Skip to main content

Animal Models of Diabetic Kidney Disease

  • Chapter
  • First Online:
Diabetic Nephropathy

Abstract

Both type 1 and type 2 diabetes mellitus occur throughout the animal kingdom, and diabetic kidney disease has often been documented. We have tried to assemble some of the recent literature on models of diabetic kidney disease and, to a lesser extent, diabetic nephropathy in an attempt to guide the reader to a relevant animal model matching his or her interest. Species where diabetic kidney disease has been described include fruit flies (Drosophila melanogaster), zebrafish (Danio rerio), mice (Mus musculus), rats (Rattus norvegicus), guinea pigs (Cavia porcellus), rabbits (Oryctolagus cuniculus), cats (Felis catus), dogs (Canis familiaris), pigs (Sus scrofa domesticus) and non-human primates (macaques (Macaca mulatta) and baboons (Papio hamadryas)). Neglected topics include studies on correlations between urinary markers of tubulo-interstitial injury and their histological substrate, reversibility of diabetic kidney disease and diabetic nephropathy in type 2 diabetes and sex differences in susceptibility to diabetic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitada M, Ogura Y, Koya D. Rodent models of diabetic nephropathy: their utility and limitations. Int J Nephrol Renov Dis. 2016;9:279–90.

    Article  CAS  Google Scholar 

  2. Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech. 2016;9(12):1419–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haller H, Ji L, Stahl K, Bertram A, Menne J. Molecular mechanisms and treatment strategies in diabetic nephropathy: new avenues for calcium dobesilate-free radical scavenger and growth factor inhibition. Biomed Res Int. 2017;2017:1909258.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28(4):1023–39.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abi Khalil C, Travert F, Fetita S, Rouzet F, Porcher R, Riveline JP, et al. Fetal exposure to maternal type 1 diabetes is associated with renal dysfunction at adult age. Diabetes. 2010;59(10):2631–6.

    Article  CAS  PubMed  Google Scholar 

  6. Raes A, Donckerwolcke R, Craen M, Hussein MC, Walle JV. Renal hemodynamic changes and renal functional reserve in children with type I diabetes mellitus. Pediatr Nephrol. 2007;22(11):1903–9.

    Article  PubMed  Google Scholar 

  7. Betz B, Conway BR. An update on the use of animal models in diabetic nephropathy research. Curr Diab Rep. 2016;16(2):18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Conway BR, Rennie J, Bailey MA, Dunbar DR, Manning JR, Bellamy CO, et al. Hyperglycemia and renin-dependent hypertension synergize to model diabetic nephropathy. J Am Soc Nephrol. 2012;23(3):405–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bongartz LG, Braam B, Gaillard CA, Cramer MJ, Goldschmeding R, Verhaar MC, et al. Target organ cross talk in cardiorenal syndrome: animal models. Am J Physiol Renal Physiol. 2012;303(9):F1253–63.

    Article  CAS  PubMed  Google Scholar 

  10. Graham P, Pick L. Drosophila as a model for diabetes and diseases of insulin resistance. Curr Top Dev Biol. 2017;121:397–419.

    Article  CAS  PubMed  Google Scholar 

  11. Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech. 2011;4(6):842–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Na J, Sweetwyne MT, Park AS, Susztak K, Cagan RL. Diet-induced podocyte dysfunction in Drosophila and mammals. Cell Rep. 2015;12(4):636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diop SB, Bodmer R. Gaining insights into diabetic cardiomyopathy from Drosophila. Trends Endocrinol Metab. 2015;26(11):618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alfa RW, Kim SK. Using Drosophila to discover mechanisms underlying type 2 diabetes. Dis Model Mech. 2016;9(4):365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee D, Son HG, Jung Y, Lee SV. The role of dietary carbohydrates in organismal aging. Cell Mol Life Sci. 2017;74(10):1793–803.

    Article  CAS  PubMed  Google Scholar 

  16. Sebastian D, Palacin M, Zorzano A. Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends Mol Med. 2017;23(3):201–15.

    Article  CAS  PubMed  Google Scholar 

  17. Ganner A, Neumann-Haefelin E. Genetic kidney diseases: Caenorhabditis elegans as model system. Cell Tissue Res. 2017;369(1):105–18.

    Article  CAS  PubMed  Google Scholar 

  18. Romagnani P. From Proteus to Prometheus: learning from fish to modulate regeneration. J Am Soc Nephrol. 2010;21(5):726–8.

    Article  CAS  PubMed  Google Scholar 

  19. Romagnani P. Of mice and men: the riddle of tubular regeneration. J Pathol. 2013;229(5):641–4.

    Article  PubMed  Google Scholar 

  20. Teng B, Schroder P, Muller-Deile J, Schenk H, Staggs L, Tossidou I, et al. CIN85 deficiency prevents nephrin endocytosis and proteinuria in diabetes. Diabetes. 2016;65(12):3667–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He B, Osterholm AM, Ojala JR, Andersson AC, Tryggvason K. A remote cis-acting variant at 3q links glomerular NCK1 to diabetic nephropathy. PLoS One. 2013;8(2):e56414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Intine RV, Olsen AS, Sarras MP Jr. A zebrafish model of diabetes mellitus and metabolic memory. J Vis Exp. 2013;72:e50232.

    Google Scholar 

  23. Olsen AS, Sarras MP Jr, Leontovich A, Intine RV. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes. 2012;61(2):485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sternlicht H, Bakris GL. Management of hypertension in diabetic nephropathy: how low should we go? Blood Purif. 2016;41(1–3):139–43.

    Article  CAS  PubMed  Google Scholar 

  25. Nagasawa Y, Hasuike Y, Nanami M, Kuragano T, Nakanishi T. Albuminuria and hypertension: the chicken or the egg? Hypertens Res. 2015;38(1):8–10.

    Article  PubMed  Google Scholar 

  26. Qi Z, Fujita H, Jin J, Davis LS, Wang Y, Fogo AB, et al. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes. 2005;54(9):2628–37.

    Article  CAS  PubMed  Google Scholar 

  27. Franzen S, Friederich-Persson M, Fasching A, Hansell P, Nangaku M, Palm F. Differences in susceptibility to develop parameters of diabetic nephropathy in four mouse strains with type 1 diabetes. Am J Physiol Renal Physiol. 2014;306(10):F1171–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lassila M, Seah KK, Allen TJ, Thallas V, Thomas MC, Candido R, et al. Accelerated nephropathy in diabetic apolipoprotein e-knockout mouse: role of advanced glycation end products. J Am Soc Nephrol. 2004;15(8):2125–38.

    Article  CAS  PubMed  Google Scholar 

  29. Chang JH, Paik SY, Mao L, Eisner W, Flannery PJ, Wang L, et al. Diabetic kidney disease in FVB/NJ Akita mice: temporal pattern of kidney injury and urinary nephrin excretion. PLoS One. 2012;7(4):e33942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takahashi T, Harris RC. Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice. J Diabetes Res. 2014;2014:590541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gurley SB, Mach CL, Stegbauer J, Yang J, Snow KP, Hu A, et al. Influence of genetic background on albuminuria and kidney injury in Ins2(+/C96Y) (Akita) mice. Am J Physiol Renal Physiol. 2010;298(3):F788–95.

    Article  CAS  PubMed  Google Scholar 

  32. Teiken JM, Audettey JL, Laturnus DI, Zheng S, Epstein PN, Carlson EC. Podocyte loss in aging OVE26 diabetic mice. Anat Rec (Hoboken). 2008;291(1):114–21.

    Article  Google Scholar 

  33. Epstein PN, Overbeek PA, Means AR. Calmodulin-induced early-onset diabetes in transgenic mice. Cell. 1989;58(6):1067–73.

    Article  CAS  PubMed  Google Scholar 

  34. Yuzawa Y, Niki I, Kosugi T, Maruyama S, Yoshida F, Takeda M, et al. Overexpression of calmodulin in pancreatic beta cells induces diabetic nephropathy. J Am Soc Nephrol. 2008;19(9):1701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thibodeau JF, Holterman CE, Burger D, Read NC, Reudelhuber TL, Kennedy CR. A novel mouse model of advanced diabetic kidney disease. PLoS One. 2014;9(12):e113459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sugimoto H, Grahovac G, Zeisberg M, Kalluri R. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes. 2007;56(7):1825–33.

    Article  CAS  PubMed  Google Scholar 

  37. Lum C, Shesely EG, Potter DL, Beierwaltes WH. Cardiovascular and renal phenotype in mice with one or two renin genes. Hypertension. 2004;43(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  38. Leiter EH, Strobel M, O’Neill A, Schultz D, Schile A, Reifsnyder PC. Comparison of two new mouse models of polygenic type 2 diabetes at the Jackson Laboratory, NONcNZO10Lt/J and TALLYHO/JngJ. J Diabetes Res. 2013;2013:165327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cho YR, Kim HJ, Park SY, Ko HJ, Hong EG, Higashimori T, et al. Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;293(1):E327–36.

    Article  CAS  PubMed  Google Scholar 

  40. Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol. 2003;284(6):F1138–44.

    Article  CAS  PubMed  Google Scholar 

  41. Cohen MP, Chen S, Ziyadeh FN, Shea E, Hud EA, Lautenslager GT, et al. Evidence linking glycated albumin to altered glomerular nephrin and VEGF expression, proteinuria, and diabetic nephropathy. Kidney Int. 2005;68(4):1554–61.

    Article  CAS  PubMed  Google Scholar 

  42. Soler MJ, Riera M, Batlle D. New experimental models of diabetic nephropathy in mice models of type 2 diabetes: efforts to replicate human nephropathy. Exp Diabetes Res. 2012;2012:616313.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol. 2006;17(10):2664–9.

    Article  CAS  PubMed  Google Scholar 

  44. Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, et al. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Investig. 2008;88(5):515–28.

    Article  CAS  PubMed  Google Scholar 

  45. Chua S Jr, Liu SM, Li Q, Yang L, Thassanapaff VT, Fisher P. Differential beta cell responses to hyperglycaemia and insulin resistance in two novel congenic strains of diabetes (FVB- Lepr (db)) and obese (DBA- Lep (ob)) mice. Diabetologia. 2002;45(7):976–90.

    Article  CAS  PubMed  Google Scholar 

  46. Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, et al. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol. 2010;21(9):1533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, et al. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Renal Physiol. 2014;306(11):F1335–47.

    Article  CAS  PubMed  Google Scholar 

  48. Ito T, Tanimoto M, Yamada K, Kaneko S, Matsumoto M, Obayashi K, et al. Glomerular changes in the KK-Ay/Ta mouse: a possible model for human type 2 diabetic nephropathy. Nephrology (Carlton). 2006;11(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  49. Matsumoto M, Tanimoto M, Gohda T, Aoki T, Murakoshi M, Yamada K, et al. Effect of pitavastatin on type 2 diabetes mellitus nephropathy in KK-Ay/Ta mice. Metabolism. 2008;57(5):691–7.

    Article  CAS  PubMed  Google Scholar 

  50. Ninomiya H, Inomata T, Ogihara K. Microvasculature of hydronephrotic kidneys in KK-A(Y) mice. J Vet Med Sci. 2000;62(10):1093–8.

    Article  CAS  PubMed  Google Scholar 

  51. Lee SM, Bressler R. Prevention of diabetic nephropathy by diet control in the db/db mouse. Diabetes. 1981;30(2):106–11.

    Article  CAS  PubMed  Google Scholar 

  52. Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol Renal Physiol. 2014;307(3):F317–25.

    Article  CAS  PubMed  Google Scholar 

  53. Haluzik M, Colombo C, Gavrilova O, Chua S, Wolf N, Chen M, et al. Genetic background (C57BL/6J versus FVB/N) strongly influences the severity of diabetes and insulin resistance in ob/ob mice. Endocrinology. 2004;145(7):3258–64.

    Article  CAS  PubMed  Google Scholar 

  54. Yang G, Zhao Z, Zhang X, Wu A, Huang Y, Miao Y, et al. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice. Drug Des Devel Ther. 2017;11:1065–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ericsson A, Tonelius P, Lal M, Sabirsh A, Bottcher G, William-Olsson L, et al. The effects of dual PPARalpha/gamma agonism compared with ACE inhibition in the BTBRob/ob mouse model of diabetes and diabetic nephropathy. Physiol Rep. 2017;5(5):pii: e13186.

    Article  CAS  Google Scholar 

  56. Lacava V, Pellicano V, Ferrajolo C, Cernaro V, Visconti L, Conti G, et al. Novel avenues for treating diabetic nephropathy: new investigational drugs. Expert Opin Investig Drugs. 2017;26(4):445–62.

    Article  CAS  PubMed  Google Scholar 

  57. Al-Waili N, Al-Waili H, Al-Waili T, Salom K. Natural antioxidants in the treatment and prevention of diabetic nephropathy; a potential approach that warrants clinical trials. Redox Rep. 2017;22(3):99–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen YZ, Gong ZX, Cai GY, Gao Q, Chen XM, Tang L, et al. Efficacy and safety of Flos Abelmoschus manihot (Malvaceae) on type 2 diabetic nephropathy: a systematic review. Chin J Integr Med. 2015;21(6):464–72.

    Article  PubMed  Google Scholar 

  59. Tang HJ, Tian ZG, Yang X, Cao Y, Li WG. Cell-based therapies for experimental diabetic nephropathy: a systematic review and meta-analysis. J Biol Regul Homeost Agents. 2016;30(4):1047–51.

    CAS  PubMed  Google Scholar 

  60. Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol. 2016;791:8–24.

    Article  CAS  PubMed  Google Scholar 

  61. Pofi R, Di Mario F, Gigante A, Rosato E, Isidori AM, Amoroso A, et al. Diabetic nephropathy: focus on current and future therapeutic strategies. Curr Drug Metab. 2016;17(5):497–502.

    Article  CAS  PubMed  Google Scholar 

  62. Lv M, Chen Z, Hu G, Li Q. Therapeutic strategies of diabetic nephropathy: recent progress and future perspectives. Drug Discov Today. 2015;20(3):332–46.

    Article  CAS  PubMed  Google Scholar 

  63. Fernandez-Fernandez B, Ortiz A, Gomez-Guerrero C, Egido J. Therapeutic approaches to diabetic nephropathy--beyond the RAS. Nat Rev Nephrol. 2014;10(6):325–46.

    Article  CAS  PubMed  Google Scholar 

  64. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, et al. Progress and prospects in rat genetics: a community view. Nat Genet. 2008;40(5):516–22.

    Article  CAS  PubMed  Google Scholar 

  65. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537–46.

    CAS  PubMed  Google Scholar 

  66. El Eter EA, Al-Masri AA. Adrenomedullin mediates early phase angiogenesis induced diabetic nephropathy in STZ diabetic rats. Eur Rev Med Pharmacol Sci. 2014;18(22):3534–43.

    PubMed  Google Scholar 

  67. Arellano-Buendia AS, Garcia-Arroyo FE, Cristobal-Garcia M, Loredo-Mendoza ML, Tapia-Rodriguez E, Sanchez-Lozada LG, et al. Urinary excretion of neutrophil gelatinase-associated lipocalin in diabetic rats. Oxidative Med Cell Longev. 2014;2014:961326.

    Article  CAS  Google Scholar 

  68. Morsy MA, Ibrahim SA, Amin EF, Kamel MY, Abdelwahab SA, Hassan MK. Carvedilol ameliorates early diabetic nephropathy in streptozotocin-induced diabetic rats. Biomed Res Int. 2014;2014:105214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Fernandes SM, Martins DM, da Fonseca CD, Watanabe M, Vattimo MF. Impact of iodinated contrast on renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease. Biomed Res Int. 2016;2016:3019410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ptilovanciv EO, Fernandes GS, Teixeira LC, Reis LA, Pessoa EA, Convento MB, et al. Heme oxygenase 1 improves glucoses metabolism and kidney histological alterations in diabetic rats. Diabetol Metab Syndr. 2013;5(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Al-Qattan KK, Thomson M, Jayasree D, Ali M. Garlic attenuates plasma and kidney ACE-1 and AngII modulations in early streptozotocin-induced diabetic rats: renal clearance and blood pressure implications. Evid Based Complement Alternat Med. 2016;2016:8142394.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lu HJ, Tzeng TF, Liou SS, Da Lin S, Wu MC, Liu IM. Polysaccharides from Liriopes Radix ameliorate streptozotocin-induced type I diabetic nephropathy via regulating NF-kappaB and p38 MAPK signaling pathways. BMC Complement Altern Med. 2014;14:156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Tzeng TF, Liou SS, Chang CJ, Liu IM. Zerumbone, a tropical ginger sesquiterpene, ameliorates streptozotocin-induced diabetic nephropathy in rats by reducing the hyperglycemia-induced inflammatory response. Nutr Metab (Lond). 2013;10(1):64.

    Article  CAS  Google Scholar 

  74. Fernandes SM, Cordeiro PM, Watanabe M, Fonseca CD, Vattimo MF. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats. Arch Endocrinol Metab. 2016;60(5):443–9.

    Article  PubMed  Google Scholar 

  75. Wang S, Li Y, Zhao J, Zhang J, Huang Y. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. Biol Blood Marrow Transplant. 2013;19(4):538–46.

    Article  PubMed  CAS  Google Scholar 

  76. Jdir H, Kolsi RBA, Zouari S, Hamden K, Zouari N, Fakhfakh N. The cruciferous Diplotaxis simplex: Phytochemistry analysis and its protective effect on liver and kidney toxicities, and lipid profile disorders in alloxan-induced diabetic rats. Lipids Health Dis. 2017;16(1):100.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mahfoz AM, El-Latif HA, Ahmed LA, Hassanein NM, Shoka AA. Anti-diabetic and renoprotective effects of aliskiren in streptozotocin-induced diabetic nephropathy in female rats. Naunyn Schmiedeberg’s Arch Pharmacol. 2016;389(12):1315–24.

    Article  CAS  Google Scholar 

  78. Kodera R, Shikata K, Kataoka HU, Takatsuka T, Miyamoto S, Sasaki M, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54(4):965–78.

    Article  CAS  PubMed  Google Scholar 

  79. Motawi TK, El-Maraghy SA, Senousy MA. Angiotensin-converting enzyme inhibition and angiotensin AT1 receptor blockade downregulate angiotensin-converting enzyme expression and attenuate renal injury in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol. 2013;27(7):378–87.

    Article  CAS  PubMed  Google Scholar 

  80. Zhou SJ, Bai L, Lv L, Chen R, Li CJ, Liu XY, et al. Liraglutide ameliorates renal injury in streptozotocin induced diabetic rats by activating endothelial nitric oxide synthase activity via the downregulation of the nuclear factor kappa B pathway. Mol Med Rep. 2014;10(5):2587–94.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang S, Xu H, Yu X, Wu Y, Sui D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Exp Ther Med. 2017;14(1):383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang S, Xu H, Yu X, Wang Y, Sun F, Sui D. Simvastatin ameliorates low-dose streptozotocin-induced type 2 diabetic nephropathy in an experimental rat model. Int J Clin Exp Med. 2015;8(4):6388–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu WJ, Xie SH, Liu YN, Kim W, Jin HY, Park SK, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2012;340(2):248–55.

    Article  CAS  PubMed  Google Scholar 

  84. Bilan VP, Salah EM, Bastacky S, Jones HB, Mayers RM, Zinker B, et al. Diabetic nephropathy and long-term treatment effects of rosiglitazone and enalapril in obese ZSF1 rats. J Endocrinol. 2011;210(3):293–308.

    Article  CAS  PubMed  Google Scholar 

  85. Schrijvers BF, Flyvbjerg A, Tilton RG, Lameire NH, De Vriese AS. A neutralizing VEGF antibody prevents glomerular hypertrophy in a model of obese type 2 diabetes, the Zucker diabetic fatty rat. Nephrol Dial Transplant. 2006;21(2):324–9.

    Article  CAS  PubMed  Google Scholar 

  86. Hoshi S, Shu Y, Yoshida F, Inagaki T, Sonoda J, Watanabe T, et al. Podocyte injury promotes progressive nephropathy in Zucker diabetic fatty rats. Lab Investig. 2002;82(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  87. Ito D, Cao P, Kakihana T, Sato E, Suda C, Muroya Y, et al. Chronic running exercise alleviates early progression of nephropathy with upregulation of nitric oxide synthases and suppression of glycation in Zucker diabetic rats. PLoS One. 2015;10(9):e0138037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tomohiro T, Kumai T, Sato T, Takeba Y, Kobayashi S, Kimura K. Hypertension aggravates glomerular dysfunction with oxidative stress in a rat model of diabetic nephropathy. Life Sci. 2007;80(15):1364–72.

    Article  CAS  PubMed  Google Scholar 

  89. Ndisang JF, Jadhav A, Mishra M. The heme oxygenase system suppresses perirenal visceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy in Zucker diabetic fatty rats. PLoS One. 2014;9(1):e87936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zhang X, Jia Y, Jackson EK, Tofovic SP. 2-Methoxyestradiol and 2-ethoxyestradiol retard the progression of renal disease in aged, obese, diabetic ZSF1 rats. J Cardiovasc Pharmacol. 2007;49(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  91. Matsui K, Ohta T, Oda T, Sasase T, Ueda N, Miyajima K, et al. Diabetes-associated complications in Spontaneously Diabetic Torii fatty rats. Exp Anim. 2008;57(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  92. Shin SJ, Chung S, Kim SJ, Lee EM, Yoo YH, Kim JW, et al. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One. 2016;11(11):e0165703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nozako M, Koyama T, Nagano C, Sato M, Matsumoto S, Mitani K, et al. An Atherogenic paigen-diet aggravates nephropathy in type 2 diabetic OLETF rats. PLoS One. 2015;10(11):e0143979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Prabhakar S, Starnes J, Shi S, Lonis B, Tran R. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production. J Am Soc Nephrol. 2007;18(11):2945–52.

    Article  CAS  PubMed  Google Scholar 

  95. Sohn EJ, Kim CS, Kim YS, Jung DH, Jang DS, Lee YM, et al. Effects of magnolol (5,5′-diallyl-2,2′-dihydroxybiphenyl) on diabetic nephropathy in type 2 diabetic Goto-Kakizaki rats. Life Sci. 2007;80(5):468–75.

    Article  CAS  PubMed  Google Scholar 

  96. Castoldi G, di Gioia CR, Bombardi C, Maestroni S, Carletti R, Steckelings UM, et al. Prevention of diabetic nephropathy by compound 21, selective agonist of angiotensin type 2 receptors, in Zucker diabetic fatty rats. Am J Physiol Renal Physiol. 2014;307(10):F1123–31.

    Article  CAS  PubMed  Google Scholar 

  97. Kim YS, Kim J, Kim CS, Sohn EJ, Lee YM, Jeong IH, et al. KIOM-79, an inhibitor of AGEs-protein cross-linking, prevents progression of nephropathy in Zucker diabetic fatty rats. Evid Based Complement Alternat Med. 2011;2011:761859.

    PubMed  PubMed Central  Google Scholar 

  98. Nakano R, Kurosaki E, Shimaya A, Kajikawa S, Shibasaki M. YM440, a novel hypoglycemic agent, protects against nephropathy in Zucker fatty rats via plasma triglyceride reduction. Eur J Pharmacol. 2006;549(1–3):185–91.

    Article  CAS  PubMed  Google Scholar 

  99. van Dijk CG, Oosterhuis NR, Xu YJ, Brandt M, Paulus WJ, van Heerebeek L, et al. Distinct endothelial cell responses in the heart and kidney microvasculature characterize the progression of heart failure with preserved ejection fraction in the obese ZSF1 rat with cardiorenal metabolic syndrome. Circ Heart Fail. 2016;9(4):e002760.

    PubMed  Google Scholar 

  100. Rafikova O, Salah EM, Tofovic SP. Renal and metabolic effects of tempol in obese ZSF1 rats--distinct role for superoxide and hydrogen peroxide in diabetic renal injury. Metabolism. 2008;57(10):1434–44.

    Article  CAS  PubMed  Google Scholar 

  101. Civantos E, Bosch E, Ramirez E, Zhenyukh O, Egido J, Lorenzo O, et al. Sitagliptin ameliorates oxidative stress in experimental diabetic nephropathy by diminishing the miR-200a/Keap-1/Nrf2 antioxidant pathway. Diabetes Metab Syndr Obes. 2017;10:207–22.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mizuno M, Sada T, Kato M, Koike H. Renoprotective effects of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes. Hypertens Res. 2002;25(2):271–8.

    Article  CAS  PubMed  Google Scholar 

  103. Katsuda Y, Sasase T, Tadaki H, Mera Y, Motohashi Y, Kemmochi Y, et al. Contribution of hyperglycemia on diabetic complications in obese type 2 diabetic SDT fatty rats: effects of SGLT inhibitor phlorizin. Exp Anim. 2015;64(2):161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res. 2011;2011:908185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Toblli JE, Cao G, Giani JF, Munoz MC, Angerosa M, Dominici FP. Long-term treatment with nebivolol attenuates renal damage in Zucker diabetic fatty rats. J Hypertens. 2011;29(8):1613–23.

    Article  CAS  PubMed  Google Scholar 

  106. Alderson NL, Chachich ME, Youssef NN, Beattie RJ, Nachtigal M, Thorpe SR, et al. The AGE inhibitor pyridoxamine inhibits lipemia and development of renal and vascular disease in Zucker obese rats. Kidney Int. 2003;63(6):2123–33.

    Article  CAS  PubMed  Google Scholar 

  107. Hempe J, Elvert R, Schmidts HL, Kramer W, Herling AW. Appropriateness of the Zucker diabetic fatty rat as a model for diabetic microvascular late complications. Lab Anim. 2012;46(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  108. Phillips AO, Baboolal K, Riley S, Grone H, Janssen U, Steadman R, et al. Association of prolonged hyperglycemia with glomerular hypertrophy and renal basement membrane thickening in the Goto Kakizaki model of non-insulin-dependent diabetes mellitus. Am J Kidney Dis. 2001;37(2):400–10.

    Article  CAS  PubMed  Google Scholar 

  109. Tofovic SP, Kusaka H, Kost CK Jr, Bastacky S. Renal function and structure in diabetic, hypertensive, obese ZDFxSHHF-hybrid rats. Ren Fail. 2000;22(4):387–406.

    Article  CAS  PubMed  Google Scholar 

  110. Noda M, Matsuo T, Nagano-Tsuge H, Ohta M, Sekiguchi M, Shibouta Y, et al. Involvement of angiotensin II in progression of renal injury in rats with genetic non-insulin-dependent diabetes mellitus (Wistar fatty rats). Jpn J Pharmacol. 2001;85(4):416–22.

    Article  CAS  PubMed  Google Scholar 

  111. Nobrega MA, Fleming S, Roman RJ, Shiozawa M, Schlick N, Lazar J, et al. Initial characterization of a rat model of diabetic nephropathy. Diabetes. 2004;53(3):735–42.

    Article  CAS  PubMed  Google Scholar 

  112. Kojima N, Slaughter TN, Paige A, Kato S, Roman RJ, Williams JM. Comparison of the development diabetic induced renal disease in strains of Goto-Kakizaki rats. J Diabetes Metab. 2013;Suppl 9(5):pii: S9-005.

    Google Scholar 

  113. Katsuda Y, Ohta T, Miyajima K, Kemmochi Y, Sasase T, Tong B, et al. Diabetic complications in obese type 2 diabetic rat models. Exp Anim. 2014;63(2):121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Griffin KA, Abu-Naser M, Abu-Amarah I, Picken M, Williamson GA, Bidani AK. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/fa cp) model of type 2 diabetes. Am J Physiol Renal Physiol. 2007;293(5):F1605–13.

    Article  CAS  PubMed  Google Scholar 

  115. Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z. A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes. 1981;30(12):1045–50.

    Article  CAS  PubMed  Google Scholar 

  116. Verseput GH, Provoost AP, van Tol A, Koomans HA, Joles JA. Hyperlipidemia is secondary to proteinuria and is completely normalized by angiotensin-converting enzyme inhibition in hypertensive fawn-hooded rats. Nephron. 1997;77(3):346–52.

    Article  CAS  PubMed  Google Scholar 

  117. Kawano K, Mori S, Hirashima T, Man ZW, Natori T. Examination of the pathogenesis of diabetic nephropathy in OLETF rats. J Vet Med Sci. 1999;61(11):1219–28.

    Article  CAS  PubMed  Google Scholar 

  118. Rossing P. Clinical pathology of nephropathy [internet]. 2015 Sep 23. Diapedia 71040851172 rev. no. 10. Available from: https://doi.org/10.14496/dia.71040851172.10.

    Google Scholar 

  119. Okada T, Nagao T, Matsumoto H, Nagaoka Y, Wada T, Nakao T. Histological predictors for renal prognosis in diabetic nephropathy in diabetes mellitus type 2 patients with overt proteinuria. Nephrology (Carlton). 2012;17(1):68–75.

    Article  CAS  Google Scholar 

  120. Giani JF, Burghi V, Veiras LC, Tomat A, Munoz MC, Cao G, et al. Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker diabetic fatty rats. Am J Physiol Renal Physiol. 2012;302(12):F1606–15.

    Article  CAS  PubMed  Google Scholar 

  121. Asakura J, Hasegawa H, Takayanagi K, Shimazu T, Suge R, Shimizu T, et al. Renoprotective effect of pioglitazone by the prevention of glomerular hyperfiltration through the possible restoration of altered macula densa signaling in rats with type 2 diabetic nephropathy. Nephron Exp Nephrol. 2012;122(3–4):83–94.

    Article  CAS  PubMed  Google Scholar 

  122. Mega C, de Lemos ET, Vala H, Fernandes R, Oliveira J, Mascarenhas-Melo F, et al. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat). Exp Diabetes Res. 2011;2011:162092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Yoshimoto T, Naruse M, Nishikawa M, Naruse K, Tanabe A, Seki T, et al. Antihypertensive and vasculo- and renoprotective effects of pioglitazone in genetically obese diabetic rats. Am J Phys. 1997;272(6 Pt 1):E989–96.

    CAS  Google Scholar 

  124. Boustany-Kari CM, Harrison PC, Chen H, Lincoln KA, Qian HS, Clifford H, et al. A soluble guanylate cyclase activator inhibits the progression of diabetic nephropathy in the ZSF1 rat. J Pharmacol Exp Ther. 2016;356(3):712–9.

    Article  CAS  PubMed  Google Scholar 

  125. Kang YS, Ko GJ, Lee MH, Song HK, Han SY, Han KH, et al. Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats. Nephrol Dial Transplant. 2009;24(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  126. Ko GJ, Kang YS, Han SY, Lee MH, Song HK, Han KH, et al. Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant. 2008;23(9):2750–60.

    Article  CAS  PubMed  Google Scholar 

  127. Schlosser MJ, Kapeghian JC, Verlangieri AJ. Effects of streptozotocin in the male Guinea pig: a potential animal model for studying diabetes. Life Sci. 1984;35(6):649–55.

    Article  CAS  PubMed  Google Scholar 

  128. Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J. Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie. 2009;91(2):261–70.

    Article  CAS  PubMed  Google Scholar 

  129. Wang JH, Ren K, Sun WG, Zhao L, Zhong HS, Xu K. Effects of iodinated contrast agents on renal oxygenation level determined by blood oxygenation level dependent magnetic resonance imaging in rabbit models of type 1 and type 2 diabetic nephropathy. BMC Nephrol. 2014;15:140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Zhao Q, Li J, Yan J, Liu S, Guo Y, Chen D, et al. Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits. Life Sci. 2016;157:82–90.

    Article  CAS  PubMed  Google Scholar 

  131. Mumtaz FH, Dashwood MR, Khan MA, Thompson CS, Mikhailidis DP, Morgan RJ. Down-regulation of nitric oxide synthase in the diabetic rabbit kidney: potential relevance to the early pathogenesis of diabetic nephropathy. Curr Med Res Opin. 2004;20(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  132. Carroll JF, Dwyer TM, Grady AW, Reinhart GA, Montani JP, Cockrell K, et al. Hypertension, cardiac hypertrophy, and neurohumoral activity in a new animal model of obesity. Am J Phys. 1996;271(1 Pt 2):H373–8.

    CAS  Google Scholar 

  133. Hussein MR, Ahmed OG, Hassan AF, Ahmed MA. Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model. Int J Exp Pathol. 2007;88(1):19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dwyer TM, Mizelle HL, Cockrell K, Buhner P. Renal sinus lipomatosis and body composition in hypertensive, obese rabbits. Int J Obes Relat Metab Disord. 1995;19(12):869–74.

    CAS  PubMed  Google Scholar 

  135. Dwyer TM, Banks SA, Alonso-Galicia M, Cockrell K, Carroll JF, Bigler SA, et al. Distribution of renal medullary hyaluronan in lean and obese rabbits. Kidney Int. 2000;58(2):721–9.

    Article  CAS  PubMed  Google Scholar 

  136. Carroll JF, Huang M, Hester RL, Cockrell K, Mizelle HL. Hemodynamic alterations in hypertensive obese rabbits. Hypertension. 1995;26(3):465–70.

    Article  CAS  PubMed  Google Scholar 

  137. Paepe D, Ghys LF, Smets P, Lefebvre HP, Croubels S, Daminet S. Routine kidney variables, glomerular filtration rate and urinary cystatin C in cats with diabetes mellitus, cats with chronic kidney disease and healthy cats. J Feline Med Surg. 2015;17(10):880–8.

    Article  PubMed  Google Scholar 

  138. Herring IP, Panciera DL, Werre SR. Longitudinal prevalence of hypertension, proteinuria, and retinopathy in dogs with spontaneous diabetes mellitus. J Vet Intern Med. 2014;28(2):488–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kern TS, Engerman RL. Renal hemodynamics in experimentally galactosemic dogs and diabetic dogs. Metabolism. 1991;40(5):450–4.

    Article  CAS  PubMed  Google Scholar 

  140. Kern TS, Engerman RL. Aldose reductase and the development of renal disease in diabetic dogs. J Diabetes Complicat. 1999;13(1):10–6.

    Article  CAS  Google Scholar 

  141. Brown SA, Walton CL, Crawford P, Bakris GL. Long-term effects of antihypertensive regimens on renal hemodynamics and proteinuria. Kidney Int. 1993;43(6):1210–8.

    Article  CAS  PubMed  Google Scholar 

  142. Gaber L, Walton C, Brown S, Bakris G. Effects of different antihypertensive treatments on morphologic progression of diabetic nephropathy in uninephrectomized dogs. Kidney Int. 1994;46(1):161–9.

    Article  CAS  PubMed  Google Scholar 

  143. Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension. 1995;25(4 Pt 2):893–7.

    Article  CAS  PubMed  Google Scholar 

  144. Kassab S, Patterson S, Wilkins FC, Mizelle HL, Reinhart GA, Granger JP. Blunted natriuretic response to a high-sodium meal in obese dogs. Role of renal nerves. Hypertension. 1994;23(6 Pt 2):997–1001.

    Article  CAS  PubMed  Google Scholar 

  145. Henegar JR, Bigler SA, Henegar LK, Tyagi SC, Hall JE. Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol. 2001;12(6):1211–7.

    CAS  PubMed  Google Scholar 

  146. de Paula RB, da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  147. Alonso-Galicia M, Dwyer TM, Herrera GA, Hall JE. Increased hyaluronic acid in the inner renal medulla of obese dogs. Hypertension. 1995;25(4 Pt 2):888–92.

    Article  CAS  PubMed  Google Scholar 

  148. Gu JW, Wang J, Stockton A, Lokitz B, Henegar L, Hall JE. Cytokine gene expression profiles in kidney medulla and cortex of obese hypertensive dogs. Kidney Int. 2004;66(2):713–21.

    Article  CAS  PubMed  Google Scholar 

  149. Lohmeier TE, Iliescu R, Liu B, Henegar JR, Maric-Bilkan C, Irwin ED. Systemic and renal-specific sympathoinhibition in obesity hypertension. Hypertension. 2012;59(2):331–8.

    Article  CAS  PubMed  Google Scholar 

  150. Henegar JR, Zhang Y, De Rama R, Hata C, Hall ME, Hall JE. Catheter-based radiorefrequency renal denervation lowers blood pressure in obese hypertensive dogs. Am J Hypertens. 2014;27(10):1285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang Z, Yang K, Zeng L, Wang X, Jiang F, Tu S, et al. Renal simplicity denervation reduces blood pressure and renal injuries in an obesity-induced hypertension dog model. Clin Exp Pharmacol Physiol. 2017;44:1213–23.

    Article  CAS  PubMed  Google Scholar 

  152. Renner S, Braun-Reichhart C, Blutke A, Herbach N, Emrich D, Streckel E, et al. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes. 2013;62(5):1505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Klymiuk N, Bocker W, Schonitzer V, Bahr A, Radic T, Frohlich T, et al. First inducible transgene expression in porcine large animal models. FASEB J. 2012;26(3):1086–99.

    Article  CAS  PubMed  Google Scholar 

  154. Dixon JL, Stoops JD, Parker JL, Laughlin MH, Weisman GA, Sturek M. Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. Arterioscler Thromb Vasc Biol. 1999;19(12):2981–92.

    Article  CAS  PubMed  Google Scholar 

  155. Ma S, Zhu XY, Eirin A, Woollard JR, Jordan KL, Tang H, et al. Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through tumor necrosis factor-alpha. J Urol. 2016;195(4 Pt 1):1152–9.

    Article  CAS  PubMed  Google Scholar 

  156. Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58(5):784–90.

    Article  CAS  PubMed  Google Scholar 

  157. Zhang X, Li ZL, Woollard JR, Eirin A, Ebrahimi B, Crane JA, et al. Obesity-metabolic derangement preserves hemodynamics but promotes intrarenal adiposity and macrophage infiltration in swine renovascular disease. Am J Physiol Renal Physiol. 2013;305(3):F265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Maile LA, Busby WH, Gollahon KA, Flowers W, Garbacik N, Garbacik S, et al. Blocking ligand occupancy of the alphaVbeta3 integrin inhibits the development of nephropathy in diabetic pigs. Endocrinology. 2014;155(12):4665–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Liu Y, Wang ZB, Yin WD, Li QK, Cai MB, Yu J, et al. Preventive effect of Ibrolipim on suppressing lipid accumulation and increasing lipoprotein lipase in the kidneys of diet-induced diabetic minipigs. Lipids Health Dis. 2011;10:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Khairoun M, van den Heuvel M, van den Berg BM, Sorop O, de Boer R, van Ditzhuijzen NS, et al. Early systemic microvascular damage in pigs with atherogenic diabetes mellitus coincides with renal angiopoietin dysbalance. PLoS One. 2015;10(4):e0121555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Li L, Zhao Z, Xia J, Xin L, Chen Y, Yang S, et al. A long-term high-fat/high-sucrose diet promotes kidney lipid deposition and causes apoptosis and glomerular hypertrophy in bama minipigs. PLoS One. 2015;10(11):e0142884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Dickinson JE, Meyer BA, Palmer SM. Fetal vascular responses to maternal glucose administration in streptozocin-induced ovine diabetes mellitus. J Obstet Gynaecol Res. 1998;24(5):325–33.

    Article  CAS  PubMed  Google Scholar 

  163. Philipps AF, Rosenkrantz TS, Clark RM, Knox I, Chaffin DG, Raye JR. Effects of fetal insulin deficiency on growth in fetal lambs. Diabetes. 1991;40(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  164. Rogers SA, Chen F, Talcott MR, Faulkner C, Thomas JM, Thevis M, et al. Long-term engraftment following transplantation of pig pancreatic primordia into non-immunosuppressed diabetic rhesus macaques. Xenotransplantation. 2007;14(6):591–602.

    Article  CAS  PubMed  Google Scholar 

  165. Wang D, Liu J, He S, Wang C, Chen Y, Yang L, et al. Assessment of early renal damage in diabetic rhesus monkeys. Endocrine. 2014;47(3):783–92.

    Article  CAS  PubMed  Google Scholar 

  166. Thomson SE, McLennan SV, Kirwan PD, Heffernan SJ, Hennessy A, Yue DK, et al. Renal connective tissue growth factor correlates with glomerular basement membrane thickness and prospective albuminuria in a non-human primate model of diabetes: possible predictive marker for incipient diabetic nephropathy. J Diabetes Complicat. 2008;22(4):284–94.

    Article  Google Scholar 

  167. Pena MJ, Heinzel A, Heinze G, Alkhalaf A, Bakker SJ, Nguyen TQ, et al. A panel of novel biomarkers representing different disease pathways improves prediction of renal function decline in type 2 diabetes. PLoS One. 2015;10(5):e0120995.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Cusumano AM, Bodkin NL, Hansen BC, Iotti R, Owens J, Klotman PE, et al. Glomerular hypertrophy is associated with hyperinsulinemia and precedes overt diabetes in aging rhesus monkeys. Am J Kidney Dis. 2002;40(5):1075–85.

    Article  PubMed  Google Scholar 

  169. Najafian B, Masood A, Malloy PC, Campos A, Hansen BC, Mauer M, et al. Glomerulopathy in spontaneously obese rhesus monkeys with type 2 diabetes: a stereological study. Diabetes Metab Res Rev. 2011;27(4):341–7.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Bertin FR, de Laat MA. The diagnosis of equine insulin dysregulation. Equine Vet J. 2017;49(5):570–6.

    Article  CAS  PubMed  Google Scholar 

  171. Krolewski AS, Skupien J, Rossing P, Warram JH. Fast renal decline to end-stage renal disease: an unrecognized feature of nephropathy in diabetes. Kidney Int. 2017;91(6):1300–11.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Campion CG, Sanchez-Ferras O, Batchu SN. Potential role of serum and urinary biomarkers in diagnosis and prognosis of diabetic nephropathy. Can J Kidney Health Dis. 2017;4:2054358117705371.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69–75.

    Article  CAS  PubMed  Google Scholar 

  174. Fioretto P, Sutherland DE, Najafian B, Mauer M. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int. 2006;69(5):907–12.

    Article  CAS  PubMed  Google Scholar 

  175. Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321(9):580–5.

    Article  CAS  PubMed  Google Scholar 

  176. Rocchini AP, Moorehead C, Wentz E, Deremer S. Obesity-induced hypertension in the dog. Hypertension. 1987;9(6 Pt 2):III64–8.

    CAS  PubMed  Google Scholar 

  177. Neff KJ, Elliott JA, Corteville C, Abegg K, Boza C, Lutz TA, et al. Effect of Roux-en-Y gastric bypass and diet-induced weight loss on diabetic kidney disease in the Zucker diabetic fatty rat. Surg Obes Relat Dis. 2017;13(1):21–7.

    Article  PubMed  Google Scholar 

  178. Su Z, Widomski D, Ma J, Namovic M, Nikkel A, Leys L, et al. Longitudinal changes in measured glomerular filtration rate, renal fibrosis and biomarkers in a rat model of type 2 diabetic nephropathy. Am J Nephrol. 2016;44(5):339–53.

    Article  CAS  PubMed  Google Scholar 

  179. Amaral LS, Silva FA, Correia VB, Andrade CE, Dutra BA, Oliveira MV, et al. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats. Exp Biol Med (Maywood). 2016;241(4):437–45.

    Article  CAS  Google Scholar 

  180. Ostergaard MV, Pinto V, Stevenson K, Worm J, Fink LN, Coward RJ. DBA2J db/db mice are susceptible to early albuminuria and glomerulosclerosis that correlate with systemic insulin resistance. Am J Physiol Renal Physiol. 2017;312(2):F312–F21.

    Article  CAS  PubMed  Google Scholar 

  181. Nath S, Ghosh SK, Choudhury Y. A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans. J Pharmacol Toxicol Methods. 2017;84:20–30.

    Article  CAS  PubMed  Google Scholar 

  182. Shaw JA, Shetty P, Burns KD, Fergusson D, Knoll GA. C-peptide as a therapy for kidney disease: a systematic review and meta-analysis. PLoS One. 2015;10(5):e0127439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Wu W, Geng H, Liu Z, Li H, Zhu Z. Effect of curcumin on rats/mice with diabetic nephropathy: a systematic review and meta-analysis of randomized controlled trials. J Tradit Chin Med. 2014;34(4):419–29.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap A. Joles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, I., van Koppen, A., Joles, J.A. (2019). Animal Models of Diabetic Kidney Disease. In: Roelofs, J., Vogt, L. (eds) Diabetic Nephropathy. Springer, Cham. https://doi.org/10.1007/978-3-319-93521-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93521-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93520-1

  • Online ISBN: 978-3-319-93521-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics