Skip to main content

Tubuloglomerular Communication in Diabetic Nephropathy

  • Chapter
  • First Online:
Book cover Diabetic Nephropathy

Abstract

Diabetic nephropathy (DN) is the leading cause for end-stage renal disease, whose main pathological changes were traditionally believed to reside in the glomerulus, although tubulointerstitial and vascular lesions are also well documented. This chapter focuses on the metabolic abnormalities of proximal tubules in the pathogenesis of DN since diabetes is a metabolic as well as a vascular disease, partly resulting from glucose toxicity. Sirt1 is an isoform of sirtuin, a NAD+-dependent deacetylase, and is a key molecule in glucose, lipid, and energy metabolism. Sirt1 has a protective role against diabetic renal damage through anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms in affected cells including mesangial cells, podocytes, and tubular cells under diabetic conditions. In diabetes, Sirt1 in the proximal tubule is downregulated before the onset of albuminuria. This downregulation is believed to disrupt the metabolism of NAD+, diminishing the replenishment of the glomerulus with nicotinamide mononucleotide (NMN) from the proximal tubule; this results in Sirt1 downregulation and tight junction protein claudin-1 upregulation in glomerular podocytes. Intracellular nicotinamide phosphoribosyltransferase (iNAMPT) regulation may be an important new therapeutic target for diabetic nephropathy. This tubuloglomerular communication forms a novel target for the treatment of DN. The typical example is the inhibition of SGLT2 in proximal tubules, which inhibits glomerular hyperfiltration and subsequent glomerular damage. The significance of these effects is clinically demonstrated in large trials such as the EMPA-REG OUTCOME study using empagliflozin and the CANVAS Program using canagliflozin. The regulation of proximal tubular cell function is becoming an increasingly important therapeutic strategy for DN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasegawa K, Wakino S, Simic P, et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med. 2013;19:1496–504.

    Article  CAS  Google Scholar 

  2. Wanner C, Inzucchi S, Lachin J, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.

    Article  CAS  Google Scholar 

  3. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    Article  CAS  Google Scholar 

  4. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol. 2005;6:298–305.

    Article  CAS  Google Scholar 

  5. Guarente L, Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011;364:2235–44.

    Article  CAS  Google Scholar 

  6. Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100:10794–9.

    Article  CAS  Google Scholar 

  7. Purushotham A, Schug TT, Xu Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–38.

    Article  CAS  Google Scholar 

  8. Gillum MP, Kotas ME, Erion DM, et al. SirT1 regulates adipose tissue inflammation. Diabetes. 2011;60:3235–45.

    Article  CAS  Google Scholar 

  9. Imai S, Yoshino J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes Metab. 2013;15:26–33.

    Article  CAS  Google Scholar 

  10. Revollo JR, Körner A, Mills KF, et al. Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007;6:363–75.

    Article  CAS  Google Scholar 

  11. Tao R, Wei D, Gao H, et al. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J Biol Chem. 2011;286:14681–90.

    Article  CAS  Google Scholar 

  12. Sun Q, Li L, Li R, et al. Overexpression of visfatin/PBEF/Nampt alters whole-body insulin sensitivity and lipid profile in rats. Ann Med. 2009;41:311–20.

    Article  CAS  Google Scholar 

  13. Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14:661–73.

    Article  CAS  Google Scholar 

  14. Imai S. “Clocks” in the NAD world: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta. 2010;1804:1584–90.

    Article  CAS  Google Scholar 

  15. Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324:651–4.

    Article  CAS  Google Scholar 

  16. Imai S. Dissecting systemic control of metabolism and aging in the NAD world: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett. 2011;585:1657–62.

    Article  CAS  Google Scholar 

  17. Yoshino J, Mills KF, Yoon MJ, et al. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14:528–36.

    Article  CAS  Google Scholar 

  18. Hasegawa K, Wakino S, Yoshioka K, et al. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Commun. 2008;372:51–6.

    Article  CAS  Google Scholar 

  19. Hasegawa K, Wakino S, Yoshioka K, et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem. 2010;285:13045–56.

    Article  CAS  Google Scholar 

  20. Jian Y, Chen C, Li B, et al. Delocalized Claudin-1 promotes metastasis of human osteosarcoma cells. Biochem Biophys Res Commun. 2015;466:356–61.

    Article  CAS  Google Scholar 

  21. Zhang D, Li S, Cruz P, et al. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct. J Biol Chem. 2009;284:20917–26.

    Article  CAS  Google Scholar 

  22. Wang P, Xu TY, Guan YF, et al. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res. 2009;81:370–80.

    Article  CAS  Google Scholar 

  23. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. 2017;13:11–26.

    Article  CAS  Google Scholar 

  24. Mather A, Pollock C. Glucose handling by the kidney. Kidney Int Suppl. 2011;120:S1–6.

    Article  CAS  Google Scholar 

  25. Lu Y, Griffen SC, Boulton DW, et al. Use of systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans. Front Pharmacol. 2014;5:274.

    Article  Google Scholar 

  26. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60:215–25.

    Article  CAS  Google Scholar 

  27. Wilding JP. The role of the kidneys in glucose homeostasis in type 2 diabetes: clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism. 2014;63:1228–37.

    Article  CAS  Google Scholar 

  28. Liang Y, Arakawa K, Ueta K, et al. Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PLoS One. 2012;7:e30555.

    Article  CAS  Google Scholar 

  29. Rave K, Nosek L, Posner J, et al. Renal glucose excretion as a function of blood glucose concentration in subjects with type 2 diabetes–results of a hyperglycaemic glucose clamp study. Nephrol Dial Transplant. 2006;21:2166–71.

    Article  CAS  Google Scholar 

  30. Devineni D, Morrow L, Hompesch M, et al. Canagliflozin improves glycaemic control over 28 days in subjects with type 2 diabetes not optimally controlled on insulin. Diabetes Obes Metab. 2012;14:539–45.

    Article  CAS  Google Scholar 

  31. Cherney D, Perkins B, Soleymanlou N, et al. The renal hemodynamic effect of SGLT2 inhibition in patients with type 1 diabetes. Circulation. 2014;129:587–97.

    Article  CAS  Google Scholar 

  32. Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15(5):463–73.

    Article  CAS  Google Scholar 

  33. Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85:962–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Wakino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wakino, S., Hasegawa, K., Itoh, H. (2019). Tubuloglomerular Communication in Diabetic Nephropathy. In: Roelofs, J., Vogt, L. (eds) Diabetic Nephropathy. Springer, Cham. https://doi.org/10.1007/978-3-319-93521-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93521-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93520-1

  • Online ISBN: 978-3-319-93521-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics