Skip to main content

Pathology of the Kidney in Diabetes

  • Chapter
  • First Online:
Diabetic Nephropathy

Abstract

In a classical paper published in 1936, Kimmelstiel and Wilson for the first time described mesangial expansion and nodular glomerulosclerosis in diabetic kidney disease (DKD). We have since learned much more about DKD lesions, although natural history of progression of these lesions is better known in type 1 diabetes, while majority of patients with DKD suffer from type 2 diabetes, calling for further studies in the latter population. The pathology of DKD is also more homogeneous in type 1 diabetes, and there is some controversy if all kidney lesions observed in type 2 are attributable to diabetes or they may be related to concurrent conditions such as aging, hypertension, and atherosclerosis which are commonly present in type 2 diabetic patients. For these reasons, we will initially discuss pathology of DKD in type 1 diabetic patients and then provide comparisons with type 2 diabetes. Then, we move to the natural history of DKD progression and relationships between structural changes, renal dysfunction, and diabetes duration. Finally, reversal of DKD lesions following long-term normoglycemia after pancreas transplantation and animal models of DKD are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimmelstiel P, Wilson C. Intercapillary lesions in glomeruli in kidney. Am J Pathol. 1936;12:83–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Osterby R. Kidney structural abnormalities in early diabetes. Adv Metab Disord. 1973;2(Suppl 2):323–40.

    Google Scholar 

  3. Caramori ML, Kim Y, Huang C, Fish AJ, Rich SS, Miller ME, et al. Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes. 2002;51(2):506–13.

    Article  CAS  PubMed  Google Scholar 

  4. Steffes MW, Sutherland DE, Goetz FC, Rich SS, Mauer SM. Studies of kidney and muscle biopsy specimens from identical twins discordant for type I diabetes mellitus. N Engl J Med. 1985;312(20):1282–7.

    Article  CAS  PubMed  Google Scholar 

  5. Ramage IJ, Howatson AG, McColl JH, Maxwell H, Murphy AV, Beattie TJ. Glomerular basement membrane thickness in children: a stereologic assessment. Kidney Int. 2002;62(3):895–900.

    Article  PubMed  Google Scholar 

  6. Steffes MW, Barbosa J, Basgen JM, Sutherland DE, Najarian JS, Mauer SM. Quantitative glomerular morphology of the normal human kidney. Lab Invest. 1983;49(1):82–6.

    CAS  PubMed  Google Scholar 

  7. Drummond K, Mauer M. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes. 2002;51(5):1580–7.

    Article  CAS  PubMed  Google Scholar 

  8. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74(4):1143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brito PL, Fioretto P, Drummond K, Kim Y, Steffes MW, Basgen JM, et al. Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int. 1998;53(3):754–61.

    Article  CAS  PubMed  Google Scholar 

  10. Mariappan MM. Signaling mechanisms in the regulation of renal matrix metabolism in diabetes. Exp Diabetes Res. 2012;2012:749812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhu D, Kim Y, Steffes MW, Groppoli TJ, Butkowski RJ, Mauer SM. Glomerular distribution of type IV collagen in diabetes by high resolution quantitative immunochemistry. Kidney Int. 1994;45(2):425–33.

    Article  CAS  PubMed  Google Scholar 

  12. Moriya T, Groppoli TJ, Kim Y, Mauer M. Quantitative immunoelectron microscopy of type VI collagen in glomeruli in type I diabetic patients. Kidney Int. 2001;59(1):317–23.

    Article  CAS  PubMed  Google Scholar 

  13. Bai Y, Wang L, Li Y, Liu S, Li J, Wang H, et al. High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell Physiol Biochem. 2006;17(1-2):57–68.

    Article  CAS  PubMed  Google Scholar 

  14. osterby R. Early phases in the development of diabetic glomerulopathy. Acta Med Scand Suppl. 1974;574:3–82.

    CAS  PubMed  Google Scholar 

  15. Steffes MW, Bilous RW, Sutherland DE, Mauer SM. Cell and matrix components of the glomerular mesangium in type I diabetes. Diabetes. 1992;41(6):679–84.

    Article  CAS  PubMed  Google Scholar 

  16. Ellis EN, Steffes MW, Goetz FC, Sutherland DE, Mauer SM. Glomerular filtration surface in type I diabetes mellitus. Kidney Int. 1986;29(4):889–94.

    Article  CAS  PubMed  Google Scholar 

  17. DeFronzo RA. Diabetic Nephropathy: Etiologic and therapeutic considerations. Diabetes Review. 1995;3:510–64.

    Google Scholar 

  18. Fioretto P, Steffes MW, Mauer M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes. 1994;43(11):1358–64.

    Article  CAS  PubMed  Google Scholar 

  19. Andeen NK, Nguyen TQ, Steegh F, Hudkins KL, Najafian B, Alpers CE. The phenotypes of podocytes and parietal epithelial cells may overlap in diabetic nephropathy. Kidney Int. 2015;88(5):1099–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mauer SM, Barbosa J, Vernier RL, Kjellstrand CM, Buselmeier TJ, Simmons RL, et al. Development of diabetic vascular lesions in normal kidneys transplanted into patients with diabetes mellitus. N Engl J Med. 1976;295(17):916–20.

    Article  CAS  PubMed  Google Scholar 

  21. Osterby R, Asplund J, Bangstad HJ, Nyberg G, Rudberg S, Viberti GC, et al. Neovascularization at the vascular pole region in diabetic glomerulopathy. Nephrol Dial Transplant. 1999;14(2):348–52.

    Article  CAS  PubMed  Google Scholar 

  22. Patari A, Forsblom C, Havana M, Taipale H, Groop PH, Holthofer H. Nephrinuria in diabetic nephropathy of type 1 diabetes. Diabetes. 2003;52(12):2969–74.

    Article  PubMed  Google Scholar 

  23. Perrin NE, Torbjornsdotter TB, Jaremko GA, Berg UB. The course of diabetic glomerulopathy in patients with type I diabetes: a 6-year follow-up with serial biopsies. Kidney Int. 2006;69(4):699–705.

    Article  CAS  PubMed  Google Scholar 

  24. Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes. 2007;56(8):2155–60.

    Article  CAS  PubMed  Google Scholar 

  25. Chen HC, Chen CA, Guh JY, Chang JM, Shin SJ, Lai YH. Altering expression of alpha3beta1 integrin on podocytes of human and rats with diabetes. Life Sci. 2000;67(19):2345–53.

    Article  CAS  PubMed  Google Scholar 

  26. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55(1):225–33.

    Article  CAS  PubMed  Google Scholar 

  27. Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne). 2014;5:151.

    CAS  Google Scholar 

  28. Fioretto P, Sutherland DE, Najafian B, Mauer M. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int. 2006;69(5):907–12.

    Article  CAS  PubMed  Google Scholar 

  29. Najafian B, Kim Y, Crosson JT, Mauer M. Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J Am Soc Nephrol. 2003;14(4):908–17.

    Article  PubMed  Google Scholar 

  30. Friedrich C, Endlich N, Kriz W, Endlich K. Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Renal Physiol. 2006;291(4):F856–65.

    Article  CAS  PubMed  Google Scholar 

  31. Baines RJ, Brunskill NJ. Tubular toxicity of proteinuria. Nat Rev Nephrol. 2011;7(3):177–80.

    Article  CAS  PubMed  Google Scholar 

  32. Katz A, Caramori ML, Sisson-Ross S, Groppoli T, Basgen JM, Mauer M. An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients. Kidney Int. 2002;61(6):2058–66.

    Article  PubMed  Google Scholar 

  33. Mise K, Hoshino J, Ubara Y, Sumida K, Hiramatsu R, Hasegawa E, et al. Renal prognosis a long time after renal biopsy on patients with diabetic nephropathy. Nephrol Dial Transplant. 2014;29(1):109–18.

    Article  CAS  PubMed  Google Scholar 

  34. Ponchiardi C, Mauer M, Najafian B. Temporal profile of diabetic nephropathy pathologic changes. Curr Diab Rep. 2013;13(4):592–9.

    Article  CAS  PubMed  Google Scholar 

  35. Caramori ML, Parks A, Mauer M. Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol. 2013;24(7):1175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harindhanavudhi T, Parks A, Mauer M, Caramori ML. Podocyte structural parameters do not predict progression to diabetic nephropathy in normoalbuminuric type 1 diabetic patients. Am J Nephrol. 2015;41(4-5):277–83.

    Article  PubMed  Google Scholar 

  37. Thomsen OF, Andersen AR, Christiansen JS, Deckert T. Renal changes in long-term type 1 (insulin-dependent) diabetic patients with and without clinical nephropathy: a light microscopic, morphometric study of autopsy material, Diabetologia. 1984;26(5):361–5.

    Google Scholar 

  38. Bohle A, Wehrmann M, Bogenschutz O, Batz C, Muller CA, Muller GA. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol Res Pract. 1991;187(2-3):251–9.

    Article  CAS  PubMed  Google Scholar 

  39. Horlyck A, Gundersen HJ, Osterby R. The cortical distribution pattern of diabetic glomerulopathy. Diabetologia. 1986;29(3):146–50.

    Article  CAS  PubMed  Google Scholar 

  40. White KE, Bilous RW, Marshall SM, El Nahas M, Remuzzi G, Piras G, et al. Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes. 2002;51(10):3083–9.

    Article  CAS  PubMed  Google Scholar 

  41. Matsusaka T, Sandgren E, Shintani A, Kon V, Pastan I, Fogo AB, et al. Podocyte injury damages other podocytes. J Am Soc Nephrol. 2011;22(7):1275–85.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rabelink TJ, de Zeeuw D. The glycocalyx--linking albuminuria with renal and cardiovascular disease. Nat Rev Nephrol. 2015;11(11):667–76.

    Article  CAS  PubMed  Google Scholar 

  43. O’Shaughnessy MM, Hogan SL, Thompson BD, Coppo R, Fogo AB, Jennette JC. Glomerular disease frequencies by race, sex and region: results from the International Kidney Biopsy Survey. Nephrol Dial Transplant. 2017; https://doi.org/10.1093/ndt/gfx189.

    Article  PubMed Central  Google Scholar 

  44. O'Shaughnessy MM, Hogan SL, Poulton CJ, Falk RJ, Singh HK, Nickeleit V, et al. Temporal and Demographic Trends in Glomerular Disease Epidemiology in the Southeastern United States, 1986-2015. Clin J Am Soc Nephrol. 2017;12(4):614–23.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Klessens CQ, Woutman TD, Veraar KA, Zandbergen M, Valk EJ, Rotmans JI, et al. An autopsy study suggests that diabetic nephropathy is underdiagnosed. Kidney Int. 2016;90(1):149–56.

    Article  PubMed  Google Scholar 

  46. Lemley KV, Abdullah I, Myers BD, Meyer TW, Blouch K, Smith WE, et al. Evolution of incipient nephropathy in type 2 diabetes mellitus. Kidney Int. 2000;58(3):1228–37.

    Article  CAS  PubMed  Google Scholar 

  47. Osterby R, Gall MA, Schmitz A, Nielsen FS, Nyberg G, Parving HH. Glomerular structure and function in proteinuric type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36(10):1064–70.

    Article  CAS  PubMed  Google Scholar 

  48. Ekinci EI, Jerums G, Skene A, Crammer P, Power D, Cheong KY, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care. 2013;36(11):3620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimizu M, Furuichi K, Toyama T, Kitajima S, Hara A, Kitagawa K, et al. Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy. Diabetes Care. 2013;36(11):3655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nosadini R, Velussi M, Brocco E, Bruseghin M, Abaterusso C, Saller A, et al. Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes. 2000;49(3):476–84.

    Article  CAS  PubMed  Google Scholar 

  51. Christensen PK, Larsen S, Horn T, Olsen S, Parving HH. Renal function and structure in albuminuric type 2 diabetic patients without retinopathy. Nephrol Dial Transplant. 2001;16(12):2337–47.

    Article  CAS  PubMed  Google Scholar 

  52. Fioretto P, Mauer M, Brocco E, Velussi M, Frigato F, Muollo B, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia. 1996;39(12):1569–76.

    Article  CAS  PubMed  Google Scholar 

  53. Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99(2):342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. White KE, Bilous RW. Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease. J Am Soc Nephrol. 2000;11(9):1667–73.

    CAS  PubMed  Google Scholar 

  55. Moriya T, Tanaka K, Hosaka T, Hirasawa Y, Fujita Y. Renal structure as an indicator for development of albuminuria in normo- and microalbuminuric type 2 diabetic patients. Diabetes Res Clin Pract. 2008;82(3):298–304.

    Article  CAS  PubMed  Google Scholar 

  56. Fufaa GD, Weil EJ, Lemley KV, Knowler WC, Brosius FC 3rd, Yee B, et al. Structural Predictors of Loss of Renal Function in American Indians with Type 2 Diabetes. Clin J Am Soc Nephrol. 2016;11(2):254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lioudaki E, Stylianou KG, Petrakis I, Kokologiannakis G, Passam A, Mikhailidis DP, et al. Increased Urinary Excretion of Podocyte Markers in Normoalbuminuric Patients with Diabetes. Nephron. 2015;131(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  58. Nakamura T, Ushiyama C, Suzuki S, Hara M, Shimada N, Ebihara I, et al. Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol Dial Transplant. 2000;15(9):1379–83.

    Article  CAS  PubMed  Google Scholar 

  59. Dalla Vestra M, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes. 2003;52(4):1031–5.

    Article  CAS  PubMed  Google Scholar 

  60. White KE, Bilous RW. Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol Dial Transplant. 2004;19(6):1437–40.

    Article  PubMed  Google Scholar 

  61. Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia. 1999;42(11):1341–4.

    Article  CAS  PubMed  Google Scholar 

  62. Fiorentino M, Bolignano D, Tesar V, Pisano A, Van Biesen W, D'Arrigo G, et al. Renal Biopsy in 2015--From Epidemiology to Evidence-Based Indications. Am J Nephrol. 2016;43(1):1–19.

    Article  PubMed  Google Scholar 

  63. Gambara V, Mecca G, Remuzzi G, Bertani T. Heterogeneous nature of renal lesions in type II diabetes. J Am Soc Nephrol. 1993;3(8):1458–66.

    CAS  PubMed  Google Scholar 

  64. Parving HH, Gall MA, Skott P, Jorgensen HE, Lokkegaard H, Jorgensen F, et al. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int. 1992;41(4):758–62.

    Article  CAS  PubMed  Google Scholar 

  65. Pham TT, Sim JJ, Kujubu DA, Liu IL, Kumar VA. Prevalence of nondiabetic renal disease in diabetic patients. Am J Nephrol. 2007;27(3):322–8.

    Article  PubMed  Google Scholar 

  66. Haas M, Racusen LC, Bagnasco SM. IgA-dominant postinfectious glomerulonephritis: a report of 13 cases with common ultrastructural features. Hum Pathol. 2008;39(9):1309–16.

    Article  CAS  PubMed  Google Scholar 

  67. Nasr SH, Markowitz GS, Stokes MB, Said SM, Valeri AM, D'Agati VD. Acute postinfectious glomerulonephritis in the modern era: experience with 86 adults and review of the literature. Medicine (Baltimore). 2008;87(1):21–32.

    Article  Google Scholar 

  68. Gonzalez Suarez ML, Thomas DB, Barisoni L, Fornoni A. Diabetic nephropathy: Is it time yet for routine kidney biopsy? World J Diabetes. 2013;4(6):245–55.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sharma SG, Bomback AS, Radhakrishnan J, Herlitz LC, Stokes MB, Markowitz GS, et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clin J Am Soc Nephrol. 2013;8(10):1718–24.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mazzucco G, Bertani T, Fortunato M, Bernardi M, Leutner M, Boldorini R, et al. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis. 2002;39(4):713–20.

    Article  PubMed  Google Scholar 

  71. Oh SW, Kim S, Na KY, Chae DW, Jin DC, Chin HJ. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res Clin Pract. 2012;97(3):418–24.

    Article  PubMed  Google Scholar 

  72. Schwartz MM, Lewis EJ, Leonard-Martin T, Lewis JB, Batlle D. Renal pathology patterns in type II diabetes mellitus: relationship with retinopathy. The Collaborative Study Group. Nephrol Dial Transplant. 1998;13(10):2547–52.

    Article  CAS  PubMed  Google Scholar 

  73. Zhuo L, Ren W, Li W, Zou G, Lu J. Evaluation of renal biopsies in type 2 diabetic patients with kidney disease: a clinicopathological study of 216 cases. Int Urol Nephrol. 2013;45(1):173–9.

    Article  PubMed  Google Scholar 

  74. Olsen S, Mogensen CE. How often is NIDDM complicated with non-diabetic renal disease? An analysis of renal biopsies and the literature. Diabetologia. 1996;39(12):1638–45.

    Article  CAS  PubMed  Google Scholar 

  75. Dai DF, Sasaki K, Lin MY, Smith KD, Nicosia RF, Alpers CE, et al. Interstitial eosinophilic aggregates in diabetic nephropathy: allergy or not? Nephrol Dial Transplant. 2015;30(8):1370–6.

    Article  CAS  PubMed  Google Scholar 

  76. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–63.

    Article  PubMed  Google Scholar 

  77. An Y, Xu F, Le W, Ge Y, Zhou M, Chen H, et al. Renal histologic changes and the outcome in patients with diabetic nephropathy. Nephrol Dial Transplant. 2015;30(2):257–66.

    Article  CAS  PubMed  Google Scholar 

  78. Okada T, Nagao T, Matsumoto H, Nagaoka Y, Wada T, Nakao T. Histological predictors for renal prognosis in diabetic nephropathy in diabetes mellitus type 2 patients with overt proteinuria. Nephrology (Carlton). 2012;17(1):68–75.

    Article  CAS  Google Scholar 

  79. Li L, Zhang X, Li Z, Zhang R, Guo R, Yin Q, et al. Renal pathological implications in type 2 diabetes mellitus patients with renal involvement. J Diabetes Complications. 2017;31(1):114–21.

    Article  PubMed  Google Scholar 

  80. Hoshino J, Mise K, Ueno T, Imafuku A, Kawada M, Sumida K, et al. A pathological scoring system to predict renal outcome in diabetic nephropathy. Am J Nephrol. 2015;41(4-5):337–44.

    Article  PubMed  Google Scholar 

  81. Mauer SM, Steffes MW, Sutherland DE, Najarian S, Michael AF, Brown DM. Studies of the rate of regression of the glomerular lesions in diabetic rats treated with pancreatic islet transplantation. Diabetes. 1975;24(3):280–5.

    Article  CAS  PubMed  Google Scholar 

  82. Pichaiwong W, Hudkins KL, Wietecha T, Nguyen TQ, Tachaudomdach C, Li W, et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol. 2013;24(7):1088–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fioretto P, Mauer SM, Bilous RW, Goetz FC, Sutherland DE, Steffes MW. Effects of pancreas transplantation on glomerular structure in insulin-dependent diabetic patients with their own kidneys. Lancet. 1993;342(8881):1193–6.

    Article  CAS  PubMed  Google Scholar 

  84. Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol. 2009;20(2):333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol. 2009;20(2):322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J Am Soc Nephrol. 2006;17(9):2443–56.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang J, Pippin JW, Krofft RD, Naito S, Liu ZH, Shankland SJ. Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Physiol Renal Physiol. 2013;304(11):F1375–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361(1):40–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weil EJ, Fufaa G, Jones LI, Lovato T, Lemley KV, Hanson RL, et al. Effect of losartan on prevention and progression of early diabetic nephropathy in American Indians with type 2 diabetes. Diabetes. 2013;62(9):3224–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brosius FC, 3rd, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2009;20(12):2503–12.

    Article  PubMed  Google Scholar 

  91. Alpers CE, Hudkins KL. Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens. 2011;20(3):278–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Breyer MD, Bottinger E, Brosius FC, 3rd, Coffman TM, Harris RC, Heilig CW, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol 2005;16(1):27-45.

    Google Scholar 

  93. Bolzan AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res. 2002;512(2-3):121–34.

    Article  CAS  PubMed  Google Scholar 

  94. Like AA, Appel MC, Williams RM, Rossini AA. Streptozotocin-induced pancreatic insulitis in mice. Morphologic and physiologic studies. Lab Invest. 1978;38(4):470–86.

    CAS  PubMed  Google Scholar 

  95. Kitada M, Ogura Y, Koya D. Rodent models of diabetic nephropathy: their utility and limitations. Int J Nephrol Renovasc Dis. 2016;9:279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T, Lu D, et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest. 1999;103(1):27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gurley SB, Mach CL, Stegbauer J, Yang J, Snow KP, Hu A, et al. Influence of genetic background on albuminuria and kidney injury in Ins2(+/C96Y) (Akita) mice. Am J Physiol Renal Physiol. 2010;298(3):F788–95.

    Article  CAS  PubMed  Google Scholar 

  98. Haseyama T, Fujita T, Hirasawa F, Tsukada M, Wakui H, Komatsuda A, et al. Complications of IgA nephropathy in a non-insulin-dependent diabetes model, the Akita mouse. Tohoku J Exp Med. 2002;198(4):233–44.

    Article  CAS  PubMed  Google Scholar 

  99. Xu J, Huang Y, Li F, Zheng S, Epstein PN. FVB mouse genotype confers susceptibility to OVE26 diabetic albuminuria. Am J Physiol Renal Physiol. 2010;299(3):F487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Teiken JM, Audettey JL, Laturnus DI, Zheng S, Epstein PN, Carlson EC. Podocyte loss in aging OVE26 diabetic mice. Anat Rec (Hoboken). 2008;291(1):114–21.

    Article  Google Scholar 

  101. Leiter EH, Prochazka M, Coleman DL. The non-obese diabetic (NOD) mouse. Am J Pathol. 1987;128(2):380–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med. 1999;5(6):601–4.

    Article  CAS  PubMed  Google Scholar 

  103. Azushima K, Gurley SB, Coffman TM. Modelling diabetic nephropathy in mice. Nat Rev Nephrol. 2018;14(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  104. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153(3740):1127–8.

    Article  CAS  PubMed  Google Scholar 

  105. Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 2000;14(3):439–47.

    Article  CAS  PubMed  Google Scholar 

  106. Taketomi S, Ikeda H, Ishikawa E, Iwatsuka H. Determination of overall insulin sensitivity in diabetic mice, KK. Horm Metab Res. 1982;14(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  107. Matsuo T, Shino A. Induction of diabetic alterations by goldthioglucose-obesity in KK,ICR and C57BL mice. Diabetologia. 1972;8(6):391–7.

    Article  CAS  PubMed  Google Scholar 

  108. Qi Z, Fujita H, Jin J, Davis LS, Wang Y, Fogo AB, et al. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes. 2005;54(9):2628–37.

    Article  CAS  PubMed  Google Scholar 

  109. Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, et al. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Renal Physiol. 2014;306(11):F1335–47.

    Article  CAS  PubMed  Google Scholar 

  110. Ito T, Tanimoto M, Yamada K, Kaneko S, Matsumoto M, Obayashi K, et al. Glomerular changes in the KK-Ay/Ta mouse: a possible model for human type 2 diabetic nephropathy. Nephrology (Carlton). 2006;11(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  111. Shiota M, Printz RL. Diabetes in Zucker diabetic fatty rat. Methods Mol Biol. 2012;933:103–23.

    CAS  PubMed  Google Scholar 

  112. Clark JB, Palmer CJ, Shaw WN. The diabetic Zucker fatty rat. Proc Soc Exp Biol Med. 1983;173(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  113. Chander PN, Gealekman O, Brodsky SV, Elitok S, Tojo A, Crabtree M, et al. Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J Am Soc Nephrol. 2004;15(9):2391–403.

    Article  CAS  PubMed  Google Scholar 

  114. Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z. A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes. 1981;30(12):1045–50.

    Article  CAS  PubMed  Google Scholar 

  115. Kitada M, Ogura Y, Suzuki T, Sen S, Lee SM, Kanasaki K, et al. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia. 2016;59(6):1307–17.

    Article  CAS  PubMed  Google Scholar 

  116. Nagai N, Murao T, Ito Y, Okamoto N, Sasaki M. Enhancing effects of sericin on corneal wound healing in Otsuka Long-Evans Tokushima fatty rats as a model of human type 2 diabetes. Biol Pharm Bull. 2009;32(9):1594–9.

    Article  CAS  PubMed  Google Scholar 

  117. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992;41(11):1422–8.

    Article  CAS  PubMed  Google Scholar 

  118. Portha B, Serradas P, Bailbe D, Suzuki K, Goto Y, Giroix MH. Beta-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes. Diabetes. 1991;40(4):486–91.

    Article  CAS  PubMed  Google Scholar 

  119. Ostenson CG, Khan A, Abdel-Halim SM, Guenifi A, Suzuki K, Goto Y, et al. Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia. 1993;36(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  120. Yagihashi S, Goto Y, Kakizaki M, Kaseda N. Thickening of glomerular basement membrane in spontaneously diabetic rats. Diabetologia. 1978;15(4):309–12.

    Article  CAS  PubMed  Google Scholar 

  121. Feng B, Yan XF, Xue JL, Xu L, Wang H. The protective effects of alpha-lipoic acid on kidneys in type 2 diabetic Goto-Kakisaki rats via reducing oxidative stress. Int J Mol Sci. 2013;14(4):6746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nobrega MA, Fleming S, Roman RJ, Shiozawa M, Schlick N, Lazar J, et al. Initial characterization of a rat model of diabetic nephropathy. Diabetes. 2004;53(3):735–42.

    Article  CAS  PubMed  Google Scholar 

  123. Kojima N, Slaughter TN, Paige A, Kato S, Roman RJ, Williams JM. Comparison of the development diabetic induced renal disease in strains of Goto-Kakizaki rats. J Diabetes Metab. 2013;Suppl 9(5):S9–005.

    PubMed  PubMed Central  Google Scholar 

  124. Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol. 2006;17(10):2664–9.

    Article  CAS  PubMed  Google Scholar 

  125. Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, et al. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Invest. 2008;88(5):515–28.

    Article  CAS  PubMed  Google Scholar 

  126. Thibodeau JF, Holterman CE, Burger D, Read NC, Reudelhuber TL, Kennedy CR. A novel mouse model of advanced diabetic kidney disease. PLoS One. 2014;9(12):e113459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Clee SM, Nadler ST, Attie AD. Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes. Am J Ther. 2005;12(6):491–8.

    Article  PubMed  Google Scholar 

  128. Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, et al. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol. 2010;21(9):1533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol Renal Physiol. 2014;307(3):F317–25.

    Article  CAS  PubMed  Google Scholar 

  130. Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM. Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol. 2006;290(1):F214–22.

    Article  CAS  PubMed  Google Scholar 

  131. Chang JH, Paik SY, Mao L, Eisner W, Flannery PJ, Wang L, et al. Diabetic kidney disease in FVB/NJ Akita mice: temporal pattern of kidney injury and urinary nephrin excretion. PLoS One. 2012;7(4):e33942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zheng S, Noonan WT, Metreveli NS, Coventry S, Kralik PM, Carlson EC, et al. Development of late-stage diabetic nephropathy in OVE26 diabetic mice. Diabetes. 2004;53(12):3248–57.

    Article  CAS  PubMed  Google Scholar 

  133. Yuzawa Y, Niki I, Kosugi T, Maruyama S, Yoshida F, Takeda M, et al. Overexpression of calmodulin in pancreatic beta cells induces diabetic nephropathy. J Am Soc Nephrol. 2008;19(9):1701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chua S Jr, Li Y, Liu SM, Liu R, Chan KT, Martino J, et al. A susceptibility gene for kidney disease in an obese mouse model of type II diabetes maps to chromosome 8. Kidney Int. 2010;78(5):453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang Z, Jiang T, Li J, Proctor G, McManaman JL, Lucia S, et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes. 2005;54(8):2328–35.

    Article  CAS  PubMed  Google Scholar 

  136. Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol. 2003;284(6):F1138–44.

    Article  CAS  PubMed  Google Scholar 

  137. McCarthy KJ, Routh RE, Shaw W, Walsh K, Welbourne TC, Johnson JH. Troglitazone halts diabetic glomerulosclerosis by blockade of mesangial expansion. Kidney Int. 2000;58(6):2341–50.

    Article  CAS  PubMed  Google Scholar 

  138. Katsuda Y, Ohta T, Miyajima K, Kemmochi Y, Sasase T, Tong B, et al. Diabetic complications in obese type 2 diabetic rat models. Exp Anim. 2014;63(2):121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Azushima K, Gurley SB, Coffman TM. Modelling diabetic nephropathy in mice. Nat Rev Nephrol. 2018;14(1):48–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Najafian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Najafian, B., Alpers, C.E. (2019). Pathology of the Kidney in Diabetes. In: Roelofs, J., Vogt, L. (eds) Diabetic Nephropathy. Springer, Cham. https://doi.org/10.1007/978-3-319-93521-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93521-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93520-1

  • Online ISBN: 978-3-319-93521-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics