular markers. Mol Breed 4(3):215–226Google Scholar
  232. Methew F, Alananbeh K, Balbyshev N, Heitkamp E, Castlbury L, Gulya T, Markell S (2012) Reevaluation of Phomopsis species affecting sunflowers in the United States. In: Proceedings of the 18th international sunflower conference, Mar del Plata, Argentina, 10–13 Mar 2012Google Scholar
  233. Mićić Z, Hahn V, Bauer E, Schon CC, Knapp SJ, Tang S, Melchinger AE (2004) QTL mapping of Sclerotinia midstalk rot resistance in sunflower. Theor Appl Genet 109:1474–1484CrossRefGoogle Scholar
  234. Mićić Z, Hahn V, Bauer E, Melchinger AE, Knapp SJ, Tang S, Schon CC (2005a) Identification and validation of QTL for Sclerotinia midstalk rot resistance in sunflower by selective genotyping. Theor Appl Genet 111:233–242CrossRefPubMedGoogle Scholar
  235. Mićić Z, Hahn V, Bauer E, Schon CC, Melchinger AE (2005b) QTL mapping of resistance to Sclerotinia midstalk rot in RIL of sunflower population NDBLOSsel × CM625. Theor Appl Genet 110(8):1490–1498CrossRefPubMedGoogle Scholar
  236. Mihaljčević M, Petrov M, Muntanola-Cvetković M (1980) Phomopsis sp.—a new parasite of sunflower in Yugoslavia. Contemp Agri 11–12:531–540Google Scholar
  237. Mihaljčević M, Muntanola-Cvetković M, Petrov M (1982) Further studies on the sunflower disease caused by Diaporthe (Phomopsis) helianthi and possibilities of breeding for resistance. In: Proceedings of the 10th international sunflower conference, Surfers Paradise, Australia, 14–18 Mar 1982Google Scholar
  238. Miladinović D, Marjanović-Jeromela A, Jocić S, Hladni N, Imerovski I, Dimitrijević A, Vuković N (2011) Biotechnological methods in NS sunflower and rapeseed breeding programs. In: Proceedings of 52th meeting production and processing of oil crops, Herceg Novi, Montenegro, 5–10 June 2011Google Scholar
  239. Miladinović D, Imerovski I, Dimitrijević A, Jocić S (2014a) CAPS markers in breeding of oil crops. In: Shavrukov Y (ed) Cleaved Amplified Polymorphic Sequences (CAPS) markers in plant biology. Nova Science Publishers Inc, New York, pp 61–82Google Scholar
  240. Miladinović D, Taški-Ajduković K, Nagl N, Kovačević B, Dimitrijević A, Imerovski I, Miladinović J, Dušanić N, Balalić I (2014b) Genetic diversity of wild sunflower (Helianthus sp.) accessions with different tolerance to mid-stalk white rot. Genetika 46(2):331–342CrossRefGoogle Scholar
  241. Miller JF, Gulya TJ (1988) Registration of 6 downy mildew resistant sunflower germplasm lines. Crop Sci 28:1040–1041CrossRefGoogle Scholar
  242. Miller JF, Gulya TJ (1991) Inheritance of resistance to race 4 of downy mildew derived from interspecific crosses in sunflower. Crop Sci 31:40–43CrossRefGoogle Scholar
  243. Miller JF, Gulya TJ (1995) Four maintainer (HA382 to 385) and four restorer (RHA386 to RHA389) sunflower germplasm lines. Crop Sci 35(1):286CrossRefGoogle Scholar
  244. Miller JF, Hammond JJ, Roath WW (1980) Comparison of inbreds vs. single cross testers and estimation of genetic effects in sunflower. Crop Sci 20:703–706CrossRefGoogle Scholar
  245. Miller JF, Seiler GJ (2003) Registration of five oilseed maintainer (HA 429-HA 433) sunflower germplasm lines. Crop Sci 43:2313–2314CrossRefGoogle Scholar
  246. Miller JF, Vick BA (1999) Inheritance of reduced stearic and palmitic acid content in sunflower seed oil. Crop Sci 39:364–367CrossRefGoogle Scholar
  247. Mohamed S, Boehm R, Schnabl H (2006) Stable genetic transformation of high oleic Helianthus annuus L. genotypes with high efficiency. Plant Sci 171:546–554CrossRefGoogle Scholar
  248. Molinier J, Thomas C, Brignou M, Hahne G (2001) Increase of regeneration rates of sunflower shoot apices (Helianthus annuus L.) by transient expression of the ipt gene. In: Proceedings of the 5th European conference on sunflower biotechnology, San Giuliano Terme, Italy, 4–8 Nov 2001Google Scholar
  249. Moschen S, Bengoa Luoni S, Di Rienzo JA, Caro MD, Tohge T, Watanabe M, Hollmann J, González S, Rivarola M, García-García F, Dopazo J, Hopp HE, Hoefgen R, Fernie AR, Paniego N, Fernández P, Heinz RA (2016) Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower. Plant Biotechnol J 14:719–734CrossRefPubMedPubMedCentralGoogle Scholar
  250. Moschen S, Radonic LM, Ehrenbolger GF, Fernández P, Lía V, Paniego NB, López Bilbao M, Heinz RA, Hopp HE (2014) Functional genomics and transgenesis applied to sunflower breeding. In: Arribas JI (ed) Sunflowers. Nova Science Publishers Inc, New York, pp 131–164Google Scholar
  251. Mouzeyar S, Roeckel-Drevet P, Gentzbittel L, Philippon J, De Labrouhe DT, Vear F, Nicolas P (1995) RFLP and RAPD mapping of the sunflower Pl1 locus for resistance to Plasmopara halstedii race 1. Theor Appl Genet 91(5):733–737CrossRefPubMedPubMedCentralGoogle Scholar
  252. Moyne AL, Thor V, Pélissier B, Bergounioux C, Freyssinet G, Gadal P (1988) Callus and embryoid formation from protoplasts of Helianthus annuus. Plant Cell Rep 7:437–440PubMedPubMedCentralGoogle Scholar
  253. Muller A, Iser M, Hess D (2001) Stable transformation of sunflower (Helianthus annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker. Transgen Res 10:435–444CrossRefGoogle Scholar
  254. Mulpuri S, Liu Z, Feng J, Gulya TJ, Jan CC (2009) Inheritance and molecular mapping of a downy mildew resistance gene, Pl13 in cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 119(5):795–803CrossRefPubMedPubMedCentralGoogle Scholar
  255. Muntanola-Cvetković M, Mihaljčević M, Petrov M (1981) On the identity of the causative agent of a serious Phomopsis-Diaporthe disease in sunflower plants. Nova Hedwigia 34:417–435Google Scholar
  256. Nagarathna TK, Shadakshari YG, Ramakrishna Parama VR, Jagadish KS, Puttarangaswamy KT (2012) Examination of root characters, isotope discrimination, physiological and morphological traits and their relationship used to identify the drought tolerant sunflower (Helianthus annuus L.) genotypes. Helia 35:1–8CrossRefGoogle Scholar
  257. Nambeesan SU, Mandel JR, Bowers JE, Marek LF, Ebert D, Corbi J, Rieseberg LH, Knapp SJ, Burke JM. (2015) Association mapping in sunflower (Helianthus annuus L.) reveals independent control of apical vs. basal branching. BMC Plsnt Biol 15(1):84Google Scholar
  258. Neskorodov YB, Rakitin AL, Kamionskaya AM, Skryabin KG (2010) Developing phosphinothricin resistant transgenic sunflower (Helianthus annuus L.) plants. Plant Cell Tiss Org Cult 100:65–71CrossRefGoogle Scholar
  259. Nogué F, Mara K, Collonnier C, Casacuberta JM (2016) Genome engineering and plant breeding: impact on trait discovery and development. Plant Cell Rep 35:1475–1486CrossRefPubMedPubMedCentralGoogle Scholar
  260. Nusrat J, Rafiq A (2012) Improving tolerance of sunflower and safflower during growth stages to salinity through foliar spray of nutrient solutions. Pak J Bot 44(2):563–572Google Scholar
  261. Onemli F, Gucer T (2010) Response to drought of some wild species of Helianthus at seedling growth stage. Helia 33:45–54CrossRefGoogle Scholar
  262. Ortiz R (2015) The importance of crop wild relatives, diversity, and genetic potential for adaptation to abiotic stress-prone environments. In: Redden R, Yadav SS, Maxted N, Dulloo E, Guarino L, Smith P (eds) Crop wild relatives and climate change. Wiley, Hoboken, NJ, pp 80–87CrossRefGoogle Scholar
  263. Osorio J, Fernandez-Martinez JM, Mancha M, Garces R (1995) Mutant sunflower with high concentration in saturated fatty acid in the oil. Crop Sci 35:739–742CrossRefGoogle Scholar
  264. Owart BR, Corbi J, Burke JM, Dechaine JM (2014) Selection on crop-derived traits and QTL in sunflower (Helianthus annuus) crop-wild hybrids under water stress. PLoS ONE 9(7):e102717CrossRefPubMedPubMedCentralGoogle Scholar
  265. Pachauri RK, Reisinger A (eds) (2007) contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, SwitzerlandGoogle Scholar
  266. Pachauri RK, Meyer LA (eds) (2014) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, SwitzerlandGoogle Scholar
  267. Paniego N, Echaide M, Munoz M, Fernandez L, Torales S, Faccio P, Fuxan I, Carrera M, Zandomeni R, Suarez E et al (2002) Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome 45:34–43CrossRefPubMedPubMedCentralGoogle Scholar
  268. Panković D, Radovanović N, Jocić S, Šatović Z, Škorić D (2007) Development of co-dominant amplified polymorphic sequence markers for resistance of sunflower to downy mildew race 730. Plant Breed 126(4):440–444CrossRefGoogle Scholar
  269. Patel RR, Patel DD, Thakor P, Patel B, Thakkar VR (2015) Alleviation of salt stress in germination of Vigna radiata L. by two halotolerant Bacilli sp. isolated from saline habitats of Gujarat. Plant Growth Regul 76:51–60CrossRefGoogle Scholar
  270. Peerbolte RP, Peleman J (1996) The CARTISOL sunflower RFLP map (146 loci) extended with 291 AFLP markers. In: Proceedings of the 18th sunflower research forum, Fargo, ND, 11 Jan 1996Google Scholar
  271. Pegadaraju V, Nipper R, Hulke B, Qi L, Schultz Q (2013) De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genom 14(1):556CrossRefGoogle Scholar
  272. Pekcan V, Evci G, Yilmaz MI, Nalcaiyi ASB, Erdal SC, Cicek N, Arslan O, Ekmekci Y, Kaya Y (2016) Effects of drought stress on sunflower stems and roots. IJAAEE 3:96–102Google Scholar
  273. Pérez-Vich B, Velasco L, Fernández-Martínez JM (2004) QTL mapping of resistance to races E and F of broomrape (Orobanche cumana Wallr.) in sunflower. In: Proceedings of COST 849 workshop breeding for Orobanche resistance in sunflower, Bucharest, Romania, 4–6 Nov 2004Google Scholar
  274. Pimentel D, Pimentel M (1996) Energy use in grain and legume production. In: Pimentel D, Pimentel M (eds) Food, energy and society. University Press, Colorado, pp 107–130Google Scholar
  275. Plotnikov VA (1971) Rannespielie hemomutantii podsolnechnika. Genetika i selekcija na Ukraine, Kiev. Naukove dumka 46Google Scholar
  276. Pradeep K, Satya VK, Selvapriya M, Vijayasamundeeswari A, Ladhalakshmi D, Paranidharan V, Rabindran R, Samiyappan R, Balasubramanian R, Velazhahan R (2012) Engineering resistance against tobacco streak virus (TSV) in sunflower and tobacco using RNA interference. Biol Plant 56:735–741CrossRefGoogle Scholar
  277. Prasad PVV, Staggenborg SA (2008) Impacts of drought and/or heat stress on physiological, developmental, growth and yield processes of crop plants. In: Ahuja LR, Reddy VR, Saseendran SA, Qiang Yu (eds) Response of crops to limited water: understanding and modelling water stress effects on plant growth processes, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI, pp 301–355Google Scholar
  278. Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Dıez MJ, Fita A, Herraiz FJ, Rodrıguez-Burruezo A, Soler S, Knapp S, Vilanova S (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213:158CrossRefGoogle Scholar
  279. Puffenberger EG, Kauffman ER, Bolk S, Matise TC, Washington SS, Angrist M, Weissenbach J, Garver KL, Mascari M, Ladda R, SIaugenhaupt SA, Chakravarti A (1994) Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum Mol Genet 3(8):1217–1225CrossRefPubMedPubMedCentralGoogle Scholar
  280. Pustovoit GV, Gubin IA (1974) Results and prospects in sunflower breeding for group immunity by using the interspecific hybridization method. In: Proceedings of the 6th international sunflower conference, Bucharest, Romania, 22–24 July 1974Google Scholar
  281. Qi LL, Foley ME, Cai XW, Gulya TJ (2016a) Genetics and mapping of a novel downy mildew resistance gene, Pl18, introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 129:741–752CrossRefPubMedPubMedCentralGoogle Scholar
  282. Qi LL, Foley ME, Cai XW, Gulya TJ (2016b) Genetics and mapping of a novel downy mildew resistance gene, Pl18, introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 129(4):741–752CrossRefPubMedPubMedCentralGoogle Scholar
  283. Qi LL, Hulke BS, Vick BA, Gulya TJ (2011) Molecular mapping of the rust resistance gene R4 to a large NBS-LRR cluster on linkage group 13 of sunflower. TAG 123(2):351–358CrossRefPubMedPubMedCentralGoogle Scholar
  284. Qi LL, Long YM, Jan CC, Ma GJ, Gulya TJ (2015a) Pl17 is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 128(4):757–767CrossRefPubMedPubMedCentralGoogle Scholar
  285. Qi LL, Ma GJ, Long YM, Hulke BS, Gong L, Markell SG (2015b). Relocation of a rust resistance gene R2 and its marker-assisted gene pyramiding in confection sunflower (Helianthus annuus L.). Theor Appl Genet 128(3):477–488CrossRefPubMedPubMedCentralGoogle Scholar
  286. Qi LL, Long YM, Ma GJ, Markell SG (2015c) Map saturation and SNP marker development for the rust resistance genes (R4, R5, R13a, and R13b) in sunflower (Helianthus annuus L.). Mol Breed 35(10):196Google Scholar
  287. Qi LL, Seiler GJ, Vick BA, Gulya TJ. (2012) Genetics and mapping of the R11 gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L.). Theor Appl Genet 125(5):921–932CrossRefPubMedPubMedCentralGoogle Scholar
  288. Qi LL, Talukder ZI, Hulke BS, Foley ME (2017) Development and dissection of diagnostic SNP markers for the downy mildew resistance genes PlArg and Pl8 and marker-assisted gene pyramiding in sunflower (Helianthus annuus L.). Mol Genet Genom 292(3):551–563Google Scholar
  289. Rachid Al-Chaarani G, Roustaee A, Gentzbittel L, Mokrani L, Barrault G, Dechamp-Guillaume G, Sarrafi A (2002) A QTL analysis of sunflower partial resistance to downy mildew (Plasmopara halstedii) and black stem (Phoma macdonaldii) by the use of recombinant inbred lines (RILs). Theor Appl Genet 104(2):490–496CrossRefPubMedPubMedCentralGoogle Scholar
  290. Radonic LM, Zimm ermann JM, Zavallo D, López N, López Bilbao M (2006) Rooting in Km selective media as efficient in vitro selection method for sunflower genetic transformation. Elec J Biotechnol 9:315–319CrossRefGoogle Scholar
  291. Radonic LM, Zimmermann JM, Zavallo D, López N, López Bilbao M (2008) Introduction of antifungal genes in sunflower via Agrobacterium. Elec J Biotechnol 11(5):2CrossRefGoogle Scholar
  292. Radwan O, Bouzidi MF, Nicolas P, Mouzeyar S (2004) Development of PCR markers for the Pl5/Pl8 locus for resistance to Plasmopara halstedii in sunflower, Helianthus annuus L. from complete CC-NBS-LRR sequences. Theor Appl Genet 109(1):176–185CrossRefPubMedPubMedCentralGoogle Scholar
  293. Ramu VS, Paramanantham A, Ramegowda V, Mohan-Raju B, Udayakumar M, Senthil-Kumar M (2016) Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual- and combined- biotic and abiotic stress tolerance mechanisms. PLoS ONE 11(6):e0157522CrossRefPubMedPubMedCentralGoogle Scholar
  294. Rasool S, Hameed A, Azooz MM, Siddiqi TO, Ahmad P (2013) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1–24Google Scholar
  295. Rauf S (2008) Breeding sunflower (Helianthus annuus L.) for drought tolerance. Commun Biomet Crop Sci 3(1):29–44Google Scholar
  296. Rauf S, Sadaqat HA (2008) Effect of osmotic adjustment on root length and dry matter partitioning in sunflower (Helianthus annuus L.) under drought stress. Acta Agri Scand Sect B Soil Plant Sci 58:252–260Google Scholar
  297. Reddy GKM, Dangi KS, Kumar SS, Reddy AV (2003) Effect of moisture stress on seed yield and quality in sunflower, Helianthus annuus L. J Oilseed Res 20(2):282–283Google Scholar
  298. Reif JC, Zhao Y, Würschum T, Gowda M, Hahn V (2013) Genomic prediction of sunflower hybrid performance. Plant Breed 132:107–114CrossRefGoogle Scholar
  299. Rinaldi M, Rascio A, Garofalo P (2015) Sunflower and biomass sorghum photosynthesis response to CO2 enrichment. Rom Agric Res 32:113–122Google Scholar
  300. Robertson JM, Pharis RP, Huang YY, Reid DM, Yeung EC (1985) Drought-induced increases in abscisic acid levels in the root apex of sunflower. Plant Physiol 79:1086–1089CrossRefPubMedPubMedCentralGoogle Scholar
  301. Roeckel-Drevet P, Gagne G, Mouzeyar S, Gentzbittel L, Philippon J, Nicolas P, De Labrouhe DT, Vear F (1996) Colocation of downy mildew (Plasmopara halstedii) resistance genes in sunflower (Helianthus annuus L.). Euphytica 91(2):225–258Google Scholar
  302. Rönicke S, Hahn V, Horn R, Grone I, Brahm L, Schnable H, Friedt W (2004) Interspecific hybrids of sunflower as a source of Sclerotinia resistance. Plant Breed 123:152–157CrossRefGoogle Scholar
  303. Rönicke S, Hahn V, Vogler A, Friedt W (2005) Quantitative trait loci analysis of resistance to Sclerotinia sclerotiorum sunflower. Phytopathology 95:834–839CrossRefPubMedGoogle Scholar
  304. Roustaee A, Costes S, Dechamp-Guillaume G, Barrault G (2000) Phenotypic variability of Leptosphaeria lindquistii (anamorph: Phoma macdonaldii), a fungal pathogen of sunflower. Plant Pathol 49(2):227–234CrossRefGoogle Scholar
  305. Saadat N, Amirshahi MC, Sarafi A (1974) The study of variability of some agronomic characters in M2 lines of a sunflower variety. In: Proceedings of the 6th international sunflower conference, Bucharest, Romania, 22–24 July 1974Google Scholar
  306. Sabetta W, Alba V, Blanco A, Montemurro C (2011) sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Method 7:20CrossRefGoogle Scholar
  307. Sackston WE (1992) On a treadmill: breeding sunflowers for resistance to disease. Annu Rev Phytopathol 30:529–551CrossRefPubMedGoogle Scholar
  308. Sadras VO, Echarte L, Andrade FH (2000) Profiles of leaf senecence during reproductive growth of sunflower and maize. Ann Bot 85:187–195CrossRefGoogle Scholar
  309. Sakr N (2010) Studies on pathogenicity in Plasmopara halstedii (sunflower downy mildew). Int J Life Sci 4:48–59CrossRefGoogle Scholar
  310. Sakr N, Ducher M, Tourvieille J, Walser P, Vear F, Tourvieille de Labrouhe D (2009) A method to measure aggressiveness of Plasmopara halstedii (sunflower downy mildew). J Phytopathol 157(2):133–136CrossRefGoogle Scholar
  311. Sala OE, Gherardi LA, Reichmann LG, Jobbagy E, Peters DPC (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Phil Trans Roy Soc B 367:3135–3144CrossRefGoogle Scholar
  312. Salamin N, Wüest RO, Lavergne S, Thuiller W, Pearman PB (2010) Assessing rapid evolution in a changing environment. Trend Ecol Evol 25:692–698CrossRefGoogle Scholar
  313. Sanghera GS, Wani SH, Hussain W, Singh N (2011) Engineering cold stress tolerance in crop plants. Curr Genom 12(1):30–43CrossRefGoogle Scholar
  314. Sarafi A (1976). The effect of gamma rays on some agronomic characters of M2 populations in inbred lines of sunflowers. In: Proceedings of the 7th international sunflower conference, Krasnodar, USSR, 27 June–3 July 1976Google Scholar
  315. Savin VN, Stepanenko OG (1968) Action of gamma rays from 60Co on sunflower. Agric Biol 3:921–922 (In Russian)Google Scholar
  316. Scelonge C, Wang L, Bidney D, Lu G, Hastings G, Cole G, Mancl M, D’Hautefeuille JL, Sosa-Dominguez JL, Coughlan S (2000) Transgenic Sclerotinia resistance in sunflower (Helianthus annuus L.). In: Proceedings of the 15th international sunflower conference, Toulouse, France, 12–15 June 2000Google Scholar
  317. Schiex T, Gaspin C (1997) CARTHAGENE: Constructing and joining maximum likelihood genetic maps. In: Proceedings of the 5th international conference on intelligent systems for molecular biology, Halkidiki, Greece, 21–26 June 1997Google Scholar
  318. Schrammeijer B, Sijmons PC, van den Elzen PJM, Hoekema A (1990) Meristem transformation of sunflower via Agrobacterium. Plant Cell Rep 9:55–60CrossRefPubMedGoogle Scholar
  319. Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trend Biotechnol 16:168–175CrossRefGoogle Scholar
  320. Seassau C, Debaeke P, Mestries E, Dechamp-Guillaume G (2010) Evaluation of inoculation methods to reproduce sunflower premature ripening caused by Phoma macdonaldii. Plant Dis 94(12):1398–1404CrossRefPubMedGoogle Scholar
  321. Seghatoleslami M, Forutani R (2015) Yield and water use efficiency of sunflower as affected by nano ZnO and water. Stress J Adv Agric Technol 2(1):34–37Google Scholar
  322. Seiler GJ (1994) Primary and lateral root elongation of sunflower seedlings. Environ Exp Bot 34:409–418CrossRefGoogle Scholar
  323. Seiler GJ (2007) Wild annual Helianthus anomalus and H. deserticola for improving oil content and quality in sunflower. Indust Crops Prod 25:95–100CrossRefGoogle Scholar
  324. Seiler GJ (2010) Utilization of wild Helianthus species in breeding for disease resistance. In: Proceedings of symposium sunflower breeding for resistance to diseases, Krasnodar, Russia, 23–24 June 2010Google Scholar
  325. Seiler GJ (2012) Utilization of wild Helianthus species in sunflower breeding. In: Škorić D (ed) sunflower genetics and breeding, Serbian Academy of Sciences, Branch in Novi Sad, Serbia, pp 344–430Google Scholar
  326. Seiler GJ (2018) Value of sunflower crop wild relatives’ habitat diversity for sunflower in a changing world. In: Proceedings of international symposium sunflower and climate change, Toulouse France, 5–6 Feb 2018Google Scholar
  327. Seiler GJ, Christie BR, Choo TM (1991) Registration of 13 downy mildew tolerant interspecific sunflower germplasm lines derived from wild annual species. Crop Sci 31:1714–1716Google Scholar
  328. Seiler GJ, Gulya TJ (2016) Sunflower: overview. In: Wrigley C, Corke H, Seetharaman K, Faubion J (eds) Encyclopaedia of food grains, vol 1. Elsevier. New York, NY, pp 247–253CrossRefGoogle Scholar
  329. Seiler GJ, Qi LL, Marek LF (2017) Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci 57:1083–1101CrossRefGoogle Scholar
  330. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Applicat 7:31–53CrossRefGoogle Scholar
  331. Shashidhar VR, Prasad TG, Sudharshan L (1996) Hormone signals from roots to shoots of sunflower (Helianthus annuus L.). Moderate soil drying increases delivery of abscisic acid and depresses delivery of cytokinins in xylem sap. Ann Bot 78:151–155CrossRefGoogle Scholar
  332. Shi W, Hao C, Zhang Y, Cheng J, Zhang Z, Liu J, Yi X, Cheng X, Sun D, Xu Y, Zhang X (2017) A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Front Plant Sci 8:1412Google Scholar
  333. Sigurbjornsson B, Micke A (1974) Philosophy and accomplishments of mutation breeding. In: Proceedings of IAEA panel polyploidy and induced mutations in plant breeding, Bari, Italy, 2 Oct 1974Google Scholar
  334. Singh BD (2000) Plant breeding—principles and methods. Kalyani Publishers, Ludhiana, New Delhi, Noida, IndiaGoogle Scholar
  335. Slabaugh MB, Yu JK, Tang S, Heesacker A, Hu X, Lu G, Bidney D, Han F, Knapp SJ (2003) Haplotyping and mapping a large cluster of downy mildew resistance gene candidates in sunflower using multilocus intron fragment length polymorphisms. Plant Biotechnol J 1(3):167–185CrossRefGoogle Scholar
  336. Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol Appl 13:279–286CrossRefGoogle Scholar
  337. Sobrado MA, Turner NC (1986) Photosynthesis, dry matter accumulation and distribution in the wild sunflower Helianthus petiolaris and the cultivated sunflower Helianthus annuus as influenced by water deficits. Oecologia 69:181–187CrossRefGoogle Scholar
  338. Soderlund C, Longden I, Mott R (1997) FPC: a system for building contigs from restriction fingerprinted clones. Bioinformatics 13:523–535CrossRefGoogle Scholar
  339. Soldatov KI (1976) Chemical mutagenesis in sunflower breeding. In: Proceedings of the 7th international. sunflower conference, Krasnodar, USSR. 27 June–3 July 1976Google Scholar
  340. Spindel JE, McCouch SR (2016) When more is better: how data sharing would accelerate genomic selection of crop plants. New Phytol 212:814–826CrossRefGoogle Scholar
  341. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744CrossRefGoogle Scholar
  342. Stoenescu F (1974) Genetics. In: Vranceanu AV (ed) Floarea-soarelui. Editura Academiei Republicii Socialiste. Buchrest, Romania, pp 92–125Google Scholar
  343. Sullivan M, VanToai T, Fausey N, Beuerlein J, Parkinson R, Soboyejo A (2001) Evaluating on-farm flooding impacts on soybean. Crop Sci 41:1–8CrossRefGoogle Scholar
  344. Stam P, Van Ooijen JW (1996) JoinMap version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen, The NetherlandsGoogle Scholar
  345. Sujatha M, Vijay S, Vasavi S, Veera Reddy P, Chander RS (2012) Agrobacterium-mediated transformation of cotyledons of mature seeds of multiple genotypes of sunflower (Helianthus annuus L.). Plant Cell Tiss Org Cult 110:275–287CrossRefGoogle Scholar
  346. Škorić D (1985) Sunflower breeding for resistance to Diaporthe/Phomopsis helianthi Munt. -Cvet. et al. Helia 8:21–24Google Scholar
  347. Škorić D (2009) Sunflower breeding for resistance to abiotic stresses. Helia 32:1–16CrossRefGoogle Scholar
  348. Škorić D (ed) (2012) Sunflower genetics and breeding. Serbian Academy of Sciences, Branch in Novi Sad, SerbiaGoogle Scholar
  349. Škorić D (2016) Sunflower breeding for resistance to abiotic and biotic stresses. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives. Intech, London, pp 585–635Google Scholar
  350. Talia P, Nishinakamasu V, Hopp HE, Heinz RA, Paniego N (2010) Genetic mapping of EST-SSR, SSR and InDel to improve saturation of genomic regions in a previously developed sunflower map. Elec J Biotechnol 13(6):7–8CrossRefGoogle Scholar
  351. Talukder ZI, Gong L, Hulke BS, Pegadaraju V, Song Q, Schultz Q, Qi L (2014) A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12. PLoS ONE 9(7):e98628CrossRefPubMedPubMedCentralGoogle Scholar
  352. Tamang BG, Fukao T (2015) Plant adaptation to multiple stresses during submergence and following desubmergence. Int J Mol Sci 16(12):30164–30180CrossRefPubMedPubMedCentralGoogle Scholar
  353. Tan AS, Altunok A, Aldemir M (2016) Oilseed and confectionary sunflower (Helianthus annuus L.) landraces of Turkey. In: Proceedings of the 19th international sunflower conference, Edirne, Turkey, 29 May–3 June 2016Google Scholar
  354. Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. TAG 107(1):6–19CrossRefGoogle Scholar
  355. Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105(8):1124–1136CrossRefPubMedPubMedCentralGoogle Scholar
  356. Tassi E, Barbafieri M, Giorgetti L, Morelli E, Peralta-Videa JR, Gardea-Torresdey JL (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: Modulation of boron phytotoxicity Plant Physiol Biochem 110:50–58CrossRefPubMedPubMedCentralGoogle Scholar
  357. Tavoljansky NP, Chiryaev PV, Scherstyuk SV, Altdnnikova VL (2004) Development of original material for sunflower breeding for seed characteristics, oil and protein quality in the conditions of central Chernozen region. Helia 27:117–122CrossRefGoogle Scholar
  358. Terzić S, Miklič V, Čanak P (2017) Review of 40 years of research carried out in Serbia on sunflower pollination. Oilseeds Fats Crops Lipids 24(6):D608Google Scholar
  359. Tetreault HM, Kawakami T, Ungerer MC, Levy C (2016) Low temperature tolerance in the perennial sunflower Helianthus maximiliani. Am Midland Naturalist 175:91–102CrossRefGoogle Scholar
  360. Thompson SM, Tan YP, Young AJ, Neate SM, Shivas RG (2011) Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporhe (Phomopsis) species. Persoonia 27:80–89CrossRefPubMedPubMedCentralGoogle Scholar
  361. Tishchenko OM, Komisarenko AG, Mykhalska SI, Sergeeva LE, Adamenko NI, Morgun BV, Kochetov AV (2014) Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using LBA4404 strain harbouring binary vector pBi2E with dsRNA-suppressor of proline dehydrogenase gene. Cytol Genet 48:218–226CrossRefGoogle Scholar
  362. Torabian S, Zahedi M, Khoshgoftar AH (2017) Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. J Plant Nutrit 40:615–623CrossRefGoogle Scholar
  363. Tourvieille D, Vear F, Pelletier C (1988) Use of two mycelium tests in breeding sunflower resistant to Phomopsis. In: Proceedings of the 12th international sunflower conference, Novi Sad, Yugoslavia, 25–29 July 1988Google Scholar
  364. Tourvieille de Labrouhe D, Pilorge E, Nicolas P, Vear F (2000) Le mildiou du tournesol. CETIOM- INRA, Versailles, FranceGoogle Scholar
  365. Tourvieille de Labrouhe D, Serre F, Walser P, Roche S, Vear F (2008a) Quantitative resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus). Euphytica 164(2):433–444CrossRefGoogle Scholar
  366. Tourvieille de Labrouhe D, Walser P, Serre F, Roche S, Vear F (2008b) Relations between spring rainfall and infection of sunflower by Plasmopara halstedii (downy mildew). In: Proceedings of the 17th international sunflower conference, Cordoba, Spain, 8–12 June 2008Google Scholar
  367. Tzilivakis J, Warner D, May M, Lewis K, Jaggard K (2005) An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agric Syst 85:101–119CrossRefGoogle Scholar
  368. Utz HF, Melchinger AE (1995) PlabQTL version 1.0 Institut fûr Pflanzenzüchtung, Saatgutforschung un Populationsgenetk, Universität Hohenheim, D-70593 Stuttgart, GermanyGoogle Scholar
  369. Van Berloo R (1999) GGT software for the display of graphical genotypes. J Hered 90:328–329CrossRefGoogle Scholar
  370. Vasić D (2001) Use of biotechnological and methods of molecular biology in sunflower breeding—achievements in the world. Ratar Povrt 35:259–269Google Scholar
  371. Vasić D, Marinković R, Miladinović F, Jocić S, Škorić D (2004) Gene actions affecting sunflower resistance to Sclerotinia sclerotiorum measured by sclerotia infections of roots, stems and capitula. In: Proceedings of the 16th International Sunflower Conference, Fargo, North Dakota, USA, 29 Aug–2 SepGoogle Scholar
  372. Vear FD (2010) Classic genetics and breeding. In: Jinguo H, Seiler G, Kole C (eds) Genetics, genomics and breeding of sunflower. Science Publishers, Enfield, New Hampshire, pp 51–78CrossRefGoogle Scholar
  373. Vear F (2011) Sunflower. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, Oilseeds, Springer, Berlin, Germany, p 161–171Google Scholar
  374. Vear F (2016) Changes in sunflower breeding over the last fifty years. Oilseeds Fats Crops Lipids 23(2):D202Google Scholar
  375. Vear F, Gentzbittel L, Philippon J, Mouzeyar S, Mestries E, Roeckel-Drevet P, De Labrouhe DT, Nicolas P (1997) The genetics of resistance to five races of downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.). Theor Appl Genet 95(4):584–9CrossRefGoogle Scholar
  376. Vear F, Serre F, Jouan-Dufournel I, Bert PF, Roche S, Walser P, Tourvieille de Labrouhe D, Vincourt P (2008) Inheritance of quantitative resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.). Euphytica 64(2):561–570CrossRefGoogle Scholar
  377. Velasco L, Fernandez-Martinez JM, Fernandez J (2015) Sunflower production in the European Union. In: Martinez-Force E, Turgut Dunford N, Salas JJ (eds) Sunflower chemistry, production, processing, and utilization. AOCS Press, Urbana, IL, pp 555–573Google Scholar
  378. Vijay Kumar MJ (2004) Effect of foliar application of nutrients (N, P, K, Ca and S) on growth and yield of sunflower. M Sc Thesis, University of Agricultural Sciences, Dharwad, IndiaGoogle Scholar
  379. Vincourt P, As-Sadi F, Bordat A, Langlade NB, Gouzy J, Pouilly N, Lippi Y, Serre F, Godiard L, De Labrouhe DT, Vear F (2012) Consensus mapping of major resistancegenes and independent QTL for quantitative resistance to sunflower downy mildew. Theor Appl Genet 125(5):909–920CrossRefPubMedPubMedCentralGoogle Scholar
  380. Virányi F, Gulya TJ, Tourvierille de Labrouhe D (2015) Recent changes in the pathogenic variability of Plasmopara halstedii (sunflower downy mildew) populations from different continents. Helia 38:149–162Google Scholar
  381. Virányi F, Spring O (2011) Advances in sunflower downy mildew research. Eur J Plant Pathol 129:207–220CrossRefGoogle Scholar
  382. Voskoboinik LK, Soldatov KI (1974) The research trend in the field of sunflower breeding for heterosis at the All-Union Research Institute for Oil Crops (VNIIMK). In: Proceedings of the 6th international sunflower conference, Bucharest, Romania, 22–24 July 1974Google Scholar
  383. Vranceanu AV, Craiciu D, Soare G, Pacureanu M, Voinescu G, Sandu I (1992) Sunflower genetic resistance to Phomopsis helianthi attack. In: Proceedings of the 13th international sunflower conference, Pisa, Italy, 7–11 Sep 1992Google Scholar
  384. Vranceanu VL, Pirvu N, Stoenescu FM (1981) New sunflower downy mildew resistance genes and their management. Helia 4:23–27Google Scholar
  385. Vranceanu AV, Pirvu N, Stoenescu FM, Iliescu H (1983) Genetic variability of sunflower reaction to the attack of Phomopsis helianthi. Helia 6:23–25Google Scholar
  386. Warburton ML, Rauf S, Marek L, Hussain M, Ogunola O, de Jesus Sanchez Gonzalez J (2017) The use of crop wild relatives in maize and sunflower breeding. Crop Sci 57:1227–1240Google Scholar
  387. Watanabe M, Shinmachi F, Noguchi A, Hasegawa I (2005) Introduction of yeast Metallothionein gene (CUP1) into plant and evaluation of heavy metal tolerance of transgenic plant at the callus stage. Soil Sci 51:129–133Google Scholar
  388. Welch ME, Rieseberg LH (2002) Patterns of genetic variation suggest a single, ancient origin for the diploid hybrid species Helianthus paradoxus. Evolution 56:2126–2137CrossRefPubMedPubMedCentralGoogle Scholar
  389. Wieckhorst S, Bachlava E, Dußle CM, Tang S, Gao W, Saski C, Knapp SJ, Schon CC, Hahn V, Bauer E (2010) Fine mapping of the sunflower resistance locus Plarg introduced from the wild species Helianthus argophyllus. Theor Appl Genet 121(8):1633–1644CrossRefPubMedPubMedCentralGoogle Scholar
  390. Wien HC (2008) Screening sunflower cultivars for reaction to daylength in flowering. Hort Sci 43:1285–1286Google Scholar
  391. Yasumoto S, Terakado Y, Matsuzaki M, Okada K (2011) Effects of high water table and short-term flooding on growth, yield, and seed quality of sunflower. Plant Product Sci 14(3):233–248CrossRefGoogle Scholar
  392. Yu JK, Mangor J, Thompson L, Edwards KJ, Slabaugh MB, Knapp SJ (2002) Allelic diversity of simple sequence repeats among elite inbred lines of cultivated sunflower. Genome 45(4):652–660CrossRefPubMedPubMedCentralGoogle Scholar
  393. Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, Soper J, Han F, Chu WC, Webb DM, Thompson L (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43(1):367–387CrossRefGoogle Scholar
  394. Yue B, Radi SA, Vick BA, Cai X, Tang S, Knapp SJ, Gulya TJ, Miller JF, Hu J (2008) Identifying quantitative trait loci for resistance to Sclerotinia head rot in two USDA sunflower germplasms. Phytopathology 98:926–931CrossRefPubMedPubMedCentralGoogle Scholar
  395. Zeng W, Xu C, Huang J, Wu J, Gao Z (2014) Interactive effect of salinity and nitrogen application on sunflower growth. Transact Chin Soc Agric Engineer 30(3):86–94Google Scholar
  396. Zhang J, Zheng HG, Ali ML, Tripathy NJ, Aarti A, Pathak MS, Sarial AK, Robin S, Nguyen TT, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT (1999) Progress on the molecular mapping of osmotic adjustment and root traits in rice. In: Ito O, O’Toole J,‎ Hardy B, Cantrell RP (eds) Genetic improvements of rice for water-limited environments, IRRI, Los Baños, Philippines, pp 307–317Google Scholar
  397. Zhang M, Liu Z, Jan CC (2016) Molecular mapping of a rust resistance gene R14 in cultivated sunflower line PH 3. Mol Breed 36(3):32CrossRefGoogle Scholar
  398. Zhang Z (2016) Use of genetic transformation technology in oil crops: soybean and sunflower. Dissertation, Ohio State UniversityGoogle Scholar
  399. Zhang ZW, Ma GJ, Zhao J, Markell SG, Qi LL (2017) Discovery and introgression of the wild sunflower-derived novel downy mildew resistance gene Pl19 in confection sunflower (Helianthus annuus L.). Theor Appl Genet 130(1):29–39Google Scholar
  400. Zhao J, Wang J, An L, Doerge RW, Chen ZJ, Grau CR, Meng J, Osborn TC (2007) Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta 227:13–24CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dragana Miladinović
    • 1
    Email author
  • Nada Hladni
    • 1
  • Aleksandra Radanović
    • 1
  • Siniša Jocić
    • 1
  • Sandra Cvejić
    • 1
  1. 1.Institute of Field and Vegetable CropsNovi SadSerbia

Personalised recommendations