Advertisement

Genetic Solutions to Improve Resilience of Canola to Climate Change

  • Harsh RamanEmail author
  • Rajneet Kaur Uppal
  • Rosy Raman
Chapter

Abstract

Climate change and the accompanying impacts of global warming such as with rising temperatures and water shortages at crucial plant development stages poses a great challenge to the productivity and profitability of agricultural crops. In order to improve the resilience of canola to climate change, an integrated approach for breeding climate-smart varieties is required. Although the majority of the current breeding targets for canola improvement programs remain largely unchanged, emerging climate uncertainties reinforced the development of high yielding resilient varieties for tolerance to excessive drought, frost, heat, and waterlogging. Ecological, evolutionary adaptation, and selective breeding processes have provided a range of natural variation in ‘climate smart traits’ in canola and its closely related species. In this review, we focus on the extent of natural variation in various adaptation and productivity traits, and recent genetic and genomic innovations to confront climate uncertainties. Further understanding of the genetic determinants underlying resilience traits, increasing genetic diversity by creating desired mutations, and the deployment of prediction based breeding methods will accelerate the development of climate smart varieties for improving productivity and profitability of canola.

Keywords

Drought resistance Climate change Stress tolerance Genetic variation QTL mapping Genetic technologies 

References

  1. Adams SR, Cockshull KE, Cave CRJ (2001) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88:869–877CrossRefGoogle Scholar
  2. Aksouh-Harradj NM, Campbell LC, Mailer RJ (2006) Canola response to high and moderately high temperature stresses during seed maturation. Can J Plant Sci 86(4):967–980CrossRefGoogle Scholar
  3. Aksouh N, Jacobs B, Stoddard FL, Mailer RJ (2001) Response of canola to different heat stresses. Austral J Agri Res 52(8):817–824CrossRefGoogle Scholar
  4. Aksouth-Harradj NM, Campbell LC, Mailer RJ (2001) Canola response to high and moderately high temperature stresses during seed maturation. Can J Plant Sci 86:967–980CrossRefGoogle Scholar
  5. Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21(7):1877–1896.  https://doi.org/10.1105/tpc.109.068114CrossRefPubMedPubMedCentralGoogle Scholar
  6. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61(6):1001–1013PubMedCrossRefGoogle Scholar
  7. Angadi SV, Cutforth HW, Miller PR, McConkey BG, Entz MH, Brandt SA, Volkmar KM (2000) Response of three Brassica species to high temperature stress during reproductive growth. Can J Plant Sci 80:693–701.  https://doi.org/10.4141/P99-152CrossRefGoogle Scholar
  8. Annisa CS, Turner NC, Cowling WA (2013) Genetic variation for heat tolerance during the reproductive phase in Brassica rapa. J Agron Crop Sci 199:424–435.  https://doi.org/10.1111/jac12034CrossRefGoogle Scholar
  9. Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940PubMedPubMedCentralCrossRefGoogle Scholar
  10. Arunyanark A, Jogloy S, Akkasaeng C, Vorasoot N, Kesmala T, Nageswara RRC, Wright GC, Patanothai A (2008) Chlorophyll stability is an indicator of drought tolerance in peanut. J Agron Crop Sci 194(2):113–125.  https://doi.org/10.1111/j.1439-037X.2008.00299.xCrossRefGoogle Scholar
  11. Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob Food Secur 12:31–37.  https://doi.org/10.1016/j.gfs.2017.01.008CrossRefGoogle Scholar
  12. Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud JP (2010) RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 51(12):1975–1987.  https://doi.org/10.1093/pcp/pcq155CrossRefPubMedGoogle Scholar
  13. Badawy HMA, Kakau J, Hoppe H-H (1992) Temperature and ageing of host tissue affect the interactions between different oilseed rape cultivars and pathotype groups of Leptosphaeria maculans. J Phytopathol 134(3):255–263.  https://doi.org/10.1111/j.1439-0434.1992.tb01234.xCrossRefGoogle Scholar
  14. Bagheri H, El-Soda M, van Oorschot I, Hanhart C, Bonnema G, Jansen-van den Bosch T, Mank R, Keurentjes J, Meng L, Wu J, Koornneef M, Aarts M (2012) Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population. Front Plant Sci 3(183).  https://doi.org/10.3389/fpls.2012.00183
  15. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376PubMedPubMedCentralCrossRefGoogle Scholar
  16. Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2(7):e106PubMedPubMedCentralCrossRefGoogle Scholar
  17. Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120.  https://doi.org/10.1007/s00122-009-1133-zCrossRefGoogle Scholar
  18. Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PAC, Richard F, Persad R, Bowden L, Hickman R, Martin C, Beynon JL, Buchanan-Wollaston V, Baker NR, Morison JIL, Schöffl F, Ott S, Mullineaux PM (2013) Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. J Exp Bot 64(11):3467–3481.  https://doi.org/10.1093/jxb/ert185CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bechtold U, Lawson T, Mejia-Carranza J, Meyer RC, Brown IR, Altmann T, Ton J, Mullineaux PM (2010) Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24. Plant, Cell Environ 33(11):1959–1973.  https://doi.org/10.1111/j.1365-3040.2010.02198.xCrossRefGoogle Scholar
  20. Behnam B, Iuchi S, Fujita M, Fujita Y, Takasaki H, Osakabe Y, Yamaguchi-Shinozaki K, Kobayashi M, Shinozaki K (2013) Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res 20(4):315–324.  https://doi.org/10.1093/dnares/dst012CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bemis SM, Lee JS, Shpak ED, Tori KU (2013) Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes. J Exp Bot 64(17):5323–5333.  https://doi.org/10.1093/jxb/ert270CrossRefPubMedGoogle Scholar
  22. Berry PM, Spink JH (2006) A physiological analysis of oilseed rape yields: past and future. J Agri Sci 144:381–392CrossRefGoogle Scholar
  23. Beversdorf WD, Hume DJ, Daonnelly-Vanderloo MJ (1988) Agronomic performance of trianzine-resistant and susceptible reciprocal spring Canola hybrids. Crop Sci 28(6):932–934.  https://doi.org/10.2135/cropsci1988.0011183X002800060012xCrossRefGoogle Scholar
  24. Bjorkman T, Pearson KJ (1998) High temperature arrest of inflorescence development in broccoli (Brassica oleracea var. italica L.). J Exp Bot 49:101–106CrossRefGoogle Scholar
  25. Blum A (2005) Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant or mutually exclusive? Austral J Agri Res 56:1159–1168CrossRefGoogle Scholar
  26. Blum A, Sinmena B, Ziv O (1980) An evaluation of seed and seedling drought tolerance screening tests in wheat. Euphytica 19:727–736CrossRefGoogle Scholar
  27. Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47CrossRefGoogle Scholar
  28. Blum A, Shipiler L, Golan G, Mayer J (1989) Yield stability and canopy temperature of wheat genotypes under drought stress. Field Crop Res 22:289–296CrossRefGoogle Scholar
  29. BOM Ca (2007) Climate change in Australia. Canberra, CSIRO. Available at: www.climatechangeinaustralia.gov.au/en/climate-projections
  30. Botwright TL, Condon AG, Rebetzke GJ, Richards RA (2002) Field evaluation of early vigour for genetic improvement of grain yield in wheat. Austral J Agri Res 53:1137–1145CrossRefGoogle Scholar
  31. Braatz J, Harloff HJ, Emrani N, Elisha C, Heepe L, Gorb SN, Jung C (2018) The effect of INDEHISCENT point mutations on silique shatter resistance in oilseed rape (Brassica napus). Theor Appl Genet 131(4):959–971.  https://doi.org/10.1007/s00122-018-3051-4CrossRefPubMedGoogle Scholar
  32. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6(5):e1000940PubMedPubMedCentralCrossRefGoogle Scholar
  33. Brown RH, Byrd GT (1997) Transpiration efficiency, specific leaf weight, and mineral concentration in peanut and pearl millet. Crop Sci 37:475–480.  https://doi.org/10.2135/cropsci1997.0011183X003700020028xCrossRefGoogle Scholar
  34. Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25.  https://doi.org/10.1093/jxb/53.366.13CrossRefPubMedGoogle Scholar
  35. Burke JJ, Chen J (2015) Enhancement of reproductive heat tolerance in plants. PLoS ONE 10(4):e0122933.  https://doi.org/10.1371/journal.pone.0122933CrossRefPubMedPubMedCentralGoogle Scholar
  36. Bus A, Korber N, Parkin IA, Samans B, Snowdon RJ, Li J, Stich B (2014) Species- and genome-wide dissection of the shoot ionome in Brassica napus and its relationship to seedling development. Front Plant Sci 5:485.  https://doi.org/10.3389/fpls.2014.00485CrossRefPubMedPubMedCentralGoogle Scholar
  37. Butruille DV, Guries RP, Osborn TC (1999) Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics 153(2):949–964PubMedPubMedCentralGoogle Scholar
  38. Byrd GT, May PA (2000) Physiological comparisons of switchgrass cultivars differing in transpiration efficiency. Crop Sci 40:1271–1277CrossRefGoogle Scholar
  39. Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 6:21625.  https://doi.org/10.1038/srep21625CrossRefPubMedPubMedCentralGoogle Scholar
  40. Cai G, Yang Q, Zhao Z, Chen H, Wu J, Fan C, Zhou Y (2012) Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genetics 13.  https://doi.org/10.1186/1471-2156-13-105PubMedPubMedCentralCrossRefGoogle Scholar
  41. Camejo D, Rodríguez P, Morales MA, Dell’amico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289PubMedCrossRefGoogle Scholar
  42. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrative view from breeding to genomics. Field Crop Res 105:1–14CrossRefGoogle Scholar
  43. Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, Taheri A, Al-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M (2010) Plant breeding and climate changes. J Agri Sci 148(6):627–637.  https://doi.org/10.1017/S0021859610000651CrossRefGoogle Scholar
  44. Cerrudo D, Cao S, Yuan Y, Martinez C, Suarez EA, Babu R, Zhang X, Trachsel S (2018) Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci 9:366.  https://doi.org/10.3389/fpls.2018.00366CrossRefPubMedPubMedCentralGoogle Scholar
  45. Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60(1):2–14.  https://doi.org/10.1111/j.1365-3059.2010.02411.xCrossRefGoogle Scholar
  46. Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva S, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M-C, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T-H, Ha Dinh Thi V, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury J-M, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345 (6202).  https://doi.org/10.1126/science.1260782
  47. Champolivier I, Merrien A (1996) Effects of water stress applied at different growth stages to Brassica napus L. var. Oleifera on yield, yield components and seed quality. J Agron 93(3):53–58Google Scholar
  48. Change IPoCCiC (1995) The science of climate change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds). Cambridge Univ Press, Cambridge, UKGoogle Scholar
  49. Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M (2017) Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 7:46295.  https://doi.org/10.1038/srep46295. https://www.nature.com/articles/srep46295#supplementary-information
  50. Chaves MM, J.S. Pereira, J. Maroco, M.L. Rodriques CPPR, M.L. Osorio, I. Carvatho, T. Faria and C. Pinheiro, (2002) How plants cope with water stress in the field photosynthesis and growth? Ann Bot 89:907–916PubMedPubMedCentralCrossRefGoogle Scholar
  51. Chen J, Wang B, Zhang Y, Yue X, Li Z, Liu K (2017) High-density ddRAD linkage and yield-related QTL mapping delimits a chromosomal region responsible for oil content in rapeseed (Brassica napus L.). Breed Sci 67(3):296–306.  https://doi.org/10.1270/jsbbs.16116
  52. Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115(6):849–885.  https://doi.org/10.1007/s00122-007-0613-2PubMedCrossRefGoogle Scholar
  53. Chimenti CA, Marcantonio M, Hall AJ (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crop Res 95(2–3):305–315CrossRefGoogle Scholar
  54. Christopher JT, Manschadi AM, Hammer GL, Borrell AK (2008) Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Austral J Agri Res 59(4):354–364.  https://doi.org/10.1071/AR07193CrossRefGoogle Scholar
  55. Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, Arora R, Bragg JN, Vogel JP, Singh S, Simmons BA, Pauly M, Hake S (2011) Overexpression of the maize microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci USA 108(42):17550–17555.  https://doi.org/10.1073/pnas.1113971108CrossRefPubMedGoogle Scholar
  56. Clark SA, Kinghorn BP, Hickey JM, van der Werf JHJ (2013) The effect of genomic information on optimal contribution selection in livestock breeding programs. Genet Select Evol 45(1):44.  https://doi.org/10.1186/1297-9686-45-44CrossRefGoogle Scholar
  57. Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, Batley J, Edwards D, Meng J, Li R, Lawley CT, Pauquet J, Laga B, Cheung W, Iniguez-Luy F, Dyrszka E, Rae S, Stich B, Snowdon RJ, Sharpe AG, Ganal MW, Parkin IAP (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129(10):1887–1899.  https://doi.org/10.1007/s00122-016-2746-7CrossRefPubMedPubMedCentralGoogle Scholar
  58. Coleman R, Gill G, Rebetzke GJ (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Austral J Agri Res 52:1235–1246CrossRefGoogle Scholar
  59. Condon A, Richards R. (1993) Exploiting genetic variation in transpiration efficiency in wheat: an agronomic view. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. San Diego, CA: Academic Press, 435–450Google Scholar
  60. Condon AG, Richards RA, Farquhar GD (1987) Carbon isotope discrimination is positively correlated with grain yield and dry matter production in field-grown wheat. Crop Sci 27:96–1001CrossRefGoogle Scholar
  61. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water use efficiency. J Exp Bot 55:2447–2460PubMedPubMedCentralCrossRefGoogle Scholar
  62. Cowley R, Luckett D (2011) Chlorophyll fluorescence as a method to detect moisture limiting stress in canola. In: 17th Australian Research Assembly on Brassicas (ARAB)Google Scholar
  63. Cowley RB, Luckett DJ, Moroni JS, Zeleke K, Diffey S (2014) Remote sensing of early vigour in canola germplasm: relationship to grain yield and potential to select for drought tolerance. Crop Pasture Sci 65(12):1288–1299.  https://doi.org/10.1071/CP14055CrossRefGoogle Scholar
  64. Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crop Res 104(1–3):103–111CrossRefGoogle Scholar
  65. Cowling WA, Li L, Siddique KHM, Henryon M, Berg P, Banks RG, Kinghorn BP (2017) Evolving gene banks: improving diverse populations of crop and exotic germplasm with optimal contribution selection. J Exp Bot 68(8):1927–1939.  https://doi.org/10.1093/jxb/erw406CrossRefPubMedGoogle Scholar
  66. Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kembel SW, Fargione JE (2013) Global diversity of drought tolerance and grassland climate-change resilience. Nat Clim Change 3(1):63–67. http://www.nature.com/nclimate/journal/v3/n1/abs/nclimate1634.html#supplementary-informationCrossRefGoogle Scholar
  67. Crossa J, Jarquín D, Franco J, Pérez-Rodríguez P, Burgueño J, Saint-Pierre C, Vikram P, Sansaloni C, Petroli C, Akdemir D, Sneller C, Reynolds M, Tattaris M, Payne T, Guzman C, Peña RJ, Wenzl P, Singh S (2016) Genomic prediction of gene bank wheat landraces. G3: GeneGenom Genet 6(7):1819PubMedPubMedCentralCrossRefGoogle Scholar
  68. Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273(5279):1239–1241PubMedCrossRefGoogle Scholar
  69. Daetwyler HD, Hayden MJ, Spangenberg GC, Hayes BJ (2015) Selection on optimal haploid value increases genetic gain and preserves more genetic diversity relative to genomic sSelection. Genetics 200(4):1341PubMedPubMedCentralCrossRefGoogle Scholar
  70. Dalton-Morgan J, Hayward Alice, Alamery S, Tollenaere R, Mason AS, Campbell E, Dhwani P, Lorenc MT, Yi Bin, Long Yan, Meng Jinling, Raman Rosy, Raman Harsh, Lawley Cynthia, Edwards D, Batley J (2014) Development of a high-throughput SNP array in the amphidiploid species Brassica napus. Plant Biotechnol J 14(4):643–655.  https://doi.org/10.1007/s10142-014-0391-2CrossRefGoogle Scholar
  71. Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS ONE 11(5):e0156362  https://doi.org/10.1371/journal.pone.0156362PubMedPubMedCentralCrossRefGoogle Scholar
  72. Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104:309–314PubMedPubMedCentralCrossRefGoogle Scholar
  73. Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17(6):341–348.  https://doi.org/10.1016/j.tplants.2012.02.008CrossRefPubMedGoogle Scholar
  74. Delourme R, Barbetti MJ, Snowdon R, Zhao J, Maria J. Manzanares-Dauleux (2011) Genetics and genomics of disease resistance. In: Edwards D, Batley J, Parkin I, Kole C (eds) Genetics, genomics and breeding of oilseed brassicas. Science Publishers, CRC Press, Boca Raton, FLGoogle Scholar
  75. Des Marais DL, Auchincloss LC, Sukamtoh E, McKay JK, Logan T, Richards JH, Juenger TE (2014) Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. Proc Natl Acad Sci USA 111(7):2836–2841.  https://doi.org/10.1073/pnas.1321429111CrossRefPubMedGoogle Scholar
  76. Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244.  https://doi.org/10.3389/fpls.2014.00244CrossRefPubMedPubMedCentralGoogle Scholar
  77. Dias K, Gezan SA, Guimaraes CT, Nazarian A, da Costa ESL, Parentoni SN, de Oliveira Guimaraes PE, de Oliveira Anoni C, Padua JMV, de Oliveira Pinto M, Noda RW, Ribeiro CAG, de Magalhaes JV, Garcia AAF, de Souza JC, Guimaraes LJM, Pastina MM (2018) Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Heredity (Edinb) 121(1):24–37.  https://doi.org/10.1038/s41437-018-0053-6CrossRefGoogle Scholar
  78. Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot-London 109.  https://doi.org/10.1093/aob/mcr323PubMedPubMedCentralCrossRefGoogle Scholar
  79. Dixon GR (2009) Plasmodiophora brassiciae in its environment. J Plant Growth Regul 28(3):212–228. ISSN 07217595CrossRefGoogle Scholar
  80. Dixon GR (2012) Climate change—impact on crop growth and food production, and plant pathogens. Can J Plant Pathol 34(3):362–379.  https://doi.org/10.1080/07060661.2012.701233CrossRefGoogle Scholar
  81. Earl H, Davis RF (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J 95:688–696CrossRefGoogle Scholar
  82. Easlon HM, Nemali KS, Richards JH, Hanson DT, Juenger TE, McKay JK (2014) The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana. Photosynth Res 119(1–2):119–129.  https://doi.org/10.1007/s11120-013-9891-5CrossRefPubMedGoogle Scholar
  83. Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126.  https://doi.org/10.1007/s00122-012-1964-xPubMedCrossRefGoogle Scholar
  84. El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM (2014) Genotype X environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci 19(6):390–398.  https://doi.org/10.1016/j.tplants.2014.01.001CrossRefPubMedGoogle Scholar
  85. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple Genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379PubMedPubMedCentralCrossRefGoogle Scholar
  86. Fan CC, Cai GQ, Qing J, Li QY, Yang MG, Wu J, Fu TD, Liu KD, Zhou YM (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121(7):1289–1301.  https://doi.org/10.1007/s00122-010-1388-4,  https://doi.org/10.1007/s00122-010-1388-4
  87. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212CrossRefGoogle Scholar
  88. Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Austral J Plant Physiol 11:539–552Google Scholar
  89. Ferguson JN, Humphry M, Lawson T, Brendel O, Bechtold U (2018) Natural variation of life-history traits, water use, and drought responses in Arabidopsis. Plant Direct 2(1):e00035.  https://doi.org/10.1002/pld3.35CrossRefGoogle Scholar
  90. Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995) Mapping loci controlling vernalisation requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732PubMedCrossRefGoogle Scholar
  91. Finka A, Mattoo RU, Goloubinoff P (2011) Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 16(1):15–31.  https://doi.org/10.1007/s12192-010-0216-8CrossRefPubMedGoogle Scholar
  92. Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Larque SA (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475CrossRefGoogle Scholar
  93. Fletcher RS, Herrmann D, Mullen JL, Li Q, Schrider DR, Price N, Lin J, Grogan K, Kern A, McKay JK (2016) Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by resequencing. G3: Genes Genom Genet 6(4):793–803.  https://doi.org/10.1534/g3.115.021279PubMedPubMedCentralCrossRefGoogle Scholar
  94. Fletcher RS, Mullen JL, Heiliger A, McKay JK (2015) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot 66(1):245–256,  https://doi.org/10.1093/jxb/eru1423
  95. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374PubMedCrossRefGoogle Scholar
  96. Foisset N, Delourme R, Barret P, Renard M (1995) Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet 91(5):756–761.  https://doi.org/10.1007/BF00220955CrossRefPubMedGoogle Scholar
  97. Fotovat R, Valizadeh M, Toorchi M (2007) Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J Food Agri Environ 5:225–227Google Scholar
  98. Foulkes MJ, Snape JW, Shearman VJ, Reynolds MP, Gaju O, Sylvester-Bradley R (2007) Genetic progress in yield potential in wheat: recent advances and future prospects. J Agri Sci 145:17–29Google Scholar
  99. Franks SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol 190(1):249–257.  https://doi.org/10.1111/j.1469-8137.2010.03603.xCrossRefPubMedGoogle Scholar
  100. Franks SJ, Kane NC, O’Hara NB, Tittes S, Rest JS (2016) Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools. Mol Ecol 25(15):3622–3631.  https://doi.org/10.1111/mec.13615CrossRefPubMedPubMedCentralGoogle Scholar
  101. Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104(4):1278–1282.  https://doi.org/10.1073/pnas.0608379104CrossRefPubMedGoogle Scholar
  102. Fritsche S, Wang X, Li J, Stich B, Kopisch-Obuch FJ, Endrigkeit J, Leckband G, Dreyer F, Friedt W, Meng J, Jung C (2012) A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus). Front Plant Sci 3.  https://doi.org/10.3389/fpls.2012.00129
  103. Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DG, Stewart CN, Jr., Tang Y, Wang ZY (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 10(4):443–452.  https://doi.org/10.1111/j.1467-7652.2011.00677.xPubMedPubMedCentralCrossRefGoogle Scholar
  104. Fu Y, Wei D, Dong H, He Y, Cui Y, Mei J, Wan H, Li J, Snowdon R, Friedt W, Li X, Qian W (2015) Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep 5:14407.  https://doi.org/10.1038/srep14407CrossRefPubMedPubMedCentralGoogle Scholar
  105. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48(8):1081–1091.  https://doi.org/10.1093/pcp/pcm091CrossRefPubMedGoogle Scholar
  106. Gan Y, Angadi SV, Cutforth H, Potts D, Angadi VV, McDonald CL (2004) Canola and mustard response to short periods of temperature and water stress at different developmental stages. Can J Plant Sci 84:697–704CrossRefGoogle Scholar
  107. Garlinge J (2005) Crop variety sowing guide for Western Australia. Bulletin 4655. Department of Agriculture, Western AustraliaGoogle Scholar
  108. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509.  https://doi.org/10.1146/annurev.phyto.44.070505.143420CrossRefPubMedGoogle Scholar
  109. Geng X, Jiang C, Yang J, Wang L, Wu X, Wei W (2016) Rapid identification of candidate genes for seed weight using the slaf-seq method in Brassica napus. PLoS ONE 11(1):e0147580.  https://doi.org/10.1371/journal.pone.0147580CrossRefPubMedPubMedCentralGoogle Scholar
  110. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818.  https://doi.org/10.1126/science.1185383CrossRefGoogle Scholar
  111. Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, Marco Y (2003) ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J 36(3):353–365PubMedCrossRefGoogle Scholar
  112. Gorjanc G, Gaynor RC, Hickey JM (2018) Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet 131(9):1953–1966.  https://doi.org/10.1007/s00122-018-3125-3CrossRefPubMedCentralPubMedGoogle Scholar
  113. Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Phil Trans Roy Soc B: Biol Sci 365(1554):2973–2989.  https://doi.org/10.1098/rstb.2010.0158CrossRefGoogle Scholar
  114. Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crops Res 122:1–13CrossRefGoogle Scholar
  115. Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci USA 107(20):9458–9463.  https://doi.org/10.1073/pnas.0914299107CrossRefPubMedGoogle Scholar
  116. Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205–206:38–47.  https://doi.org/10.1016/j.plantsci.2013.01.005CrossRefPubMedGoogle Scholar
  117. Guan Q, Yue X, Zeng H, Zhu J (2014) The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Plant Cell 26(1):438–453.  https://doi.org/10.1105/tpc.113.118927CrossRefPubMedPubMedCentralGoogle Scholar
  118. Gunasekera CP, French RJ, Martin LD, Siddique KHM (2009) Comparison of the responses of two Indian mustard (Brassica juncea L.) genotypes to post-flowering soil water deficit with the response of canola (B. napus L.) cv. Monty. Crop Pasture Sci 60:251–261Google Scholar
  119. Guo Y, Hans H, Christian J, Molina C (2014) Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components. Front Plant Sci 5:282.  https://doi.org/10.3389/fpls.2014.00282
  120. Guo YM, Turner NC, Chen S, Nelson MN, Siddique KHM, Cowling WA (2015) Genotypic variation for tolerance to transient drought during the reproductive phase of Brassica rapa. J Agron Crop Sci 201:267–279CrossRefGoogle Scholar
  121. Gupta A, Kaur K, Kaur N (2011) Stem reserve mobilization and sink activity in wheat under drought conditions. Amer J Plant Sci 2:70–77CrossRefGoogle Scholar
  122. Haghighattalab A, Gonzalez Perez L, Mondal S, Singh D, Schinstock D, Rutkoski J, Ortiz-Monasterio I, Singh RP, Goodin D, Poland J (2016) Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Meth 12:35.  https://doi.org/10.1186/s13007-016-0134-6CrossRefGoogle Scholar
  123. Hall NM, Griffiths H, Corlett JA, Jones HG, Lynn J, King GJ (2005) Relationships between water-use traits and photosynthesis in Brassica oleracea resolved by quantitative genetic analysis. Plant Breed 124:557–564CrossRefGoogle Scholar
  124. Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Annu Rev Genet 49:269–289.  https://doi.org/10.1146/annurev-genet-112414-055037CrossRefPubMedGoogle Scholar
  125. Hanumappa M, Nguyen HT (2009) Genetic approaches toward improving heat tolerance in plants. In: Jenks M, Wood A (eds) Genes for plant abiotic stress. Wiley-Blackwell, USAGoogle Scholar
  126. Hao Z, Li X, Liu X, Xie C, Li M, Zhang D, Zhang S (2010) Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174(2):165–177.  https://doi.org/10.1007/s10681-009-0091-5CrossRefGoogle Scholar
  127. Hao Z, Xinhai Li, Chuanxiao Xie, Jianfeng Weng, Mingshun Li, Degui Zhang, Xiaoling Liang, Lingling Liu, Sisi Liu, Shihuang Zhang (2011) Identification of functional genetic variations underlying drought tolerance in maize using SNP markers. J Integr Plant Biol 53(8):641–652.  https://doi.org/10.1111/j.1744-7909.2011.01051.xCrossRefPubMedGoogle Scholar
  128. Harloff HJ, Lemcke S, Mittasch J, Frolov A, Wu JG, Dreyer F, Leckband G, Jung C (2012) A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet 124(5):957–969.  https://doi.org/10.1007/s00122-011-1760-zPubMedCrossRefGoogle Scholar
  129. Hatzig S, Zaharia LI, Abrams S, Hohmann M, Legoahec L, Bouchereau A, Nesi N, Snowdon RJ (2014) Early osmotic adjustment responses in drought-resistant and drought-sensitive oilseed rape. J Integr Plant Biol 9:797–809PubMedCrossRefGoogle Scholar
  130. Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner MH, Leckband G, Abbadi A, RJ S (2015a) Genome-wide association mapping unravels the genetic control of seed germination and vigour in Brassica napus. Front Plant Sci 6:221Google Scholar
  131. Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner M, Leckband G, Abbadi A, Snowdon RJ (2015b) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci 9(6):221.  https://doi.org/10.3389/fpls.2015.00221
  132. Hauben M, Haesendonckx B, Standaert E, Van Der Kelen K, Azmi A, Akpo H, Van Breusegem F, Guisez Y, Bots M, Lambert B, Laga B, De Block M (2009) Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc Natl Acad Sci USA 106(47):20109–20114.  https://doi.org/10.1073/pnas.0908755106CrossRefPubMedGoogle Scholar
  133. Hawkins GP, Zhang X, Thiagarjah MR, Corrigan LM, Stringam GR (2005) Identification of RAPD markers linked to pod length in Brassica napus L. canola. Can J Plant Sci 85(4):803–808.  https://doi.org/10.4141/p04-017CrossRefGoogle Scholar
  134. Henry A, Gowda VR, Torres RO, McNally KL, Serraj R (2011) Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crops Res 120(2):205–214CrossRefGoogle Scholar
  135. Hettenhausen C, Baldwin IT, Wu J (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv tomato DC3000. Plant Physiol 158(2):759–776.  https://doi.org/10.1104/pp.111.190074CrossRefPubMedGoogle Scholar
  136. Hocking P, Stapper M (1993) Effects of sowing time and nitrogen fertilizer rate on growth, yield and nitrogen accumulation of canola, mustard and wheat. In: Proceedings, 9th Australian research assembly on brassicas, Wagga Wagga, NSW, pp 33–44Google Scholar
  137. Holzapfel CB, Lafond GP, Brandt SA, Bullock PR, Irvine RB, Morrison MJ, May WE, James DC (2009) Estimating canola (Brassica napus L.) yield potential using an active optical sensor. Can J Plant Sci 89(6):1149–1160CrossRefGoogle Scholar
  138. Honsdorf N, Becker HC, Ecke W (2010) Association mapping for phenological, morphological, and quality traits in canola quality winter rapeseed (Brassica napus L.). Genome 53(11):899–907.  https://doi.org/10.1139/g10-049PubMedCrossRefGoogle Scholar
  139. Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 9(5):e97047.  https://doi.org/10.1371/journal.pone.0097047CrossRefPubMedPubMedCentralGoogle Scholar
  140. Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, Meng J (2012) A tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12(1):238PubMedPubMedCentralCrossRefGoogle Scholar
  141. Hua W, Li R-J, Zhan G-M, Liu J, Li J, Wang X-F, Liu G-H, Wang H-Z (2012) Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J 69(3):432–444.  https://doi.org/10.1111/j.1365-313X.2011.04802.xCrossRefPubMedGoogle Scholar
  142. Hua Y, Zhang D, Zhou T, He M, Ding G, Shi L, Xu F (2016) Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant, Cell Environ 39(7):1601–1618.  https://doi.org/10.1111/pce.12731CrossRefGoogle Scholar
  143. Huang YJ, Pirie EJ, Evans N, Delourme R, King GJ, Fitt BDL (2009) Quantitative resistance to symptomless growth of Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape). Plant Pathol 58(2):314–323CrossRefGoogle Scholar
  144. Huang Y, Evans N, Li ZQ, Eckert M, Chèvre AM, Renard M, Fitt BD (2006) Temperature and leaf wetness duration affect phenotypic expression of Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus. New Phytol 170:129–141PubMedCrossRefGoogle Scholar
  145. Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16(2):127–138.  https://doi.org/10.1007/s11032-005-6825-8CrossRefGoogle Scholar
  146. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27(4):325–333PubMedCrossRefGoogle Scholar
  147. Jackson MB, Drew MC (1984) Effects of flooding on growth and metabolisms of herbaceous plants. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, London, pp 47–128CrossRefGoogle Scholar
  148. Jackson P, Basnayake J, Inman-Bamber G, Lakshmanan P, Natarajan S, Stokes C (2016) Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm. J Exp Bot 67(3):861–871.  https://doi.org/10.1093/jxb/erv505PubMedPubMedCentralCrossRefGoogle Scholar
  149. Jan HU, Abbadi A, Lücke S, Nichols RA, Snowdon RJ (2016) Genomic prediction of testcross performance in Canola (Brassica napus). PLoS ONE 11(1):e0147769.  https://doi.org/10.1371/journal.pone.0147769CrossRefPubMedPubMedCentralGoogle Scholar
  150. Jannink JL (2007) Identifying quantitative trait locus by genetic background interactions in association studies. Genetics 176(1):553–561PubMedPubMedCentralCrossRefGoogle Scholar
  151. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153(1):185–197.  https://doi.org/10.1104/pp.110.154773CrossRefPubMedPubMedCentralGoogle Scholar
  152. Jestin C, Lodé M, Vallée P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux M, Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27:271–287CrossRefGoogle Scholar
  153. Jia Y, Jannink JL (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192(4):1513–1522.  https://doi.org/10.1534/genetics.112.144246CrossRefPubMedPubMedCentralGoogle Scholar
  154. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42(6):541–544.  https://doi.org/10.1038/ng.591CrossRefPubMedGoogle Scholar
  155. Jinrui S, Huirong G, Hongyu W, Renee LH, L. AR, Meizhu Y, M. HS, Hua M, E. HJ (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216.  https://doi.org/10.1111/pbi.12603PubMedPubMedCentralCrossRefGoogle Scholar
  156. Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289PubMedCrossRefGoogle Scholar
  157. Jones H (1992) Plants and microclimate. A quantitative approach to environmental plant physiology. Cambridge University Press, CambridgeGoogle Scholar
  158. Jones MM (1978) Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol 61:122–126PubMedPubMedCentralCrossRefGoogle Scholar
  159. Juenger TE, McKay JK, Hausmann N, Keurentjes JJB, Sen S, Stowe KA, Dawson TE, Simms EL, Richards JH (2005) Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: δ13C, stomatal conductance and transpiration efficiency. Plant, Cell Environ 28(6):697–708.  https://doi.org/10.1111/j.1365-3040.2004.01313.xCrossRefGoogle Scholar
  160. Kang J, Hwang J-U, Lee M, Kim Y-Y, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107(5):2355–2360.  https://doi.org/10.1073/pnas.0909222107CrossRefPubMedGoogle Scholar
  161. Kapanigowda MH, Payne WA, Rooney WL, Mullet JE, Balota M (2014) Quantitative trait locus mapping of the transpiration ratio related to preflowering drought tolerance in sorghum (Sorghum bicolor). Funct Plant Biol 41(11):1049–1065.  https://doi.org/10.1071/FP13363CrossRefGoogle Scholar
  162. Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104(39):15270–15275.  https://doi.org/10.1073/pnas.0707294104CrossRefPubMedGoogle Scholar
  163. Kato Y, Hirotsu S, Nemoto K, Yamagishi J (2008) Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture. Euphytica 160:423–430CrossRefGoogle Scholar
  164. Kaya C, Tuna L, D. H (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water—stress condition. Plant Nutr 29:1469–1480CrossRefGoogle Scholar
  165. Kennard WC, Slocum MK, Figdore SS, Osborn TC (1994) Genetic analysis of morphological variation in Brassica oleracea using molecular markers. Theor Appl Genet 87:721–732PubMedCrossRefGoogle Scholar
  166. Kenney AM, McKay JK, Richards JH, Juenger TE (2014) Direct and indirect selection on flowering time, water-use efficiency (WUE, δ 13C), and WUE plasticity to drought in Arabidopsis thaliana. Ecol Evol 4(23):4505–4521.  https://doi.org/10.1002/ece3.1270CrossRefPubMedPubMedCentralGoogle Scholar
  167. Kholová J, Hash CT, Kakkera A, Kočová M, Vadez V (2010a) Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. J Exp Bot 61:369–377PubMedCrossRefGoogle Scholar
  168. Kholová J, Hash CT, Lava KP, Yadav RS, Kočová M, Vadez V (2010b) Terminal drought tolerant pearl millets [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapor pressure deficit. J Exp Bot 61:1431–1440PubMedPubMedCentralCrossRefGoogle Scholar
  169. Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genom 18(1):31–41.  https://doi.org/10.1007/s10142-017-0572-xCrossRefGoogle Scholar
  170. Kirkegaard JA, Liley JM, Morrison MJ (2016) Drivers of trend in Australian canola productivity and future prospects. Crop Pasture Sci 67(4):1–9CrossRefGoogle Scholar
  171. Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260CrossRefGoogle Scholar
  172. Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102(2):425–430CrossRefGoogle Scholar
  173. Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breed 9(3):201–210.  https://doi.org/10.1023/a:1019759512347CrossRefGoogle Scholar
  174. Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172PubMedCrossRefGoogle Scholar
  175. Koornneef M, Hanhart CJ, Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229(1):57–66PubMedCrossRefGoogle Scholar
  176. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5(7):e1000551.  https://doi.org/10.1371/journal.pgen.1000551CrossRefPubMedPubMedCentralGoogle Scholar
  177. Kramer PJ (1980) Drought, stress and the origin of adaptation. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, CanadaGoogle Scholar
  178. Kumagai T, Porporato A (2012) Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: anisohydric or isohydric? Plant, Cell Environ 35:61–71.  https://doi.org/10.1111/j.1365-3040.2011.02428.xCrossRefGoogle Scholar
  179. Kumar A, Singh DP (1998) Use of physiological indices as a screening technique for drought tolerance in oilseed Brassica species. Ann Bot 81:413–420CrossRefGoogle Scholar
  180. Kumar A, Singh P, Singh DP, Singh H, Sharma HC (1984) Differences in osmoregulation in Brassica species. Ann Bot 54:537–542CrossRefGoogle Scholar
  181. Kumar V, Paillard S, Fopa-Fomeju B, Falentin C, Deniot G, Baron C, Vallée P, Manzanares-Dauleux MJ, Delourme R (2018) Multi-year linkage and association mapping confirm the high number of genomic regions involved in oilseed rape quantitative resistance to blackleg. Theor Appl Genet.  https://doi.org/10.1007/s00122-018-3103-9PubMedCrossRefGoogle Scholar
  182. Kuromori T, Fujita M, Urano K, Tanabata T, Sugimoto E, Shinozaki K (2016) Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency. Plant Sci 251:75–81.  https://doi.org/10.1016/j.plantsci.2016.02.019CrossRefPubMedGoogle Scholar
  183. Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA 107(5):2361–2366.  https://doi.org/10.1073/pnas.0912516107CrossRefPubMedGoogle Scholar
  184. Kuromori T, Sugimoto E, Shinozaki K (2011) Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J 67(5):885–894.  https://doi.org/10.1111/j.1365-313X.2011.04641.xCrossRefPubMedGoogle Scholar
  185. Laga B, den Boer B, Lambert B (2008) Brassica plant comprising a mutant indehiscent allele. Patent US8809635B2, Bayer CropScience NVGoogle Scholar
  186. Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144(4):1903–1910PubMedPubMedCentralGoogle Scholar
  187. Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996a) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9(1):13–20.  https://doi.org/10.1046/j.1365-313X.1996.09010013.xCrossRefPubMedGoogle Scholar
  188. Lagercrantz U, Putterill J, Coupland G, Lydiate DJ (1996b) Comparative genome mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time in Brassica. Plant J 9(1):13–20PubMedCrossRefGoogle Scholar
  189. Lambrides CJ, Chapman SC, Shorter R (2004) Genetic variation for carbon siotope discrimination in sunflower: association with transpiration efficiency and evidence for cytoplasmic inheritance. Crop Sci 44:1642–1653CrossRefGoogle Scholar
  190. Landi P, Sanguineti MC, Darrah LL, Giuliani MM, Salvi S, Conti S, Tuberosa R (2002) Detection of QTLs for vertical root pulling resistance in maize and overlap with QTLs for root traits in hydroponics and for grain yield under different water regimes. Maydica 47:233–243Google Scholar
  191. Larcher W (1995) Physiological plant ecology. Ecophysiology and stress physiology of functional groups. Springer, BerlinGoogle Scholar
  192. Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AvrLM1. New Phytol 197:595–605.  https://doi.org/10.1111/nph.12043CrossRefPubMedGoogle Scholar
  193. Larkan NJ, Ma L, Borhan MH (2015) The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol J 13(7):983–992PubMedCrossRefGoogle Scholar
  194. Larkan NJ, Raman H, Lydiate DJ, Robinson SJ, Yu F, Barbulescu DM, Raman R, Luckett DJ, Burton W, Wratten N, Salisbury PA, Rimmer SR, Borhan MH (2016) Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus. BMC Plant Biol 16(1):1–16.  https://doi.org/10.1186/s12870-016-0877-2CrossRefGoogle Scholar
  195. Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865CrossRefGoogle Scholar
  196. Levitt I (1972) Responses of plants to environmental stress. Academic Press, New YorkGoogle Scholar
  197. Levitt J (1980) Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses. Academic Press, New YorkGoogle Scholar
  198. Lewis LJ, Woods DL, Cheng BF (2001) Introgression of long pod genotype from spring rape (Brassica napus L.) into summer turnip rape (Brassica rapa L.). Can J Plant Sci 81(1):59–60.  https://doi.org/10.4141/p00-092CrossRefGoogle Scholar
  199. Li YY, Shen J, Wang T, Chen Q, Zhang X, Fu T, Meng J, Tu J, Ma C (2007) QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Austral J Agri Res 58(8):759–766.  https://doi.org/10.1071/AR06350CrossRefGoogle Scholar
  200. Li H, Wang Y, Li X, Gao Y, Wang Z, Zhao Y, Wang M (2011) A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol Biol Rep 38(1):191–197.  https://doi.org/10.1007/s11033-010-0094-2PubMedCrossRefGoogle Scholar
  201. Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N, Yan G, Qiao J, Li J, Li H, Xiao X, Zhang T, X. W (2014a) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21(4):355–367.  https://doi.org/10.1093/dnares/dsu002. Epub 2014 Feb 7PubMedPubMedCentralCrossRefGoogle Scholar
  202. Li N, Shi J, Wang X, Liu G, Wang H (2014b) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol 14 (1):114PubMedPubMedCentralCrossRefGoogle Scholar
  203. Li Z, Mei S, Mei Z, Liu X, Fu T, Zhou G, Tu J (2014c) Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica 19(3):341–353.  https://doi.org/10.1007/s10681-014-1070-zCrossRefGoogle Scholar
  204. Li S, Chen L, Zhang L, Li X, Liu Y, Wu Z, Dong F, Wan L, Liu K, Hong D, Yang G (2015a) BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiol 169(4):2744–2760.  https://doi.org/10.1104/pp.15.01040
  205. Li X-M, Chao D-Y, Wu Y, Huang X, Chen K, Cui L-G, Su L, Ye W-W, Chen H, Chen H-C, Dong N-Q, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J-X, Gao J-P, Lin H-X (2015b) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47:827.  https://doi.org/10.1038/ng.3305. https://www.nature.com/articles/ng.3305#supplementary-informationPubMedCrossRefGoogle Scholar
  206. Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 6:35040.  https://doi.org/10.1038/srep35040
  207. Liang YK, Xie X, Lindsay SE, Wang YB, Masle J, Williamson L, Leyser O, Hetherington AM (2010) Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana. Plant J 64(4):679–686.  https://doi.org/10.1111/j.1365-313X.2010.04362.xCrossRefPubMedGoogle Scholar
  208. Liebisch F, Kirchgessner N, Schneider D, Walter A, Hund A (2015) Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Meth 11:9.  https://doi.org/10.1186/s13007-015-0048-8CrossRefGoogle Scholar
  209. Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol 142:1294–1303PubMedPubMedCentralCrossRefGoogle Scholar
  210. Lin SI, Wang JG, Poon SY, Su CL, Wang SS, Chiou TJ (2005) Differential regulation of expression by vernalization FLOWERING LOCUS C in cabbage and Arabidopsis. Plant Physiol 137(3):1037–1048.  https://doi.org/10.1104/pp.104.058974CrossRefPubMedPubMedCentralGoogle Scholar
  211. Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X, Zhang Y, Shi S, Wu J, Liu K (2010) A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor Appl Genet 121(2):249–258.  https://doi.org/10.1007/s00122-010-1306-9CrossRefPubMedGoogle Scholar
  212. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T-J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park B-S, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T-H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930.  https://doi.org/10.1038/ncomms4930
  213. Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H (2015) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA 112.  https://doi.org/10.1073/pnas.1502160112CrossRefGoogle Scholar
  214. Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell David B, Martre P, Ruane Alex C, Wallach D, Jones James W, Rosenzweig C, Aggarwal Pramod K, Alderman Phillip D, Anothai J, Basso B, Biernath C, Cammarano D, Challinor A, Deryng D, Sanctis Giacomo D, Doltra J, Fereres E, Folberth C, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt Leslie A, Izaurralde Roberto C, Jabloun M, Jones Curtis D, Kersebaum Kurt C, Kimball Bruce A, Koehler A-K, Kumar Soora N, Nendel C, O’Leary Garry J, Olesen Jørgen E, Ottman Michael J, Palosuo T, Prasad PVV, Priesack E, Pugh Thomas AM, Reynolds M, Rezaei Ehsan E, Rötter Reimund P, Schmid E, Semenov Mikhail A, Shcherbak I, Stehfest E, Stöckle Claudio O, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wall Gerard W, Wang E, White Jeffrey W, Wolf J, Zhao Z, Zhu Y (2016a) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Change 6:1130.  https://doi.org/10.1038/nclimate3115. https://www.nature.com/articles/nclimate3115#supplementary-informationCrossRefGoogle Scholar
  215. Liu J, Wang J, Wang H, Wang W, Zhou R, Mei D, Cheng H, Yang J, Raman H, Hu Q (2016b) Multigenic control of pod shattering resistance in chinese rapeseed germplasm revealed by genome-wide association and linkage analyses. Front Plant Sci 7 (1058).  https://doi.org/10.3389/fpls.2016.01058
  216. Llorente F, Alonso-Blanco C, Sanchez-Rodriguez C, Jorda L, Molina A (2005) ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J 43(2):165–180.  https://doi.org/10.1111/j.1365-313X.2005.02440.xCrossRefPubMedGoogle Scholar
  217. Long SP, Marshall-Colon A, Zhu XG (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161(1):56–66.  https://doi.org/10.1016/j.cell.2015.03.019CrossRefPubMedGoogle Scholar
  218. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177(4):2433–2444.  https://doi.org/10.1534/genetics.107.080705CrossRefPubMedPubMedCentralGoogle Scholar
  219. Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J Exp Bot 63:3789–3798PubMedPubMedCentralCrossRefGoogle Scholar
  220. López-Castañeda C, Richards RA, Farquhar GD, Williamson RE (1996) Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Sci 36:1257–1266CrossRefGoogle Scholar
  221. Lou P, Zhao J, Kim JS, Shen S, Del Carpio DP, Song X, Jin M, Vreugdenhil D, Wang X, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58(14):4005–4016.  https://doi.org/10.1093/jxb/erm255CrossRefPubMedGoogle Scholar
  222. Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F (2003) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol 131(1):345–358.  https://doi.org/10.1104/pp.102.010785CrossRefPubMedPubMedCentralGoogle Scholar
  223. Lovell JT, Juenger TE, Michaels SD, Lasky JR, Platt A, Richards JH, Yu X, Easlon HM, Sen S, McKay JK (2013) Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation. Proc Biol Sci 280(1763):20131043.  https://doi.org/10.1098/rspb.2013.1043CrossRefPubMedPubMedCentralGoogle Scholar
  224. Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112PubMedCrossRefGoogle Scholar
  225. Lu K, Xiao Z, Jian H, Peng L, Qu C, Fu M, He B, Tie L, Liang Y, Xu X, Li J (2016) A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep 6:36452.  https://doi.org/10.1038/srep36452CrossRefPubMedPubMedCentralGoogle Scholar
  226. Luckett DJ, Cowley R, Moroni S, Raman H (2011) Improving water-use efficiency and drought tolerance in canola—potential contribution from improved carbon isotope discrimination (CID). In: Proceedings of the 13th international rapeseed congress, PragueGoogle Scholar
  227. Ludlow MM (1980) Adaptive significance of stomatal responses to water stress. ln: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley lntersiences, NY, pp 123–138Google Scholar
  228. Ludlow MM (1989) Strategies in response to water stress. In: Kreeb HK, RichterH, Hinkley TM (eds) Structural and Functional response to environmental stresses: water shortage. SPB Academic Press, The Netherlands, pp 269–281Google Scholar
  229. Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153CrossRefGoogle Scholar
  230. Luo Q, Bellotti W, Hayman P, Williams M, Devoil P (2010) Effects of changes in climatic variability on agricultural production. Clim Res 42(2):111–117.  https://doi.org/10.3354/cr00868CrossRefGoogle Scholar
  231. Luo X, Ding Y, Zhang L, Yue Y, Snyder JH, Ma C, Zhu J (2017a) Genomic prediction of genotypic effects with epistasis and environment interactions for yield-related traits of rapeseed (Brassica napus L.). Front Genet 8(15).  https://doi.org/10.3389/fgene.2017.00015
  232. Luo Z, Wang M, Long Y, Huang Y, Shi L, Zhang C, Liu X, Fitt BDL, Xiang J, Mason AS, Snowdon RJ, Liu P, Meng J, Zou J (2017b) Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet 130(8):1569–1585.  https://doi.org/10.1007/s00122-017-2911-7CrossRefPubMedPubMedCentralGoogle Scholar
  233. Ma Q, Turner DW (2006) Osmotic adjustment segregates with and is positively related to seed yield in F3 lines of crosses between Brassica napus and B. juncea subjected to water deficit. Austral J Exp Agri 46:1621–1627CrossRefGoogle Scholar
  234. Ma Q, Turner DW, Levy D, Cowling W (2004) Solute accumulation and osmotic adjustment in leaves of Brassica oilseed in response to soil water deficit. Austral J Agri Res 55:939–945CrossRefGoogle Scholar
  235. Madden LV, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. American Phytopathological Society Press, St. Paul, xiv + 421 ppGoogle Scholar
  236. Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156–1161PubMedCrossRefGoogle Scholar
  237. Magwanga RO, Lu P, Kirungu JN, Dong Q, Hu Y, Zhou Z, Cai X, Wang X, Hou Y, Wang K, Liu F (2018) Cotton late embryogenesis abundant LEA2 genes promote root growth and confers drought stress tolerance in transgenic Arabidopsis thaliana. G3: Genes Genom Genet.  https://doi.org/10.1534/g3.118.200423PubMedPubMedCentralCrossRefGoogle Scholar
  238. Mailer RJ, Cornish PS (1987) Effects of water stress on glucosinolates and oil content in the seeds of rape (Brassica napus L.)and turnip rape (Brassica rapa L. var. sylvestris (Lam.) Briggs. Austral J Exp Agri 27:707–711CrossRefGoogle Scholar
  239. Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K (2013) Application of the CRISPR–Cas system for ffficient genome engineering in plants. Mol Plant 6(6):2008–2011.  https://doi.org/10.1093/mp/sst121CrossRefPubMedPubMedCentralGoogle Scholar
  240. Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436(7052):866–870PubMedCrossRefGoogle Scholar
  241. Matus A, Slinkard A, van Kessel C (1995) Carbon isotope discrimination: potential for indirect selection for seed yield in canola. Crop Sci 35(5):1267–1271.  https://doi.org/10.2135/cropsci1995.0011183X003500050003xCrossRefGoogle Scholar
  242. McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T (2016) Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol 211(4):1209–1220.  https://doi.org/10.1111/nph.14000CrossRefPubMedPubMedCentralGoogle Scholar
  243. McKay JK, Richards JH, Nemali KS, Sen S, Mitchell‐Olds T, Boles S, Juenger TE (2008) Genetics of drought adaptation in Arabidopsis thaliana II. QTL analysis of a new mapping population, Kas‐1 x Tsu‐1. Evolution 62(12):3014–3026PubMedCrossRefGoogle Scholar
  244. McVittie B, Moroni JS, Harper J, Raman H (2011) Mapping of the locus associated with tolerance to high manganese in rapeseed (Brassica napus L.). In: Proceedings of the 17th Australian research assembly on brassicas, Wagga Wagga, NSW, Australia, pp 12–16Google Scholar
  245. Meng X, Wang H, He Y, Liu Y, Walker JC, Torii KU, Zhang S (2012) A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. Plant Cell 24(12):4948–4960.  https://doi.org/10.1105/tpc.112.104695CrossRefPubMedPubMedCentralGoogle Scholar
  246. Meuwissen T, Goddard M (2010) Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 185(2):623–631.  https://doi.org/10.1534/genetics.110.116590CrossRefPubMedPubMedCentralGoogle Scholar
  247. Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu J-K (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci USA 115(23):6058PubMedCrossRefGoogle Scholar
  248. Miller MR, Atwood TS, Eames BF, Eberhart JK, Yan Y-L, Postlethwait JH, Johnson EA (2007) RAD marker microarrays enable rapid mapping of zebrafish mutations. Genome Biol 8:R105PubMedPubMedCentralCrossRefGoogle Scholar
  249. Mittasch J, Böttcher C, Frolov A, Strack D, Milkowski C (2013) Reprogramming the phenylpropanoid metabolism in seeds of oilseed rape by suppressing the orthologs of REDUCED EPIDERMAL FLUORESCENCE1. Plant Physiol 161(4):1656–1669.  https://doi.org/10.1104/pp.113.215491CrossRefPubMedPubMedCentralGoogle Scholar
  250. Mohammadi PP, Moieni A, Hiraga S, Komatsu S (2012) Organ-specific proteomic analysis of drought-stressed soybean seedlings. J Proteomics 75:1906–1923PubMedCrossRefGoogle Scholar
  251. Morgan JM (1977) Differences in osmoregulation between wheat genotypes. Nature 270:234.  https://doi.org/10.1038/270234a0CrossRefGoogle Scholar
  252. Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35 (1):299–319.  https://doi.org/10.1146/annurev.pp.35.060184.001503CrossRefGoogle Scholar
  253. Moroni JS, Scott BJ, Wratten N (2003) Differential tolerance of high manganese among rapeseed genotypes. Plant Soil 253(2):507–519CrossRefGoogle Scholar
  254. Moroni JS, Wratten N, Luckett DJ (2009) Variation in Normalized difference vegetative index (NDVI) in canola germplasm. In: Burton WA, Norton R, Worthy A (eds) 16th Australian research assembly on brassicas, Ballarat, Victoria, pp 189–193Google Scholar
  255. Morrison MJ (1993) Heat stress during reproduction in summer rape. Can J Bot 71(2):303–308CrossRefGoogle Scholar
  256. Morrison MJ, Stewart DW (2002) Heat stress during flowering in summer Brassica. Crop Sci 42(3):797–803CrossRefGoogle Scholar
  257. Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7Google Scholar
  258. Nageswara RRC, Udaykumar M, Farquhar GD, Talwar HS, Prasad TG (1995) Variation in carbon isotope discrimination and its relationship to specific leaf area and ribulose-1, 5-bisphosphate carboxylase content in groundnut genotype. Austral J Plant Physiol 22:545–551Google Scholar
  259. Namazkar S, Stockmarr A, Frenck G, Egsgaard H, Terkelsen T, Mikkelsen T, Ingvordsen CH, Jorgensen RB (2016) Concurrent elevation of CO2, O3 and temperature severely affects oil quality and quantity in rapeseed. J Exp Bot 67(14):4117–4125.  https://doi.org/10.1093/jxb/erw180CrossRefPubMedPubMedCentralGoogle Scholar
  260. Nelson MN, Lilley JM, Helliwell C, Taylor CM, Siddique KHM, Chen S, Raman H, Batley J, Cowling WA (2016) Can genomics assist the phenological adaptation of canola to new and changing environments? Crop Pasture Sci 67:284–297.  https://doi.org/10.1071/CP15320CrossRefGoogle Scholar
  261. Nelson MN, Rajasekaran R, Smith A, Chen S, Beeck CP, Siddique KHM, Cowling WA (2014) Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L. PLoS ONE 9(7):e102611.  https://doi.org/10.1371/journal.pone.0102611CrossRefPubMedPubMedCentralGoogle Scholar
  262. Nguyen TCT, Abrams SR, Friedt W, Snowdon RJ (2018) Quantitative trait locus analysis of seed germination, seedling vigour and seedling-regulated hormones in Brassica napus. Plant Breed 137(3):388–401.  https://doi.org/10.1111/pbr.12576CrossRefGoogle Scholar
  263. Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457(7227):327–331. http://www.nature.com/nature/journal/v457/n7227/suppinfo/nature07523_S1.htmlPubMedPubMedCentralCrossRefGoogle Scholar
  264. Niknam SR, Ma Q, Turner DW (2003) Osmotic adjustment and seed yield of Brassica napus and B. juncea genotypes in a water-limited Mediterranean-type environment. Austral J Exp Agri 43:1127–1135CrossRefGoogle Scholar
  265. Niknam SR, Turner DW (1999) A single drought event, at different stages of development, has different effects on the final yield of Brassica napus cv. Monty and B. juncea line 397-23-2- 3-3. In: Shea G (ed) 1999 Oilseed crop updates, Agriculture Western Australia, Northam, WA, pp 14–15Google Scholar
  266. Nonami H (1998) Plant water relations and control of cell elongation at low water potentials. J Plant Res 111:373–382CrossRefGoogle Scholar
  267. Norman A, Taylor J, Edwards J, Kuchel H (2018) Optimising genomic selection in wheat: effect of marker density, population size and population sStructure on prediction accuracy. G3: Genes Genom|Genet.  https://doi.org/10.1534/g3.118.200311PubMedCentralCrossRefPubMedGoogle Scholar
  268. Norouzi M, Toorchi M, Salekdeh GH, Mohammadi SA, Nishabouri MR, Aharizad S (2008) Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed. J Food Agri Environ 6:132–138Google Scholar
  269. Oakey H, Cullis B, Thompson R, Comadran J, Halpin C, Waugh R (2016) Genomic selection in multi-environment crop trials. G3: Genes Genom Genet 6(5):1313–1326.  https://doi.org/10.1534/g3.116.027524PubMedPubMedCentralCrossRefGoogle Scholar
  270. Osakabe Y, Osakabe K, Shinozaki K, Tran L-SP (2014) Response of plants to water stress. Front Plant Sci 5:86.  https://doi.org/10.3389/fpls.2014.00086CrossRefPubMedPubMedCentralGoogle Scholar
  271. Osborn TC, Lukens L (2003) The molecular genetic basis of flowering time variation in Brassica species. In: Nagata T, Tabata S (eds) Biotechnology in agriculture and forestry, 52. Brassica and Legume from genome structure to breeding. Springer-Verlag, Berlin, Germany, pp 69–86CrossRefGoogle Scholar
  272. Pandey B, Burton WA, Salisbury PA, Nicolas ME (2017) Comparison of osmotic adjustment, leaf proline concentration, canopy temperature and root depth for yield of juncea canola under terminal drought. J Agron Crop Sci 203:397–405.  https://doi.org/10.1111/jac.12207CrossRefGoogle Scholar
  273. Pang J, Palta JA, Rebetzke GJ, Milroy SP (2014) Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth. Funct Plant Biol 41:215–222CrossRefGoogle Scholar
  274. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9.  https://doi.org/10.1186/1471-2164-9-113PubMedPubMedCentralCrossRefGoogle Scholar
  275. Parkin I, Koh C, Tang H, Robinson S, Kagale S, Clarke W, Town C, Nixon J, Krishnakumar V, Bidwell S, Denoeud F, Belcram H, Links M, Just J, Clarke C, Bender T, Huebert T, Mason A, Pires J, Barker G, Moore J, Walley P, Manoli S, Batley J, Edwards D, Nelson M, Wang X, Paterson A, King G, Bancroft I, Chalhoub B, Sharpe A (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15(6):R77PubMedPubMedCentralCrossRefGoogle Scholar
  276. Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38.  https://doi.org/10.1139/g95-149PubMedCrossRefGoogle Scholar
  277. Passioura JB (1977) Grain yield, harvest index and water use of wheat. J Austral Inst Agri Sci 43:117–121Google Scholar
  278. Passioura JB (1983) Roots and drought resistance. Agri Water Manag 7:265–280CrossRefGoogle Scholar
  279. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101(27):9971–9975.  https://doi.org/10.1073/pnas.0403720101CrossRefPubMedGoogle Scholar
  280. Pesek J, Baker RJ (1969) Comparison of tandem and index selection in the modified pedigree method of breeding self-pollinated species. Can J Plant Sci 49(6):773–781.  https://doi.org/10.4141/cjps69-132CrossRefGoogle Scholar
  281. Pillitteri LJ, Torii KU (2012) Mechanisms of stomatal development. Annu Rev Plant Biol 63:591–614.  https://doi.org/10.1146/annurev-arplant-042811-105451CrossRefPubMedGoogle Scholar
  282. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111(8):1514–1523PubMedCrossRefGoogle Scholar
  283. Prasad PVV, Staggenborg SA, Ristic Z (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Ahuja LR, Reddy VR, Saseendran SA, Yu Q (eds) Response of crops to limited water: understanding and modeling water stress effects on plant growth processes, Advances in agricultural systems modeling 1: transdisciplinary research, synthesis, and applications. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA, pp 301–355Google Scholar
  284. Qi L, Mao L, Sun C, Pu Y, Fu T, Ma C, Shen J, Tu J, Yi B, Wen J (2014) Interpreting the genetic basis of silique traits in Brassica napus using a joint QTL network. Plant Breed 133(1):52–60.  https://doi.org/10.1111/pbr.12131CrossRefGoogle Scholar
  285. Qi Y, Liu Y, Zhang Z, Gao J, Guan Z, Fang W, Chen S, Chen F, Jiang J (2018) The over-expression of a chrysanthemum gene encoding an RNA polymerase II CTD phosphatase-like 1 enzyme enhances tolerance to heat stress. Hort Res 5(1):37.  https://doi.org/10.1038/s41438-018-0037-yCrossRefGoogle Scholar
  286. Quarrie SA, Gulli M, Calestani C, Steed A, Marmiroli N (1994) Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet 89:794–800PubMedCrossRefGoogle Scholar
  287. Quarrie SA, Laurie DA, Zhu J, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C (1997) QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. In: Sasaki T, Moore G (eds) Oryza: from molecule to plant. Springer Netherlands, Dordrecht, pp 155–165.  https://doi.org/10.1007/978-94-011-5794-0_15CrossRefGoogle Scholar
  288. Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12(4):479–492PubMedPubMedCentralCrossRefGoogle Scholar
  289. Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561PubMedCrossRefGoogle Scholar
  290. Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by QTL mapping. Genetics.  https://doi.org/10.1534/genetics.108.089680PubMedPubMedCentralCrossRefGoogle Scholar
  291. Rahman M, Mamidi S, del Rio L, Ross A, Kadir MM, Rahaman MM, Arifuzzaman M (2016) Association mapping in Brassica napus (L.) accessions identifies a major QTL for blackleg disease resistance on chromosome A01. Mol Breed 36(7):1–15.  https://doi.org/10.1007/s11032-016-0513-8
  292. Raman H, Gustafson P (eds) (2010) Molecular breeding for aluminium tolerance in cereals. In: Costa de Oliveira A, Varshney RK (eds) Root genomics. Springer Verlag, pp 251–288Google Scholar
  293. Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791PubMedCrossRefGoogle Scholar
  294. Raman H, Ryan PR, Raman R, Stodart BJ, Zhang K, Martin P, Wood R, Sasaki T, Yamamoto Y, Mackay M, Hebb DM, Delhaize E (2008) Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theor Appl Genet 116:343–354PubMedCrossRefGoogle Scholar
  295. Raman H, Stodart B, Ryan P, Delhaize E, Emberi L, Raman R, Coombes N, Milgate A (2010) Genome wide association analyses of common wheat (Triticum aestivum L) germplasm identifies multiple loci for aluminium resistance. Genome 53(11):957–966PubMedCrossRefGoogle Scholar
  296. Raman H, Raman R, Nelson MN, Aslam MN, Rajasekaran R, Wratten N, Cowling WA, Kilian A, Sharpe AG, Schondelmaier J (2012) Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.). DNA Res 19(1):51–65.  https://doi.org/10.1093/dnares/dsr041PubMedPubMedCentralCrossRefGoogle Scholar
  297. Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E (2013a) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor Appl Genet 126:119–132.  https://doi.org/10.1007/s00122-012-1966-8CrossRefPubMedGoogle Scholar
  298. Raman H, Raman R, Larkan N (2013b) Genetic dissection of blackleg resistance loci in rapeseed (Brassica napus L.). In: Andersen SB (ed) Plant breeding from laboratories to fields. ISBN 978-953-51-1090-3, http://www.intechopen.com/articles/show/title/genetic-dissection-of-blackleg-resistance-loci-in-rapeseed-brassica-napus-l-
  299. Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J (2014a) SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. Plant Biotechnol J 12(7):851–860.  https://doi.org/10.1111/pbi.12186CrossRefPubMedGoogle Scholar
  300. Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M, Ruperao P, Parkin IAP, Batley J, Luckett DJ, Wratten N (2014b) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9(7):e101673.  https://doi.org/10.1371/journal.pone.0101673CrossRefPubMedPubMedCentralGoogle Scholar
  301. Raman H, Raman R, Luckett D, Cowley R, Diffey S, Leah D, Meyer R, Price A, Roberts D, Prangnell R (2014c) Understanding the genetic bases of phenotypic variation in drought tolerance related traits in canola (Brassica napus L.). In: Proceedings of the 18th Australian research assembly on brassicas, 29 Sep–2 Oct 2014 (this issue)Google Scholar
  302. Raman H, Raman R, Coombes N, Song J, Diffey S, Kilian A, Lindbeck K, Barbulescu DM, Batley J, Edwards D, Salisbury PA, Marcroft S (2016a) Genome-wide association study identifies new loci for resistance to Leptosphaeria maculans in canola. Front Plant Science 7:1513.  https://doi.org/10.3389/fpls.2016.01513CrossRefGoogle Scholar
  303. Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis ES, Balasubramanian S (2016b) Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant, Cell Environ 39(6):1228–1239.  https://doi.org/10.1111/pce.12644CrossRefGoogle Scholar
  304. Raman R, Diffey S, Carling J, Cowley R, Kilian A, Luckett D, Raman H (2016c) Quantitative genetic analysis of yield in an Australian Brassica napus doubled haploid population. Crop Pasture Sci 67(4):298–307CrossRefGoogle Scholar
  305. Raman H, Raman R, McVittie B, Orchard B, Qiu Y, Delourme R (2017a) A major locus for manganese tolerance maps on chromosome A09 in a doubled haploid population of Brassica napus L. Front Plant Sci 8 (1952).  https://doi.org/10.3389/fpls.2017.01952
  306. Raman R, Qiu Y, Coombes N, Song J, Kilian A, Raman H (2017b) Molecular diversity analysis and genetic mapping of pod shatter resistance loci in Brassica carinata L. Front Plant Sci 8:1765.  https://doi.org/10.3389/fpls.2017.01765
  307. Raman H, Raman R, Qiu M, Yadav AS, Sureshkumar S, Borg L, Rohan M, Diffey S, Mathews K, Owens O, Menz I, Balasubramanian S (2018a) GWAS hints at pleiotropic roles for FLOWERING LOCUS T (FT) in flowering time and yield-related traits in canola. SumittedGoogle Scholar
  308. Raman H, Raman R, Qiu Y, Simon Diffey KM, Borg L, Easton A, Tabah D, Salisbury P, Luckett D (2018b) Dissection of adaptive traits under water-limited field conditions in canola. In: Proceedings of AusCanola, PerthGoogle Scholar
  309. Rana D, van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40(5):725–733PubMedCrossRefGoogle Scholar
  310. Rebetzke GJ, Botwright TL, Moore CS, Richards RA, Condon AG (2004) Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res 88:179–189CrossRefGoogle Scholar
  311. Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon-isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Science 42:739–745CrossRefGoogle Scholar
  312. Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet 114(7):1173–1183PubMedCrossRefGoogle Scholar
  313. Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA (2008a) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118(1):123–137.  https://doi.org/10.1007/s00122-008-0882-4CrossRefGoogle Scholar
  314. Rebetzke GJ, van Herwaarden A, Jenkins C, Ruuska S, Tabe L, Lewis D, Weiss M, Fettell N, Richards RA (2008b) Quantitative trait loci for water soluble carbohydrates and associations with agronomic traits in wheat. Austral J Agri Res 59:891–905CrossRefGoogle Scholar
  315. Regan KL, Siddique KHM, Tennant D, Abrecht DG (1997) Grain yield and water use efficiency of early maturing wheat in low rainfall Mediterranean environments. Austral J Agri Res 48:595–604CrossRefGoogle Scholar
  316. Reynolds M, Manes Y, Izanloo A, Langridge P (2009) Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann Appl Biol 155:309–320CrossRefGoogle Scholar
  317. Richards R (1991) Crop improvement for temperate Australia: future opportunities. Field Crops Res 26:141–169CrossRefGoogle Scholar
  318. Richards RA, Passioura JB (1989) A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Austral J Agri Res 40:943–950CrossRefGoogle Scholar
  319. Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121PubMedCrossRefGoogle Scholar
  320. Richards RA, Thurling N (1978) Variation between and within species of rapeseed (Brassica campestris and B. napus) in response to drought stress. II Growth and development under natural drought stresses. Austral J Agri Res 29:479–490CrossRefGoogle Scholar
  321. Richards RA, Watt M, Rebetzke GJ (2007) Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica 154:409–425CrossRefGoogle Scholar
  322. Ristic Z, Bukovnik U, Prasad PV (2007) Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Sci 47:2067–2073CrossRefGoogle Scholar
  323. Rosenzweig C, Hillel D (1995) Potential impacts of climate change on agriculture and food supply. Consequences 1(2):23–32Google Scholar
  324. Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant, Cell Environ 29(2):269–281CrossRefGoogle Scholar
  325. Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ (2007) Systemic and intracellular responses to photooxidative stress in Arabidopsis. Plant Cell 19(12):4091–4110.  https://doi.org/10.1105/tpc.106.045898CrossRefPubMedPubMedCentralGoogle Scholar
  326. Rutkoski J, Poland J, Mondal S, Autrique E, Perez LG, Crossa J, Reynolds M, Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 (Bethesda, Md) 6(9):2799–2808.  https://doi.org/10.1534/g3.116.032888PubMedPubMedCentralCrossRefGoogle Scholar
  327. Ryan AC, Dodd IC, Rothwell SA, Jones R, Tardieu F, Draye X, Davies WJ (2016) Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency. Plant Sci 251:101–109.  https://doi.org/10.1016/j.plantsci.2016.05.018CrossRefPubMedGoogle Scholar
  328. Ryan PR, Liao M, Delhaize E, Rebetzke GJ, Weligama C, Spielmeyer W, James RA (2015) Early vigour improves phosphate uptake in wheat. J Exp Bot 66(22):7089–7100.  https://doi.org/10.1093/jxb/erv403CrossRefPubMedPubMedCentralGoogle Scholar
  329. Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149(1):340–351.  https://doi.org/10.1104/pp.108.129155CrossRefPubMedPubMedCentralGoogle Scholar
  330. Ryan PR, Raman H, Gupta S, Sasaki T, Yamamoto Y, Delhaize E (2010) The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J 64(3):446–455.  https://doi.org/10.1111/j.1365-313X.2010.04338.xCrossRefPubMedGoogle Scholar
  331. Samizadeh H, Yazdi-Samadi B, Bihamta MR, Taleii A, Stringam GR (2010) Study of pod length trait in doubled haploid Brassica napus population by molecular markers. J Agri Sci Technol 9(2):129–136Google Scholar
  332. Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47(10):1343–1354.  https://doi.org/10.1093/pcp/pcl002PubMedCrossRefGoogle Scholar
  333. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653PubMedCrossRefGoogle Scholar
  334. Satoshi I, Masatomo K, Teruaki T, Masaaki N, Motoaki S, Tomohiko K, Satoshi T, Yoshitaka K, Kazuko Y-S, Kazuo S (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27(4):325–333.  https://doi.org/10.1046/j.1365-313x.2001.01096.xCrossRefGoogle Scholar
  335. Schiessl S, Samans B, Hüttel B, Reinhardt R, Snowdon RJ (2014) Capturing sequence variation among flowering-time regulatory gene homologues in the allopolyploid crop species Brassica napus. Front Plant Sci 5.  https://doi.org/10.3389/fpls.2014.00404
  336. Schmutzer T, Samans B, Dyrszka E, Ulpinnis C, Weise S, Stengel D, Colmsee C, Lespinasse D, Micic Z, Abel S, Duchscherer P, Breuer F, Abbadi A, Leckband G, Snowdon R, Scholz U (2015) Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus. Sci Data 2:150072.  https://doi.org/10.1038/sdata.2015.72CrossRefPubMedPubMedCentralGoogle Scholar
  337. Schranz ME, Quijada P, Sung S-B, Lukens L, Amasino R, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162(3):1457–1468PubMedPubMedCentralGoogle Scholar
  338. Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Grosse I, Schiessl S, Jung C, Emrani N (2018) Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Plant Cell Environ.  https://doi.org/10.1111/pce.13353CrossRefGoogle Scholar
  339. Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y, Xiao G, He Y, Xiao H, Li J, He Z (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol 33(9):996–1003.  https://doi.org/10.1038/nbt.3321CrossRefPubMedGoogle Scholar
  340. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216.  https://doi.org/10.1111/pbi.12603CrossRefPubMedGoogle Scholar
  341. Shi J, Li R, Zou J, Long Y, Meng J (2011) A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS ONE 6.  https://doi.org/10.1371/journal.pone.0021645PubMedPubMedCentralCrossRefGoogle Scholar
  342. Shi J, Zhan J, Yang Y, Ye J, Huang S, Li R, Wang X, Liu G, Wang H (2015) Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep 5:14481.  https://doi.org/10.1038/srep14481. https://www.nature.com/articles/srep14481#supplementary-information
  343. Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182.  https://doi.org/10.1534/genetics.109.101642PubMedPubMedCentralCrossRefGoogle Scholar
  344. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227.  https://doi.org/10.1093/jxb/erl164CrossRefPubMedGoogle Scholar
  345. Shpak ED, Lakeman MB, Torii KU (2003) Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA Leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell 15(5):1095–1110PubMedPubMedCentralCrossRefGoogle Scholar
  346. Sinaki JM, Heravan EM, Rad AS, Noormohammadi GH, Zarei GH (2007) The effects of water deficit during growth stages of canola (Brassica napus L.). Amer Euras J Agri Environ Sci 2:417–422Google Scholar
  347. Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Phil Trans Roy Soc B: Biol Sci 367(1595):1441–1452.  https://doi.org/10.1098/rstb.2011.0234CrossRefGoogle Scholar
  348. Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123(1):1–8.  https://doi.org/10.1111/j.1439-0523.2003.00968.xCrossRefGoogle Scholar
  349. Somers DJ, Rakow G, Prabhu VK, Friesen KR (2001) Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 44(6):1077–1082PubMedCrossRefGoogle Scholar
  350. Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty P, Li G (2007) An ultradense genetic recombination map for Brassica napus consisting of 13551 SRAP markers. Theor Appl Genet 114(8):1305–1317PubMedCrossRefGoogle Scholar
  351. Tadege M, Sheldon C, Helliwell C, Stoutjesdijk P, Dennis E, Peacock W (2001) Control of flowering time by FLC orthologues in Brassica napus. Plant J 28(5):545–553PubMedCrossRefGoogle Scholar
  352. Takai T, Fukuta Y, Sugimoto A, Shiraiwa T, Horie T (2006) Mapping of QTLs controlling carbon isotope discrimination in the photosynthetic system using recombinant inbred lines derived from a cross between two different rice (Oryza sativa L.) cultivars. Plant Prod Sci 9:271–280CrossRefGoogle Scholar
  353. Talukder SK, Babar MA, Vijayalakshmi, Poland J, Prasad PVV, Bowden R, Fritz A (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet 15:1–13Google Scholar
  354. Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D (2002) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106(1):118–126.  https://doi.org/10.1007/s00122-002-1028-8CrossRefPubMedGoogle Scholar
  355. Teulat B, Merah O, This D (2001) Carbon isotope discrimination and productivity in field-grown barley genotypes. J Agron Crop Sci 187(1):33–39.  https://doi.org/10.1046/j.1439-037X.2001.00496.xCrossRefGoogle Scholar
  356. Thomas CL, Graham NS, Hayden R, Meacham MC, Neugebauer K, Nightingale M, Dupuy LX, Hammond JP, White PJ, Broadley MR (2016) High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.). Ann Bot 118(4):655–665.  https://doi.org/10.1093/aob/mcw046PubMedCentralCrossRefPubMedGoogle Scholar
  357. Tisne S, Serrand Y, Bach L, Gilbault E, Ben Ameur R, Balasse H, Voisin R, Bouchez D, Durand-Tardif M, Guerche P, Chareyron G (2013) Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. Plant J 74, 534–544.  https://doi.org/10.1111/tpj.12131PubMedCrossRefGoogle Scholar
  358. Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. The Plant Cell 8:735–746PubMedPubMedCentralCrossRefGoogle Scholar
  359. Town C, Cheung F, Maiti R, Crabtree J, Haas B, Wortman J, Hine E, Althoff R, Arbogast T, Tallon L, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359PubMedPubMedCentralCrossRefGoogle Scholar
  360. Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87CrossRefGoogle Scholar
  361. Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346PubMedCrossRefGoogle Scholar
  362. Tuberosa R, Salvi S, Giuliani S, Sanguineti MC, Frascaroli E, Conti S, Landi P (2011) Genomics of root architecture and functions in maize. In: Varshney RK, Costa de Oliveira A (eds) Root genomics. Springer, The Netherlands, Dordrecht, pp 179–204CrossRefGoogle Scholar
  363. Tuberosa R, Sanguineti MC, Landi P, Michela Giuliani M, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48(5):697–712PubMedCrossRefGoogle Scholar
  364. Turner NC (1986) Crop water deficits: a decade of progress. Adv Agron 39, I-51Google Scholar
  365. Turner NC, Nicolas ME (1987) Drought resistance of wheat for light–textured soils in a Mediterranean climate In: Srivastava JP, Porceddu E, Acevedo E, Varma S (eds) Drought tolerance in winter cereals. Wiley, pp 203–215Google Scholar
  366. Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113(4):597–609.  https://doi.org/10.1007/s00122-006-0324-0PubMedCrossRefGoogle Scholar
  367. Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169(2):967–979.  https://doi.org/10.1534/genetics.104.033209CrossRefPubMedPubMedCentralGoogle Scholar
  368. Urban MO, Vasek J, Klima M, Krtkova J, Kosova K, Prasil IT, Vitamvas P (2017) Proteomic and physiological approach reveals drought-induced changes in rapeseeds: water-saver and water-spender strategy. J Proteom 152:188–205.  https://doi.org/10.1016/j.jprot.2016.11.004CrossRefGoogle Scholar
  369. Vadez V, Kholova J, Medina S, Kakkera A, Anderberg H (2014) Transpiration efficiency: new insights into an old story. J Exp Bot 64:6141–6153.  https://doi.org/10.1093/jxb/eru040CrossRefGoogle Scholar
  370. Vadez V, Kholova J, Zaman-Allah M, Belko N (2013) Water: the most important ‘molecular’ component of water stress tolerance research. Funct Plant Biol 40:1310–1322.  https://doi.org/10.1071/FP13149CrossRefGoogle Scholar
  371. Vahisalu T, Kollist H, Wang Y-F, Nishimura N, Chan W-Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487.  https://doi.org/10.1038/nature06608. https://www.nature.com/articles/nature06608#supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  372. van Zanten M, Snoek LB, Proveniers MC, Peeters AJ (2009) The many functions of ERECTA. Trends Plant Sci 14(4):214–218.  https://doi.org/10.1016/j.tplants.2009.01.010CrossRefPubMedGoogle Scholar
  373. Varshney RK, Pazhamala L, Kashiwagi J, Gaur PM, Krishnamurthy L, Hoisington D (2011) Genomics and physiological approaches for root trait breeding to improve drought tolerance in chickpea (Cicer arietinum L.). In: Costa de Oliveira A, Varshney RK (eds) Root genomics. Springer, The Netherlands, Dordrecht, pp 233–250Google Scholar
  374. Verkest A, Byzova M, Martens C, Willems P, Verwulgen T, Slabbinck B, Rombaut D, Van de Velde J, Vandepoele K, Standaert E, Peeters M, Van Lijsebettens M, Van Breusegem F, De Block M (2015) Selection for improved energy use efficiency and drought tolerance in Canola results in distinct transcriptome and epigenome changes. Plant Physiol 168(4):1338–1350.  https://doi.org/10.1104/pp.15.00155CrossRefPubMedPubMedCentralGoogle Scholar
  375. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23(21):4407–4414CrossRefGoogle Scholar
  376. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223CrossRefGoogle Scholar
  377. Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730PubMedCrossRefGoogle Scholar
  378. Walton G, Mendham N, Robertson M, Potter T (1999a) Phenology, physiology and agronomy. In: Salisbury P, Potter T, McDonald GM, Green AG (eds) Canola in Australia: the first thirty years. The Canola Association of Australia Inc., Royal Exchange, NSW, pp 9–14Google Scholar
  379. Walton G, Mendham N, Robertson M, Potter T (1999b) Phenology, physiology and agronomy. In: Salisbury P, Potter T, McDonald GM, Green AG (eds) Canola in Australia: the first thirty years. The Canola Association of Australia Inc., Royal Exchange, NSW, pp 9–14Google Scholar
  380. Wang F, Guan CY (2010) Molecular mapping and identification of quantitative trait loci for yield components in rapeseed (Brasscia napus L.). Hereditas 32(3):271–277Google Scholar
  381. Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q (2016) Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep 6:38493.  https://doi.org/10.1038/srep38493CrossRefPubMedPubMedCentralGoogle Scholar
  382. Wang JP, Raman H, Read B, Zhou MX, Mendham N, Venkatanagappa S (2006) Validation of an Alt locus for aluminium tolerance scored with eriochrome cyanine R staining method in barley cultivar Honen (Hordeum vulgare L.). Austral J Agri Res 57(1):113–118Google Scholar
  383. Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115(2):265–276PubMedCrossRefGoogle Scholar
  384. Wang J, Hopkins CJ, Hou J, Zou X, Wang C, Long Y, Kurup S, King GJ, Meng J (2012) Promoter variation and transcript divergence in Brassicaceae lineages of FLOWERING LOCUS T. PLoS ONE 7:e47127PubMedPubMedCentralCrossRefGoogle Scholar
  385. Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009a) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:271PubMedPubMedCentralCrossRefGoogle Scholar
  386. Wang Y, Beaith M, Chalifoux M, Ying J, Uchacz T, Sarvas C, Griffiths R, Kuzma M, Wan J, Huang Y (2009b) Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Mol Plant 2(1):191–200.  https://doi.org/10.1093/mp/ssn088CrossRefPubMedPubMedCentralGoogle Scholar
  387. Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agri Food Chem 65(39):8674–8682.  https://doi.org/10.1021/acs.jafc.7b02745CrossRefGoogle Scholar
  388. Wang N, Qian W, Suppanz I, Wei L, Mao B, Long Y, Meng J, Muller AE, Jung C (2011a) Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J Exp Bot 62(15):5641–5658PubMedPubMedCentralCrossRefGoogle Scholar
  389. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Wei H, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B-S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J-S, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S-J, Choi S-R, Lee T-H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039. http://www.nature.com/ng/journal/vaop/ncurrent/abs/ng.919.html#supplementary-informationPubMedCrossRefGoogle Scholar
  390. Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43(3):413–424.  https://doi.org/10.1111/j.1365-313X.2005.02463.xCrossRefPubMedGoogle Scholar
  391. Ward PR, Hall DJM, Micin S, Whisson K, Willis TM, Treble K, Tennant D (2007) Water use by annual crops. 1. Role of dry matter production. Crop Pasture Sci 58:1159–1166CrossRefGoogle Scholar
  392. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29.  https://doi.org/10.1038/s41477-017-0083-8PubMedCrossRefGoogle Scholar
  393. Wei D, Mei J, Fu Y, Disi J, Li J, Qian W (2014) Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34(4):1797–1804.  https://doi.org/10.1007/s11032-014-0139-7CrossRefGoogle Scholar
  394. Weng C-M, Lu J-X, Wan H-F, Wang S-W, Wang Z, Lu K, Liang Y (2014) Over-expression of BnMAPK1 in Brassica napus enhances tolerance to drought stress. J Integr Agri 13(11):2407–2415.  https://doi.org/10.1016/S2095-3119(13)60696-6CrossRefGoogle Scholar
  395. Werner CR, Voss-Fels KP, Miller CN, Qian W, Hua W, Guan C-Y, Snowdon RJ, Qian L (2018) Effective genomic selection in a narrow-genepool crop with low-density markers: Asian rapeseed as an example. Plant Genome.  https://doi.org/10.3835/plantgenome2017.09.0084CrossRefGoogle Scholar
  396. Wilson PB, Rebetzke GJ, Condon AG (2015) Of growing importance: combining greater early vigour and transpiration efficiency for wheat in variable rainfed environments. Funct Plant Biol 42(12):1107–1115.  https://doi.org/10.1071/FP15228CrossRefGoogle Scholar
  397. Wratten N, Scott BJ (1979) Manganese tolerance in rape. Field Crops Newsl 14:55–57Google Scholar
  398. Wright PR, Morgan JM (1998) Drought stressed mustard yields more than canola due to greater leaf turgor. http://www.regional.org.au/au/asa/1998/5/152wright.htm
  399. Wright PR, Morgan JM, Jessop RS (1997) Turgor maintenance by osmoregulation in Brassica napus and B. juncea under field conditions. Ann Bot 80(3):313–319.  https://doi.org/10.1006/anbo.1997.0444CrossRefGoogle Scholar
  400. Wu J, Wei KY, Cheng F, Li SK, Wang Q, Zhao JJ, Bonnema G, Wang XW (2012) A naturally occurring InDel variation in BraA.FLC.b(BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol 12:151PubMedPubMedCentralCrossRefGoogle Scholar
  401. Wurschum T, Liu W, Maurer HP, Abel S, Reif JC (2012) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124(1):153–161.  https://doi.org/10.1007/s00122-011-1694-5PubMedCrossRefGoogle Scholar
  402. Xie X, Wang Y, Williamson L, Holroyd GH, Tagliavia C, Murchie E, Theobald J, Knight MR, Davies WJ, Leyser HM, Hetherington AM (2006) The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Curr Biol 16(9):882–887.  https://doi.org/10.1016/j.cub.2006.03.028CrossRefPubMedGoogle Scholar
  403. Yamamoto Y, Negi J, Wang C, Isogai Y, Schroeder JI, Iba K (2016) The Transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis. Plant Cell 28(2):557–567.  https://doi.org/10.1105/tpc.15.00583CrossRefPubMedPubMedCentralGoogle Scholar
  404. Yang H, Wu J-J, Tang T, Liu K-D, Dai C (2017) CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep 7:7489.  https://doi.org/10.1038/s41598-017-07871-9CrossRefPubMedPubMedCentralGoogle Scholar
  405. Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, Zhang M (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48(10):1225–1232.  https://doi.org/10.1038/ng.3657. http://www.nature.com/ng/journal/v48/n10/abs/ng.3657.html#supplementary-informationPubMedCrossRefGoogle Scholar
  406. Yang M, Yang Q, Fu T, Zhou Y (2011) Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep 30(3):373–388.  https://doi.org/10.1007/s00299-010-0940-7CrossRefPubMedGoogle Scholar
  407. Yang P, Shu C, Chen L, Xu J, Wu J, Liu K (2012) Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet 125.  https://doi.org/10.1007/s00122-012-1833-7PubMedCrossRefGoogle Scholar
  408. Yang Y, Zhu K, Li H, Han S, Meng Q, Khan SU, Fan C, Xie K, Zhou Y (2018) Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J 16(7):1322–1335.  https://doi.org/10.1111/pbi.12872PubMedPubMedCentralCrossRefGoogle Scholar
  409. Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495PubMedCrossRefGoogle Scholar
  410. Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, Siedow JN, Pei Z-M (2014) OSCA1 mediates osmotic-stress-evoked Ca2 + increases vital for osmosensing in Arabidopsis. Nature 514:367.  https://doi.org/10.1038/nature13593. https://www.nature.com/articles/nature13593#supplementary-informationPubMedCrossRefGoogle Scholar
  411. Yuan Y-X, Wu J, Sun R-F, Zhang X-W, Xu D-H, Bonnema G, Wang X-W (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60(4):1299–1308.  https://doi.org/10.1093/jxb/erp010CrossRefPubMedPubMedCentralGoogle Scholar
  412. Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z (2012) Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63(10):3741–3748.  https://doi.org/10.1093/jxb/ers069CrossRefPubMedPubMedCentralGoogle Scholar
  413. Zeng X, Zhu L, Chen Y, Qi L, Pu Y, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2011) Identification, fine mapping and characterisation of a dwarf mutant (bnaC.dwf) in Brassica napus. Theor Appl Genet 122(2):421–428.  https://doi.org/10.1007/s00122-010-1457-8PubMedCrossRefGoogle Scholar
  414. Zhang H, Flottman S (2016a) Genotypic variation in the accumulation of water-soluble carbohydrate in canola and its potential contribution to seed yield in different environments. Field Crops Res 196:124–133CrossRefGoogle Scholar
  415. Zhang H, Flottman S (2016b) Seed yield of canola (Brassica napus L.) is determined primarily by biomass in a high-yielding environment. Crop Pasture Sci 67(3–4):369–380Google Scholar
  416. Zhang J, Hu L, Redden B, Yan G (2015a) Identification of fast and slow germination accessions of Brassica napus L. for genetic studies and breeding for early vigour. Crop Pasture Sci 66(5):481–491.  https://doi.org/10.1071/CP14269CrossRefGoogle Scholar
  417. Zhang J, Mason AS, Wu J, Liu S, Zhang X, Luo T, Redden R, Batley J, Hu L, Yan G (2015b) Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Front Plant Sci 6 (1058).  https://doi.org/10.3389/fpls.2015.01058
  418. Zhang J, Yu H, Zhang Y, Wang Y, Li M, Zhang J, Duan L, Zhang M, Li Z (2016) Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. J Exp Bot 67(5):1339–1355.  https://doi.org/10.1093/jxb/erv528CrossRefPubMedPubMedCentralGoogle Scholar
  419. Zhang L, Li S, Chen L, Yang G (2012) Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet 125(4):695–705.  https://doi.org/10.1007/s00122-012-1861-3CrossRefPubMedGoogle Scholar
  420. Zhang LW, Yang GS, Liu PW, Hong DF, Li SP, He QB (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122(1):1–31.  https://doi.org/10.1007/s00122-010-1419-1PubMedCrossRefGoogle Scholar
  421. Zhang W, Hu D, Raman R, Guo S, Wei Z, Shen X, Meng J, Raman H, Zou J (2017) Investigation of the genetic diversity and quantitative trait loci accounting for important agronomic and seed quality traits in Brassica carinata. Front Plant Sci 8(615).  https://doi.org/10.3389/fpls.2017.00615
  422. Zhao BY, Hu YF, Li JJ, Yao X, Liu KD (2016a) BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis. Bot Stud 57(1):12.  https://doi.org/10.1186/s40529-016-0127-9
  423. Zhao JJ, Kulkarni V, Liu NN, Del Carpio DP, Bucher J, Bonnema G (2010) BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot 61(6):1817–1825PubMedPubMedCentralCrossRefGoogle Scholar
  424. Zhao JY, Becker HC, Ding HD, Zhang YF, Zhang DQ, Ecke W (2005) QTL of three agronomically important traits and their interactions with environment in a European x Chinese rapeseed population. Acta Genet Sin 32(9):969–978PubMedGoogle Scholar
  425. Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M (2016b) Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus mMap for QTL comparison in Brassica napus. Front Plant Sci 7:17.  https://doi.org/10.3389/fpls.2016.00017CrossRefPubMedPubMedCentralGoogle Scholar
  426. Zheng J, Yang Z, Madgwick PJ, Carmo-Silva E, Parry MAJ, Hu Y-G (2015) TaER expression Is associated with transpiration efficiency traits and yield in bread wheat. PLoS ONE 10(6):e0128415.  https://doi.org/10.1371/journal.pone.0128415CrossRefPubMedPubMedCentralGoogle Scholar
  427. Zhou Q, Fu D, Mason AS, Zeng Y, Zhao C, Huang Y (2014) In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus. Mol Breed 33(4):881–894.  https://doi.org/10.1007/s11032-013-0002-2CrossRefGoogle Scholar
  428. Zou J, Hu D, Liu P, Raman H, Liu Z, Liu X, Parkin IAP, Chalhoub B, Meng J (2016) Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genom 17(1):1–14.  https://doi.org/10.1186/s12864-015-2343-1CrossRefGoogle Scholar
  429. Zou X, Suppanz I, Raman H, Hou J, Wang J, Long Y, Jung C, Meng J (2012) Comparative analysis of FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape. PLoS ONE 7(9):e45751PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaAustralia

Personalised recommendations