Skip to main content

Kidney Transplantation and Diabetic Nephropathy

  • Chapter
  • First Online:
Diabetic Nephropathy

Abstract

Posttransplant diabetes mellitus (PTDM) has some unique features discerning it from type 2 diabetes mellitus (T2DM). In general, PTDM fluctuates often in time and is strongly influenced by immunosuppressive drugs, and its treatment can result in drug-drug interactions. The diagnosis of PTDM can only reliably be made in renal transplant recipients in a stable phase on maintenance immunosuppression. The mechanism of PTDM is both pancreatic beta-cell dysfunction and insulin resistance. Several risk factors contribute to the enhanced susceptibility of PTDM, among others genetic variation. Histological changes resemble those seen in diabetic nephropathy of the native kidneys; however they are often mixed with histological signs of other entities such as rejection, viral infection, or calcineurin inhibitor toxicity. Control of hyperglycemia attenuates histological abnormalities. Treatment of PTDM starts with lifestyle modifications and weight control followed by antidiabetic drugs. Metformin is safe in patients with an eGFR over 30 ml/min and probably also in patients with an eGFR between 15 and 30 ml/min. The optimal second drug needs to be explored. Promising are SGLT2 inhibitors and DPP-4 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaynor JJ, Ciancio G, Guerra G, Sageshima J, Hanson L, Roth D, et al. Multivariable risk of developing new onset diabetes after transplant-results from a single-center study of 481 adult, primary kidney transplant recipients. Clin Transpl [Internet]. 2015;29(4):301–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25581205.

    Article  Google Scholar 

  2. Davidson J, Wilkinson A, Dantal J, Dotta F, Haller H, Hernández D, et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation [Internet]. 2003;75(10 Suppl):SS3–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12775942.

    Google Scholar 

  3. Bergrem HA, Valderhaug TG, Hartmann A, Hjelmesaeth J, Leivestad T, Bergrem H, et al. Undiagnosed diabetes in kidney transplant candidates: a case-finding strategy. Clin J Am Soc Nephrol [Internet]. 2010;5(4):616–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20133490.

    Article  CAS  Google Scholar 

  4. Yates CJ, Fourlanos S, Colman PG, Cohney SJ. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. Transplantation [Internet]. 2013;96(8):726–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23902993.

    Article  CAS  Google Scholar 

  5. Shabir S, Jham S, Harper L, Ball S, Borrows R, Sharif A. Validity of glycated haemoglobin to diagnose new onset diabetes after transplantation. Transpl Int [Internet]. 2013;26(3):315–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23279163.

    Article  CAS  Google Scholar 

  6. Sharif A, Hecking M, de Vries APJ, Porrini E, Hornum M, Rasoul-Rockenschaub S, et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant [Internet]. 2014;14(9):1992–2000. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25307034.

    Article  CAS  Google Scholar 

  7. Valderhaug TG, Hjelmesaeth J, Rollag H, Leivestad T, Røislien J, Jenssen T, et al. Reduced incidence of new-onset posttransplantation diabetes mellitus during the last decade. Transplantation [Internet]. 2007;84(9):1125–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17998867.

    Article  Google Scholar 

  8. Hagen M, Hjelmesaeth J, Jenssen T, Morkrid L, Hartmann A. A 6-year prospective study on new onset diabetes mellitus, insulin release and insulin sensitivity in renal transplant recipients. Nephrol Dial Transplant [Internet]. 2003;18(10):2154–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13679495.

    Article  CAS  Google Scholar 

  9. Sharif A, Cohney S. Post-transplantation diabetes-state of the art. Lancet Diabetes Endocrinol. 2016;4(4):337–49.

    Article  Google Scholar 

  10. Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant [Internet]. 2003;3(2):178–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12603213.

    Article  Google Scholar 

  11. Sumrani NB, Delaney V, Ding ZK, Davis R, Daskalakis P, Friedman EA, et al. Diabetes mellitus after renal transplantation in the cyclosporine era – an analysis of risk factors. Transplantation [Internet]. 1991;51(2):343–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1994525.

    Article  CAS  Google Scholar 

  12. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet [Internet]. 2010;42(7):579–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20581827.

    Article  CAS  Google Scholar 

  13. Lecube A, Hernández C, Genescà J, Simó R. Proinflammatory cytokines, insulin resistance, and insulin secretion in chronic hepatitis C patients: a case-control study. Diabetes Care [Internet]. 2006;29(5):1096–101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16644643.

    Article  CAS  Google Scholar 

  14. Preiss D, Seshasai SRK, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA [Internet]. 2011;305(24):2556–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21693744.

    Article  CAS  Google Scholar 

  15. Garg N, Weinberg J, Ghai S, Bradauskaite G, Nuhn M, Gautam A, et al. Lower magnesium level associated with new-onset diabetes and pre-diabetes after kidney transplantation. J Nephrol [Internet]. 2014;27(3):339–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24609888.

    Article  CAS  Google Scholar 

  16. de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev [Internet]. 2015;95(1):1–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25540137.

    Article  Google Scholar 

  17. Ponticelli C, Moroni G, Glassock RJ. Recurrence of secondary glomerular disease after renal transplantation. Clin J Am Soc Nephrol [Internet]. 2011;6(5):1214–21. Available from: http://cjasn.asnjournals.org/cgi/doi/10.2215/CJN.09381010.

    Article  Google Scholar 

  18. Bhalla V, Nast CC, Stollenwerk N, Tran S, Barba L, Kamil ES, et al. Recurrent and de novo diabetic nephropathy in renal allografts. Transplantation [Internet]. 2003;75(1):66–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12544873.

    Article  CAS  Google Scholar 

  19. Borda B, Munir Ibrahim Y, Lengyel C, Várkonyi T, Kubik A, Keresztes C, et al. Early histopathological changes in new-onset diabetes after kidney transplantation. Transplant Proc [Internet]. Elsevier Inc. 2014;46(6):2155–9. Available from: https://doi.org/10.1016/j.transproceed.2014.05.057.

    Article  CAS  Google Scholar 

  20. Lindahl JP, Reinholt FP, Eide IA, Hartmann A, Midtvedt K, Holdaas H, et al. In patients with type 1 diabetes simultaneous pancreas and kidney transplantation preserves long-term kidney graft ultrastructure and function better than transplantation of kidney alone. Diabetologia. 2014;57(11):2357–65.

    Article  CAS  Google Scholar 

  21. Nyumura I, Honda K, Tanabe K, Teraoka S, Iwamoto Y. Early histologic lesions and risk factors for recurrence of diabetic kidney disease after kidney transplantation. Transp J. 2012;94(6):612–9.

    Article  Google Scholar 

  22. Ojo AO, Leichtman AB, Punch JD, Hanson JA, Dickinson DM, Wolfe RA, et al. Impact of pre-existing donor hypertension and diabetes mellitus on cadaveric renal transplant outcomes. Am J Kidney Dis [Internet]. 2000;36(1):153–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10873885.

    Article  CAS  Google Scholar 

  23. Ahmad M, Cole EH, Cardella CJ, Cattran DC, Schiff J, Tinckam KJ, et al. Impact of deceased donor diabetes mellitus on kidney transplant outcomes: a propensity score-matched study. Transplantation [Internet]. 2009;88(2):251–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19623022.

    Article  Google Scholar 

  24. Parekh J, Bostrom A, Feng S. Diabetes mellitus: a risk factor for delayed graft function after deceased donor kidney transplantation. Am J Transplant [Internet]. 2010;10(2):298–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20055796.

    Article  CAS  Google Scholar 

  25. Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol [Internet]. 2007;27(2):195–207. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17418688.

    Article  Google Scholar 

  26. Furness PN, Taub N, Assmann KJM, Banfi G, Cosyns J-P, Dorman AM, et al. International variation in histologic grading is large, and persistent feedback does not improve reproducibility. Am J Surg Pathol. 2003;27(6):805–10.

    Article  Google Scholar 

  27. Horsfield GI, Lannigan R. Exudative lesions in diabetes mellitus. J Clin Pathol [Internet]. 1965;18:47–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14247704.

    Article  CAS  Google Scholar 

  28. Nakamoto Y, Hamanaka S, Akihama T, Miura AB, Uesaka Y. Renal involvement patterns of amyloid nephropathy: a comparison with diabetic nephropathy. Clin Nephrol [Internet]. 1984;22(4):188–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6509804.

    CAS  Google Scholar 

  29. Stout LC, Kumar S, Whorton EB. Insudative lesions – their pathogenesis and association with glomerular obsolescence in diabetes: a dynamic hypothesis based on single views of advancing human diabetic nephropathy. Hum Pathol [Internet]. 1994;25(11):1213–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7959667.

    Article  CAS  Google Scholar 

  30. Van Damme B, Tardanico R, Vanrenterghem Y, Desmet V. Adhesions, focal sclerosis, protein crescents, and capsular lesions in membranous nephropathy. J Pathol [Internet]. 1990;161(1):47–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2370598.

    Article  Google Scholar 

  31. Ainsworth SK, Hirsch HZ, Brackett NC, Brissie RM, Williams AV, Hennigar GR. Diabetic glomerulonephropathy: histopathologic, immunofluorescent, and ultrastructural studies of 16 cases. Hum Pathol [Internet]. 1982;13(5):470–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7042531.

    Article  CAS  Google Scholar 

  32. Inoue W, Tomino Y, Miura M, Yagame M, Nomoto Y, Sakai H. Detection of immunoglobulins and other serum proteins in the dermal and glomerular capillary walls from patients with diabetes mellitus. Acta Pathol Jpn [Internet]. 1986;36(8):1181–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3776532.

    CAS  Google Scholar 

  33. Brainwood D, Kashtan C, Gubler MC, Turner AN. Targets of alloantibodies in Alport anti-glomerular basement membrane disease after renal transplantation. Kidney Int [Internet]. 1998;53(3):762–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9507224.

    Article  CAS  Google Scholar 

  34. McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol [Internet]. 2017;12(7):1162–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28515156.

    Article  Google Scholar 

  35. Mise K, Hoshino J, Ueno T, Sumida K, Hiramatsu R, Hasegawa E, et al. Clinical implications of linear immunofluorescent staining for immunoglobulin G in patients with diabetic nephropathy. Diabetes Res Clin Pract [Internet]. 2014;106(3):522–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25458334.

    Article  CAS  Google Scholar 

  36. Loupy A, Haas M, Solez K, Racusen L, Glotz D, Seron D, et al. The Banff 2015 kidney meeting report: current challenges in rejection classification and prospects for adopting molecular pathology. Am J Transplant [Internet]. 2016;17:28–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27862883.

    Article  Google Scholar 

  37. Haas M, Sis B, Racusen LC, Solez K, Glotz D, Colvin RB, et al. Banff 2013 meeting report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant [Internet]. 2014;14(2):272–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24472190.

    Article  CAS  Google Scholar 

  38. Mengel M, Sis B, Haas M, Colvin RB, Halloran PF, Racusen LC, et al. Banff 2011 meeting report: new concepts in antibody-mediated rejection. Am J Transplant. 2012;12(3):563–70.

    Article  CAS  Google Scholar 

  39. Van JAD, Scholey JW, Konvalinka A. Insights into diabetic kidney disease using urinary proteomics and bioinformatics. J Am Soc Nephrol [Internet]. 2017;28(4):1050–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28159781.

    Article  Google Scholar 

  40. Einecke G, Sis B, Reeve J, Mengel M, Campbell PM, Hidalgo LG, et al. Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. Am J Transplant [Internet]. 2009;9(11):2520–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19843030.

    Article  CAS  Google Scholar 

  41. Hargrove GM, Dufresne J, Whiteside C, Muruve DA, Wong NC. Diabetes mellitus increases endothelin-1 gene transcription in rat kidney. Kidney Int [Internet]. 2000;58(4):1534–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11012888.

    Article  CAS  Google Scholar 

  42. Minchenko AG, Stevens MJ, White L, Abatan OI, Komjáti K, Pacher P, et al. Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J [Internet]. 2003;17(11):1514–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12824290.

    Article  CAS  Google Scholar 

  43. Benigni A, Colosio V, Brena C, Bruzzi I, Bertani T, Remuzzi G. Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes [Internet]. 1998;47(3):450–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9519753.

    Article  CAS  Google Scholar 

  44. Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol [Internet]. 2015;11(4):233–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25584804.

    Article  CAS  Google Scholar 

  45. Lefaucheur C, Gosset C, Rabant M, Viglietti D, Verine J, Aubert O, et al. T cell-mediated rejection is a major determinant of inflammation in scarred areas in kidney allografts. Am J Transplant [Internet]. 2018;18(2):377–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29086461.

    Article  CAS  Google Scholar 

  46. Benson KA, Maxwell AP, McKnight AJ. A HuGE review and meta-analyses of genetic associations in new onset diabetes after kidney transplantation. PLoS One. 2016;11(1):1–13.

    Google Scholar 

  47. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature [Internet]. 2016;536(7614):41–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25792328.

    Article  CAS  Google Scholar 

  48. Ghisdal L, Baron C, Le Meur Y, Lionet A, Halimi J-M, Rerolle J-P, et al. TCF7L2 polymorphism associates with new-onset diabetes after transplantation. J Am Soc Nephrol. 2009;20(11):2459–67.

    Article  CAS  Google Scholar 

  49. Nobrega MA. TCF7L2 and glucose metabolism: time to look beyond the pancreas. Diabetes [Internet]. 2013;62(3):706–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23431017.

    Article  CAS  Google Scholar 

  50. Shu L, Matveyenko AV, Kerr-Conte J, Cho J-H, McIntosh CHS, Maedler K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet [Internet]. 2015;24(10):3004. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25753258.

    Article  CAS  Google Scholar 

  51. Mitchell RK, Mondragon A, Chen L, Mcginty JA, French PM, Ferrer J, et al. Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Hum Mol Genet [Internet]. 2015;24(5):1390–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25355422.

    Article  CAS  Google Scholar 

  52. Wei F-Y, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, Fujimura A, et al. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J Clin Invest [Internet]. 2011;121(9):3598–608. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21841312.

    Article  CAS  Google Scholar 

  53. Okamura T, Yanobu-Takanashi R, Takeuchi F, Isono M, Akiyama K, Shimizu Y, et al. Deletion of CDKAL1 affects high-fat diet-induced fat accumulation and glucose-stimulated insulin secretion in mice, indicating relevance to diabetes. PLoS One [Internet]. 2012;7(11):e49055. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23173044.

    Article  CAS  Google Scholar 

  54. Palmer CJ, Bruckner RJ, Paulo JA, Kazak L, Long JZ, Mina AI, et al. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol Metab [Internet]. 2017;6(10):1212–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29031721.

    Article  CAS  Google Scholar 

  55. Ohara-Imaizumi M, Yoshida M, Aoyagi K, Saito T, Okamura T, Takenaka H, et al. Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis. PLoS One [Internet]. 2010;5(12):e15553. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21151568.

    Article  Google Scholar 

  56. Take K, Waki H, Sun W, Wada T, Yu J, Nakamura M, et al. CDK5 regulatory subunit-associated protein 1-like 1 negatively regulates adipocyte differentiation through activation of Wnt signaling pathway. Sci Rep [Internet]. 2017;7(1):7326. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28779110.

    Article  Google Scholar 

  57. Liu K-C, Leuckx G, Sakano D, Seymour PA, Mattsson CL, Rautio L, et al. Inhibition of Cdk5 promotes β-cell differentiation from ductal progenitors. Diabetes [Internet]. 2018;67:58–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28986398.

    Article  CAS  Google Scholar 

  58. Extramiana F, Denjoy I, Badilini F, Chabani I, Neyroud N, Berthet M, et al. Heart rate influences on repolarization duration and morphology in symptomatic versus asymptomatic KCNQ1 mutation carriers. Am J Cardiol [Internet]. 2005;95(3):406–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15670556.

    Article  CAS  Google Scholar 

  59. Bilchick K, Viitasalo M, Oikarinen L, Fetics B, Tomaselli G, Swan H, et al. Temporal repolarization lability differences among genotyped patients with the long QT syndrome. Am J Cardiol [Internet]. 2004;94(10):1312–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15541256.

    Article  Google Scholar 

  60. Abbott GW, Tai K-K, Neverisky DL, Hansler A, Hu Z, Roepke TK, et al. KCNQ1, KCNE2, and Na+−coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability. Sci Signal [Internet]. 2014;7(315):ra22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24595108.

    Article  Google Scholar 

  61. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, et al. KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc Natl Acad Sci U S A [Internet]. 2005;102(49):17864–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16314573.

    Article  CAS  Google Scholar 

  62. Chen Y-H, Xu S-J, Bendahhou S, Wang X-L, Wang Y, Xu W-Y, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science [Internet]. 2003;299(5604):251–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12522251.

    CAS  Google Scholar 

  63. Torekov SS, Iepsen E, Christiansen M, Linneberg A, Pedersen O, Holst JJ, et al. KCNQ1 long QT syndrome patients have hyperinsulinemia and symptomatic hypoglycemia. Diabetes. 2014;63(4):1315–25.

    Article  CAS  Google Scholar 

  64. Yamagata K, Senokuchi T, Lu M, Takemoto M, Fazlul Karim M, Go C, et al. Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochem Biophys Res Commun [Internet]. 2011;407(3):620–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21426901.

    Article  CAS  Google Scholar 

  65. Rosengren AH, Braun M, Mahdi T, Andersson SA, Travers ME, Shigeto M, et al. Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes. Diabetes. 2012;61(7):1726–33.

    Article  CAS  Google Scholar 

  66. STRING [Internet]. 2017 [cited 2017 Dec 3]. Available from: https://string-db.org/cgi/network.pl?taskId=el3oiLb9Zv8z.

  67. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res [Internet]. 2015;43(Database issue):D447–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25352553.

    Article  CAS  Google Scholar 

  68. Sharif A, Moore R, Baboolal K. Influence of lifestyle modification in renal transplant recipients with postprandial hyperglycemia. Transplantation [Internet]. 2008;85(3):353–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18301331.

    Article  Google Scholar 

  69. Bloodworth RF, Ward KD, Relyea GE, Cashion AK. Food availability as a determinant of weight gain among renal transplant recipients. Res Nurs Health [Internet]. 2014;37(3):253–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24805885.

    Article  Google Scholar 

  70. Troxell ML, Houghton DC, Hawkey M, Batiuk TD, Bennett WM. Enteric oxalate nephropathy in the renal allograft: an underrecognized complication of bariatric surgery. Am J Transplant [Internet]. 2013;13(2):501–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23311979.

    Article  CAS  Google Scholar 

  71. Chang AR, Grams ME, Navaneethan SD. Bariatric Surgery and Kidney-Related Outcomes. Kidney Int reports [Internet]. 2017;2(2):261–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28439568.

    Article  Google Scholar 

  72. Golomb I, Winkler J, Ben-Yakov A, Benitez CC, Keidar A. Laparoscopic sleeve gastrectomy as a weight reduction strategy in obese patients after kidney transplantation. Am J Transplant [Internet]. 2014;14(10):2384–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25139661.

    Article  CAS  Google Scholar 

  73. Modanlou KA, Muthyala U, Xiao H, Schnitzler MA, Salvalaggio PR, Brennan DC, et al. Bariatric surgery among kidney transplant candidates and recipients: analysis of the United States renal data system and literature review. Transplantation [Internet]. 2009;87(8):1167–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19384163.

    Article  Google Scholar 

  74. Al-Bahri S, Fakhry TK, Gonzalvo JP, Murr MM. Bariatric surgery as a bridge to renal transplantation in patients with end-stage renal disease. Obes Surg [Internet]. 2017;27(11):2951–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28500419.

    Article  Google Scholar 

  75. National Institute for Health and Care Excellence. The management of type 2 diabetes. [Internet]. 2017 [cited 2017 Dec 3]. Available from: http://www.nice.org.uk/guidance/cg87/resources/guidance-tye-2-diabetes.

  76. Stephen J, Anderson-Haag TL, Gustafson S, Snyder JJ, Kasiske BL, Israni AK. Metformin use in kidney transplant recipients in the United States: an observational study. Am J Nephrol [Internet]. 2014;40(6):546–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25613554.

    Article  CAS  Google Scholar 

  77. Hung S-C, Chang Y-K, Liu J-S, Kuo K-L, Chen Y-H, Hsu C-C, et al. Metformin use and mortality in patients with advanced chronic kidney disease: national, retrospective, observational, cohort study. Lancet Diabetes Endocrinol [Internet]. 2015;3(8):605–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26094107.

    Article  CAS  Google Scholar 

  78. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med [Internet]. 2015;373(22):2117–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26378978.

    Article  CAS  Google Scholar 

  79. Haidinger M, Werzowa J, Hecking M, Antlanger M, Stemer G, Pleiner J, et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation – a randomized, double-blind, placebo-controlled trial. Am J Transplant [Internet]. 2014;14(1):115–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24279801.

    Article  CAS  Google Scholar 

  80. Øzbay LA, Smidt K, Mortensen DM, Carstens J, Jørgensen KA, Rungby J. Cyclosporin and tacrolimus impair insulin secretion and transcriptional regulation in INS-1E beta-cells. Br J Pharmacol [Internet]. 2011;162(1):136–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20825407.

    Article  Google Scholar 

  81. Rathi M, Rajkumar V, Rao N, Sharma A, Kumar S, Ramachandran R, et al. Conversion from tacrolimus to cyclosporine in patients with new-onset diabetes after renal transplant: an open-label randomized prospective pilot study. Transplant Proc [Internet]. 2015;47(4):1158–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26036543.

    Article  CAS  Google Scholar 

  82. Webster A, Woodroffe RC, Taylor RS, Chapman JR, Craig JC. Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev [Internet]. 2005;(4):CD003961. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16235347.

  83. Webster AC, Woodroffe RC, Taylor RS, Chapman JR, Craig JC. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ [Internet]. 2005;331(7520):810. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16157605.

    Article  CAS  Google Scholar 

  84. Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol [Internet]. 2008;19(7):1411–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18385422.

    Article  Google Scholar 

  85. Pirsch JD, Henning AK, First MR, Fitzsimmons W, Gaber AO, Reisfield R, et al. New-Onset Diabetes After Transplantation: Results From a Double-Blind Early Corticosteroid Withdrawal Trial. Am J Transplant [Internet]. 2015;15(7):1982–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25881802.

    Article  CAS  Google Scholar 

  86. Woodle ES, First MR, Pirsch J, Shihab F, Gaber AO, Van Veldhuisen P, et al. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann Surg [Internet]. 2008;248(4):564–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18936569.

    Google Scholar 

  87. Knight SR, Morris PJ. Steroid avoidance or withdrawal after renal transplantation increases the risk of acute rejection but decreases cardiovascular risk. A meta-analysis. Transplantation [Internet]. 2010;89(1):1–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20061913.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesper Kers or Frederike J. Bemelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kers, J., Bemelman, F.J. (2019). Kidney Transplantation and Diabetic Nephropathy. In: Roelofs, J., Vogt, L. (eds) Diabetic Nephropathy. Springer, Cham. https://doi.org/10.1007/978-3-319-93521-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93521-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93520-1

  • Online ISBN: 978-3-319-93521-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics