Skip to main content

The Mesangial Cell in Diabetic Nephropathy

  • Chapter
  • First Online:
Diabetic Nephropathy

Abstract

The mesangial cell plays a crucial role in the formation and maintenance of the glomerular capillary tuft and in the homeostasis of the mesangial matrix. Expansion of the mesangium, both diffuse and nodular, is a hallmark of DN. Numerous studies have shown adverse responses of the mesangial cell to injuries related to metabolic and hemodynamic effects of diabetes, including high glucose, insulin dysregulation, mechanical stress, dyslipidemia, and profibrotic growth factors. Their pivotal role in the development and progression of DN makes mesangial cells an interesting target for treatment, but this will be challenging because of the lack of specific markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes. 2008;57(6):1439–45.

    Article  CAS  Google Scholar 

  2. Schell C, Wanner N, Huber TB. Glomerular development--shaping the multi-cellular filtration unit. Semin Cell Dev Biol. 2014;36:39–49.

    Article  CAS  Google Scholar 

  3. Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, et al. Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development. 1998;125(17):3313–22.

    CAS  PubMed  Google Scholar 

  4. Betsholtz C, Lindblom P, Bjarnegard M, Enge M, Gerhardt H, Lindahl P. Role of platelet-derived growth factor in mesangium development and vasculopathies: lessons from platelet-derived growth factor and platelet-derived growth factor receptor mutations in mice. Curr Opin Nephrol Hypertens. 2004;13(1):45–52.

    Article  CAS  Google Scholar 

  5. Vaughan MR, Quaggin SE. How do mesangial and endothelial cells form the glomerular tuft? J Am Soc Nephrol. 2008;19(1):24–33.

    Article  Google Scholar 

  6. Soriano P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994;8(16):1888–96.

    Article  CAS  Google Scholar 

  7. Levéen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994;8(16):1875–87.

    Article  Google Scholar 

  8. Kikkawa Y, Virtanen I, Miner JH. Mesangial cells organize the glomerular capillaries by adhering to the G domain of laminin alpha5 in the glomerular basement membrane. J Cell Biol. 2003;161(1):187–96.

    Article  CAS  Google Scholar 

  9. Mugford JW, Sipilä P, McMahon JA, McMahon AP. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol. 2008;324(1):88–98.

    Article  CAS  Google Scholar 

  10. Takano K, Kawasaki Y, Imaizumi T, Matsuura H, Nozawa R, Tannji M, et al. Development of glomerular endothelial cells, podocytes and mesangial cells in the human fetus and infant. Tohoku J Exp Med. 2007;212(1):81–90.

    Article  Google Scholar 

  11. Hugo C, Shankland SJ, Bowen-Pope DF, Couser WG, Johnson RJ. Extraglomerular origin of the mesangial cell after injury. A new role of the juxtaglomerular apparatus. J Clin Invest. 1997;100(4):786–94.

    Article  CAS  Google Scholar 

  12. Ito T, Suzuki A, Imai E, Okabe M, Hori M. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol. 2001;12(12):2625–35.

    CAS  PubMed  Google Scholar 

  13. Schlöndorff D, Banas B. The mesangial cell revisited: no cell is an island. J Am Soc Nephrol. 2009;20(6):1179–87.

    Article  Google Scholar 

  14. Bieritz B, Spessotto P, Colombatti A, Jahn A, Prols F, Hartner A. Role of alpha8 integrin in mesangial cell adhesion, migration, and proliferation. Kidney Int. 2003;64(1):119–27.

    Article  CAS  Google Scholar 

  15. Ma R, Pluznick JL, Sansom SC. Ion channels in mesangial cells: function, malfunction, or fiction. Physiology (Bethesda). 2005;20(2):102–11.

    CAS  Google Scholar 

  16. Hughes J, Liu Y, Van Damme J, Savill J. Human glomerular mesangial cell phagocytosis of apoptotic neutrophils: mediation by a novel CD36-independent vitronectin receptor/thrombospondin recognition mechanism that is uncoupled from chemokine secretion. J Immunol. 1997;158(9):4389–97.

    CAS  PubMed  Google Scholar 

  17. Cortes-Hernandez J, Fossati-Jimack L, Carugati A, Potter PK, Walport MJ, Cook HT, et al. Murine glomerular mesangial cell uptake of apoptotic cells is inefficient and involves serum-mediated but complement-independent mechanisms. Clin Exp Immunol. 2002;130(3):459–66.

    Article  CAS  Google Scholar 

  18. Heilig CW, Liu Y, England RL, Freytag SO, Gilbert JD, Heilig KO, et al. D-glucose stimulates mesangial cell GLUT1 expression and basal and IGF-I-sensitive glucose uptake in rat mesangial cells: implications for diabetic nephropathy. Diabetes. 1997;46(6):1030–9.

    Article  CAS  Google Scholar 

  19. Murphy M, Godson C, Cannon S, Kato S, Mackenzie HS, Martin F, et al. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J Biol Chem. 1999;274(9):5830–4.

    Article  CAS  Google Scholar 

  20. Oh JH, Ha H, Yu MR, Lee HB. Sequential effects of high glucose on mesangial cell transforming growth factor-β1 and fibronectin synthesis. Kidney Int. 1998;54(6):1872–8.

    Article  CAS  Google Scholar 

  21. McMahon R, Murphy M, Clarkson M, Taal M, Mackenzie HS, Godson C, et al. IHG-2, a mesangial cell gene induced by high glucose, is human gremlin. Regulation by extracellular glucose concentration, cyclic mechanical strain, and transforming growth factor-beta1. J Biol Chem. 2000;275(14):9901–4.

    Article  CAS  Google Scholar 

  22. Isoe T, Makino Y, Mizumoto K, Sakagami H, Fujita Y, Honjo J, et al. High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int. 2010;78(1):48–59.

    Article  CAS  Google Scholar 

  23. Weigert C, Brodbeck K, Brosius FC, Huber M, Lehmann R, Friess U, et al. Evidence for a novel TGF-beta1-independent mechanism of fibronectin production in mesangial cells overexpressing glucose transporters. Diabetes. 2003;52(2):527–35.

    Article  CAS  Google Scholar 

  24. Berrou J, Tostivint I, Verrecchia F, Berthier C, Boulanger E, Mauviel A, et al. Advanced glycation end products regulate extracellular matrix protein and protease expression by human glomerular mesangial cells. Int J Mol Med. 2009;23(4):513–20.

    CAS  PubMed  Google Scholar 

  25. Sanchez-Niño M-D, Benito-Martin A, Ortiz A. New paradigms in cell death in human diabetic nephropathy. Kidney Int. 2010;78(8):737–44.

    Article  Google Scholar 

  26. Abboud HE. Mesangial cell biology. Exp Cell Res. 2012;318(9):979–85.

    Article  CAS  Google Scholar 

  27. Graham S, Yuan JP, Ma R. Canonical transient receptor potential channels in diabetes. Exp Biol Med (Maywood). 2012 Feb;237(2):111–8.

    Article  CAS  Google Scholar 

  28. Oemar BS, Foellmer HG, Hodgdon-Anandant L, Rosenzweig SA. Regulation of insulin-like growth factor I receptors in diabetic mesangial cells. J Biol Chem. 1991;266(4):2369–73.

    CAS  PubMed  Google Scholar 

  29. Kong Y, Shen Y, Ni J, Shao D, Miao N, Xu J, et al. Insulin deficiency induces rat renal mesangial cell dysfunction via activation of IGF-1/IGF-1R pathway. Acta Pharmacol Sin. 2016;37(2):217–27.

    Article  CAS  Google Scholar 

  30. Sarafidis PA, Ruilope LM. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. Am J Nephrol. 2006;26(3):232–44.

    Article  Google Scholar 

  31. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood). 2008;233(1):4–11.

    Article  CAS  Google Scholar 

  32. Wolf G, Ziyadeh FN. The role of angiotensin II in diabetic nephropathy: emphasis on nonhemodynamic mechanisms. Am J Kidney Dis. 1997;29(1):153–63.

    Article  CAS  Google Scholar 

  33. Kakoki M, Takahashi N, Jennette JC, Smithies O. Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc Natl Acad Sci U S A. 2004;101(36):13302–5.

    Article  CAS  Google Scholar 

  34. Kawanami D, Matoba K, Utsunomiya K. Dyslipidemia in diabetic nephropathy. Ren Replace Ther. 2016;2(1):16.

    Article  Google Scholar 

  35. Blom IE, van Dijk AJ, Wieten L, Duran K, Ito Y, Kleij L, et al. In vitro evidence for differential involvement of CTGF, TGFbeta, and PDGF-BB in mesangial response to injury. Nephrol Dial Transplant. 2001;16(6):1139–48.

    Article  CAS  Google Scholar 

  36. Matsubara T, Araki M, Abe H, Ueda O, Jishage K, Mima A, et al. Bone morphogenetic protein 4 and Smad1 mediate extracellular matrix production in the development of diabetic nephropathy. Diabetes. 2015;64(8):2978–90.

    Article  CAS  Google Scholar 

  37. Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, et al. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy11Professor Robert chevalier served as a guest editor for this paper. Kidney Int. 2003;63(6):2037–49.

    Article  CAS  Google Scholar 

  38. Floege J, Eitner F, Alpers CE. A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol. 2008;19(1):12–23.

    Article  CAS  Google Scholar 

  39. Laping NJ, Olson BA, DeWolf RE, Albrightson CR, Fredrickson T, King C, et al. Activation of glomerular mesangial cells by hepatocyte growth factor through tyrosine kinase and protein kinase C. Biochem Pharmacol. 1998;55(2):227–34.

    Article  CAS  Google Scholar 

  40. Tack I, Elliot SJ, Potier M, Rivera A, Striker GE, Striker LJ. Autocrine activation of the IGF-I signaling pathway in mesangial cells isolated from diabetic NOD mice. Diabetes. 2002;51(1):182–8.

    Article  CAS  Google Scholar 

  41. Haralson MA, DiMari SJ, Hoover RL, Harris RC. Effects of epidermal growth factor on collagen expression by rat kidney mesangial cells in culture. Matrix Biol. 2000;19(1):47–59.

    Article  CAS  Google Scholar 

  42. Zhang M-Z, Wang Y, Paueksakon P, Harris RC. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes. 2014;63(6):2063–72.

    Article  CAS  Google Scholar 

  43. Maeshima Y. Novel therapeutic approaches for progressive renal disorders by targeting glomerular component mesangial and endothelial cells. Clin Exp Nephrol. 2005;9(4):271–81.

    Article  CAS  Google Scholar 

  44. Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol. 2014;10(12):700–11.

    Article  CAS  Google Scholar 

  45. Scindia YM, Deshmukh US, Bagavant H. Mesangial pathology in glomerular disease: targets for therapeutic intervention. Adv Drug Deliv Rev. 2010;62(14):1337–43.

    Article  CAS  Google Scholar 

  46. Choi CHJ, Zuckerman JE, Webster P, Davis ME. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci U S A. 2011;108(16):6656–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tri Q. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, T.Q., Goldschmeding, R. (2019). The Mesangial Cell in Diabetic Nephropathy. In: Roelofs, J., Vogt, L. (eds) Diabetic Nephropathy. Springer, Cham. https://doi.org/10.1007/978-3-319-93521-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93521-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93520-1

  • Online ISBN: 978-3-319-93521-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics