Skip to main content

Radiation and Immunotherapy for Sarcoma

  • Chapter
  • First Online:
Immunotherapy of Sarcoma

Abstract

Almost half of all cancer patients receive radiation therapy [1]. Radiotherapy is used for localized cancers to achieve local control and for metastatic tumors to palliate symptoms, and is estimated to contribute to approximately 40% of cancer cures [2]. For patients with large and/or high-grade soft tissue sarcomas, radiation therapy is frequently used in the neoadjuvant or adjuvant setting to improve local control [3–5], but small randomized studies suggest that radiation therapy does not alter the rate of metastasis compared to surgery alone [6, 7]. However, the addition of immunotherapy to neoadjuvant radiation therapy has the potential to activate a systemic antitumor response and eliminate micrometastases, which could improve survival for patients with sarcoma. This hypothesis will be tested in two clinical trials that are currently ongoing–the NEXIS trial (NCT03116529) and SU2C-SARC032 (NCT03092323). This chapter provides the rationale for this treatment strategy, as well as a summary of ongoing clinical trials testing the combination of radiation therapy and immune checkpoint blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov. 2013;12:526–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9:193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang D, Zhang Q, Eisenberg B, Kane J, Li X, Lucas D, et al. Significant reduction of radiation related morbidities in the extremity sarcoma patients treated with image guided radiation therapy to reduced target volume: results of RTOG 0630. Int J Radiat Oncol Biol Phys. 2013;87:S63.

    Article  Google Scholar 

  4. Larrier NA, Czito BG, Kirsch DG. Radiation therapy for soft tissue sarcoma: indications and controversies for neoadjuvant therapy, adjuvant therapy, intraoperative radiation therapy, and brachytherapy. Surg Oncol Clin N Am. 2016;25:841–60.

    Article  PubMed  Google Scholar 

  5. O’Sullivan B, Davis AM, Turcotte R, Bell R, Catton C, Chabot P, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet. 2002;359:2235–41.

    Article  PubMed  Google Scholar 

  6. Pisters PW, Harrison LB, Leung DH, Woodruff JM, Casper ES, Brennan MF. Long-term results of a prospective randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J Clin Oncol. 1996;14:859–68.

    Article  CAS  PubMed  Google Scholar 

  7. Beane JD, Yang JC, White D, Steinberg SM, Rosenberg SA, Rudloff U. Efficacy of adjuvant radiation therapy in the treatment of soft tissue sarcoma of the extremity: 20-year follow-up of a randomized prospective trial. Ann Surg Oncol. 2014;21:2484–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stone HB, Peters LJ, Milas L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst. 1979;63:1229–35.

    CAS  PubMed  Google Scholar 

  9. Siva S, MacManus MP, Martin RF, Martin OA. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 2015;356:82–90.

    Article  CAS  PubMed  Google Scholar 

  10. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  17. Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol. 2012;2:153.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.

    Article  CAS  PubMed  Google Scholar 

  19. Spiotto M, Fu Y-X, Weichselbaum RR. The intersection of radiotherapy and immunotherapy: mechanisms and clinical implications. Sci Immunol. 2016;1:EAAG1266. https://doi.org/10.1126/sciimmunol.aag1266.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yovino SG, Grossman SA, Kleinberg L, Ford EC. Modeling radiation dose to circulating lymphocytes during brain tumor treatment: effects of target volume, dose rate, and treatment technique. J Clin Oncol. 2012;30:2017.

    Google Scholar 

  21. Popp I, Grosu AL, Niedermann G, Duda DG. Immune modulation by hypofractionated stereotactic radiation therapy: therapeutic implications. Radiother Oncol. 2016;120:185–94.

    Article  CAS  PubMed  Google Scholar 

  22. Kaur P, Asea A. Radiation-induced effects and the immune system in cancer. Front Oncol. 2012;2:191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mathios D, Kim JE, Mangraviti A, Phallen J, Park C-K, Jackson CM, et al. Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci Transl Med. 2016;8:370ra180.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114:589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balermpas P, Michel Y, Wagenblast J, Seitz O, Weiss C, Rödel F, et al. Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer. 2014;110:501–9.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng W, Skowron KB, Namm JP, Burnette B, Fernandez C, Arina A, et al. Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget. 2016;7:43039–51.

    PubMed  PubMed Central  Google Scholar 

  27. Demaria S, Coleman CN, Formenti SC. Radiotherapy: changing the game in immunotherapy. Trends Cancer Res. 2016;2:286–94.

    Article  Google Scholar 

  28. Vergati M, Intrivici C, Huen N-Y, Schlom J, Tsang KY. Strategies for cancer vaccine development. J Biomed Biotechnol. 2010;2010:596432. https://doi.org/10.1155/2010/596432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Formenti SC, Demaria S. Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys. 2012;84:879–80.

    Article  PubMed  Google Scholar 

  30. Aguilera TA, Rafat M, Castellini L, Shehade H, Kariolis MS, AB-Y H, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang X, Schoenhals JE, Li A, Valdecanas DR, Ye H, Zang F, et al. Suppression of type I IFN signaling in tumors mediates resistance to Anti-PD-1 treatment that can be overcome by radiotherapy. Cancer Res. 2017;77:839–50.

    Article  CAS  PubMed  Google Scholar 

  32. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–70. https://doi.org/10.1038/nature23470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DeLaney TF, Harmon DC, Yoon S, Kirsch DG, Rosenberg AE, Mankin HJ, et al. Soft tissue sarcomas. In: Price P, Sikora K, editors. Treatment of cancer. 6th ed. Boca Raton: Taylor & Francis Group, LLC; 2015. p. 537–82.

    Google Scholar 

  34. Sharma A, Bode B, Studer G, Moch H, Okoniewski M, Knuth A, et al. Radiotherapy of human sarcoma promotes an intratumoral immune effector signature. Clin Cancer Res. 2013;19:4843–53.

    Article  CAS  PubMed  Google Scholar 

  35. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 2000;191:423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71:2488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta A, Probst HC, Vuong V, Landshammer A, Muth S, Yagita H, et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J Immunol. 2012;189:558–66.

    Article  CAS  PubMed  Google Scholar 

  38. Huang J, Wang QJ, Yang S, Li YF, El-Gamil M, Rosenberg SA, et al. Irradiation enhances human T-cell function by upregulating CD70 expression on antigen-presenting cells in vitro. J Immunother. 2011;34:327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget. 2014;5:403–16.

    Article  PubMed  Google Scholar 

  40. Spiotto MT, Yu P, Rowley DA, Nishimura MI, Meredith SC, Gajewski TF, et al. Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity. 2002;17:737–47.

    Article  CAS  PubMed  Google Scholar 

  41. Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E, et al. Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res. 2015;3:345–55.

    Article  CAS  PubMed  Google Scholar 

  42. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181:3099–107.

    Article  CAS  PubMed  Google Scholar 

  43. Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichselbaum RR. Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci U S A. 1989;86:10104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70:6171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ganss R, Ryschich E, Klar E, Arnold B, Hämmerling GJ. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res. 2002;62:1462–70.

    CAS  PubMed  Google Scholar 

  46. Sharma A, Bode B, Wenger RH, Lehmann K, Sartori AA, Moch H, et al. γ-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One. 2011;6:e28217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203:1259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gameiro SR, Malamas AS, Bernstein MB, Tsang KY, Vassantachart A, Sahoo N, et al. Tumor cells surviving exposure to proton or photon radiation share a common immunogenic modulation signature, rendering them more sensitive to T cell--mediated killing. Int J Radiat Oncol Biol Phys. 2016;95:120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coates PJ, Rundle JK, Lorimore SA, Wright EG. Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling. Cancer Res. 2008;68:450–6.

    Article  CAS  PubMed  Google Scholar 

  50. Filatenkov A, Baker J, Mueller AMS, Kenkel J, Ahn G-O, Dutt S, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21:3727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barcellos-Hoff MH. Radiation-induced transforming growth factor beta and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 1993;53:3880–6.

    CAS  PubMed  Google Scholar 

  52. Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA. Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest. 1994;93:892–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007;13:5262–70.

    Article  CAS  PubMed  Google Scholar 

  54. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15:5379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174:7516–23.

    Article  CAS  PubMed  Google Scholar 

  57. Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 2007;14:1848–50.

    Article  CAS  PubMed  Google Scholar 

  58. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.

    Article  CAS  PubMed  Google Scholar 

  59. Hu B, Jin C, Li H-B, Tong J, Ouyang X, Cetinbas NM, et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science. 2016;354:765–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Croker BA, O’Donnell JA, Gerlic M. Pyroptotic death storms and cytopenia. Curr Opin Immunol. 2014;26:128–37.

    Article  CAS  PubMed  Google Scholar 

  61. Guo H, Callaway JB, JP-Y T. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell. 1995;80:401–11.

    Article  CAS  PubMed  Google Scholar 

  63. Mackenzie KJ, Carroll P, Martin C-A, Murina O, Fluteau A, Simpson DJ, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MYK, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. JNCI. 1996;88:100–8.

    Article  CAS  PubMed  Google Scholar 

  68. Ranoa DRE, Parekh AD, Pitroda SP, Huang X, Darga T, Wong AC, et al. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget. 2016;7:26496–515.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Que Y, Xiao W, Guan Y-X, Liang Y, Yan S-M, Chen H-Y, et al. PD-L1 expression is associated with FOXP3+ regulatory T-cell infiltration of soft tissue sarcoma and poor patient prognosis. J Cancer. 2017;8:2018–25.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74:5458–68.

    Article  CAS  PubMed  Google Scholar 

  72. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124:687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Milas L, Wike J, Hunter N, Volpe J, Basic I. Macrophage content of murine sarcomas and carcinomas: associations with tumor growth parameters and tumor radiocurability. Cancer Res. 1987;47:1069–75.

    CAS  PubMed  Google Scholar 

  74. Young KH, Baird JR, Savage T, Cottam B, Friedman D, Bambina S, et al. Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLoS One. 2016;11:e0157164.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer. 2016;4:51.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18:895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pollack SM, He Q, Yearley JH, Emerson R, Vignali M, Zhang Y, et al. T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death-ligand 1 expression in patients with soft tissue sarcomas. Cancer. 2017;123:3291–304. https://doi.org/10.1002/cncr.30726.

    Article  CAS  PubMed  Google Scholar 

  78. Maki RG, Jungbluth AA, Gnjatic S, Schwartz GK, D’Adamo DR, Keohan ML, Wagner MJ, Scheu K, Chiu R, Ritter E, Kachel J, Lowy I, Old LJ, Ritter G. A pilot study of anti-CTLA4 antibody ipilimumab in patients with synovial sarcoma. Sarcoma. 2013;2013:168145.

    Article  Google Scholar 

  79. The Cancer Genome Atlas [Internet]. [cited 19 Jan 2016]. Available: https://tcga-data.nci.nih.gov/tcga/.

  80. Burgess MA, Bolejack V, Van Tine BA, Schuetze S, Hu J, D’Angelo SP, et al. Multicenter phase II study of pembrolizumab (P) in advanced soft tissue (STS) and bone sarcomas (BS): final results of SARC028 and biomarker analyses. J Clin Oncol. 2017;35:11008.

    Article  Google Scholar 

  81. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545:60–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Davis AM, O’Sullivan B, Turcotte R, Bell R, Catton C, Chabot P, et al. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol. 2005;75:48–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Kirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wisdom, A.J., Mowery, Y.M., Kirsch, D.G. (2019). Radiation and Immunotherapy for Sarcoma. In: D'Angelo, S., Pollack, S. (eds) Immunotherapy of Sarcoma. Springer, Cham. https://doi.org/10.1007/978-3-319-93530-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93530-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93529-4

  • Online ISBN: 978-3-319-93530-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics