Skip to main content

Cycling in the Heat

  • Chapter
  • First Online:
Heat Stress in Sport and Exercise

Abstract

The sport of cycling involves many sub-disciplines (e.g. road and mountain) incorporating different events (e.g. road racing, time trialling, cross-country). When undertaken in the heat, performance in endurance events is progressively impaired relative to temperate conditions, whereas sprint performance may be improved in the absence of marked hyperthermia. Several pathways mediate these adjustments in performance and will be discussed in this chapter. The role of thermal strain will also be discussed as it pertains to exertional heat illness, along with countermeasures to minimise its risk and optimise performance. Differences between cycling in a laboratory and in the field will also be addressed and contextualised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saltin B, Hermansen L. Esophageal, rectal, and muscle temperature during exercise. J Appl Physiol. 1966;21(6):1757–62.

    Article  CAS  PubMed  Google Scholar 

  2. Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1(4):1883–928.

    Article  PubMed  Google Scholar 

  3. Tatterson AJ, Hahn AG, Martin DT, Febbraio MA. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sport. 2000;3(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  4. Périard JD, Cramer MN, Chapman PG, Caillaud C, Thompson MW. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol. 2011;96(2):134–44.

    Article  PubMed  Google Scholar 

  5. Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):1240–9.

    Article  CAS  PubMed  Google Scholar 

  6. Almudehki F, Girard O, Grantham J, Racinais S. Hot ambient conditions do not alter intermittent cycling sprint performance. J Sci Med Sport. 2012;15(2):148–52.

    Article  PubMed  Google Scholar 

  7. Girard O, Bishop DJ, Racinais S. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics. Eur J Appl Physiol. 2013;113(2):359–69.

    Article  PubMed  Google Scholar 

  8. Drust B, Rasmussen P, Mohr M, Nielsen B, Nybo L. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol Scand. 2005;183(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  9. Girard O, Brocherie F, Bishop DJ. Sprint performance under heat stress: a review. Scand J Med Sci Sports. 2015;25:79–89.

    Article  PubMed  Google Scholar 

  10. Nichols D, Travers GJS, Moussay S, Belfekih T, Farooq A, Schumacher YO, et al. Health status, preparedness and medical events when competing in the heat: a cohort study at the 2016 UCI Road World Cycling Championships. Unpublished.

    Google Scholar 

  11. Peiffer JJ, Abbiss CR. Influence of environmental temperature on 40 km cycling time-trial performance. Int J Sports Physiol Perform. 2011;6:208–20.

    Article  PubMed  Google Scholar 

  12. Otani H, Kaya M, Tamaki A, Watson P, Maughan RJ. Air velocity influences thermoregulation and endurance exercise capacity in the heat. Appl Physiol Nutr Metab. 2018;43(2):131–8.

    Article  PubMed  Google Scholar 

  13. Otani H, Kaya M, Tamaki A, Watson P, Maughan RJ. Effects of solar radiation on endurance exercise capacity in a hot environment. Eur J Appl Physiol. 2016;116(4):769–79.

    Article  PubMed  Google Scholar 

  14. Levels K, de Koning J, Broekhuijzen I, Zwaan T, Foster C, Daanen H. Effects of radiant heat exposure on pacing pattern during a 15-km cycling time trial. J Sports Sci. 2014;32(9):845–52.

    Article  PubMed  Google Scholar 

  15. Maughan RJ, Otani H, Watson P. Influence of relative humidity on prolonged exercise capacity in a warm environment. Eur J Appl Physiol. 2012;112(6):2313–21.

    Article  PubMed  Google Scholar 

  16. Périard JD, Caillaud C, Thompson MW. The role of aerobic fitness and exercise intensity on endurance performance in uncompensable heat stress conditions. Eur J Appl Physiol. 2012;112(6):1989–99.

    Article  PubMed  Google Scholar 

  17. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54(1):75–159.

    Article  CAS  PubMed  Google Scholar 

  18. Coyle EF, Gonzalez-Alonso J. Cardiovascular drift during prolonged exercise: new perspectives. Exerc Sport Sci Rev. 2001;29(2):88–92.

    CAS  PubMed  Google Scholar 

  19. Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN. Mechanisms of aerobic performance impairment with heat stress and dehydration. J Appl Physiol (1985). 2010;109(6):1989–95.

    Article  Google Scholar 

  20. Brengelmann GL, Johnson JM, Hermansen L, Rowell LB. Altered control of skin blood flow during exercise at high internal temperatures. J Appl Physiol. 1977;43(5):790–4.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson JM, Minson CT, Kellogg DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol. 2014;4:33–89.

    Article  PubMed  Google Scholar 

  22. Jose AD, Stitt F, Collison D. The effects of exercise and changes in body temperature on the intrinsic heart rate in man. Am Heart J. 1970;79(4):488–98.

    Article  CAS  PubMed  Google Scholar 

  23. Gorman AJ, Proppe DW. Mechanisms producing tachycardia in conscious baboons during environmental heat stress. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(2):441–6.

    CAS  PubMed  Google Scholar 

  24. Rowell LB. Circulatory adjustments to dynamic exercise and heat stress: competing controls. Human circulation: regulation during physical stress. New York: Oxford University Press; 1986. p. 363–406.

    Google Scholar 

  25. Arngrimsson SA, Stewart DJ, Borrani F, Skinner KA, Cureton KJ. Relation of heart rate to percent VO2 peak during submaximal exercise in the heat. J Appl Physiol (1985). 2003;94(3):1162–8.

    Article  Google Scholar 

  26. Nybo L, Jensen T, Nielsen B, Gonzalez-Alonso J. Effects of marked hyperthermia with and without dehydration on VO2 kinetics during intense exercise. J Appl Physiol. 2001;90:1057–64.

    Article  CAS  PubMed  Google Scholar 

  27. Pirnay F, Deroanne R, Petit JM. Maximal oxygen consumption in a hot environment. J Appl Physiol. 1970;28(5):642–5.

    Article  CAS  PubMed  Google Scholar 

  28. Périard JD, Racinais S. Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise. Scand J Med Sci Sports. 2015;25(Suppl 1):135–44.

    Article  PubMed  Google Scholar 

  29. Arngrimsson SA, Petitt DS, Borrani F, Skinner KA, Cureton KJ. Hyperthermia and maximal oxygen uptake in men and women. Eur J Appl Physiol. 2004;92(4–5):524–32.

    PubMed  Google Scholar 

  30. Périard JD, Racinais S. Self-paced exercise in hot and cool conditions is associated with the maintenance of %VO2peak within a narrow range. J Appl Physiol. 2015;118:1258–65.

    Article  PubMed  Google Scholar 

  31. Mattern CO, Kenefick RW, Kertzer R, Quinn TJ. Impact of starting strategy on cycling performance. Int J Sports Med. 2001;22(5):350–5.

    Article  CAS  PubMed  Google Scholar 

  32. Neary JP, Hall K, Bhambhani YN. Vastus medialis muscle oxygenation trends during a simulated 20-km cycle time trial. Eur J Appl Physiol. 2001;85(5):427–33.

    Article  CAS  PubMed  Google Scholar 

  33. Thomas K, Goodall S, Stone M, Howatson G, Gibson AS, Ansley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc. 2015;47(3):537–46.

    Article  PubMed  Google Scholar 

  34. Périard JD, Racinais S. Performance and pacing during cycle exercise in hyperthermic and hypoxic conditions. Med Sci Sports Exerc. 2016;48(5):845–53.

    Article  CAS  PubMed  Google Scholar 

  35. Mora-Rodriguez R, Del Coso J, Hamouti N, Estevez E, Ortega JF. Aerobically trained individuals have greater increases in rectal temperature than untrained ones during exercise in the heat at similar relative intensities. Eur J Appl Physiol. 2010;109(5):973–81.

    Article  PubMed  Google Scholar 

  36. Sawka MN, Young AJ, Latzka WA, Neufer PD, Quigley MD, Pandolf KB. Human tolerance to heat strain during exercise: influence of hydration. J Appl Physiol (1985). 1992;73(1):368–75.

    Article  CAS  Google Scholar 

  37. Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol. 1998;84(5):1731–9.

    Article  CAS  PubMed  Google Scholar 

  38. Selkirk GA, McLellan TM. Influence of aerobic fitness and body fatness on tolerance to uncompensable heat stress. J Appl Physiol. 2001;91(5):2055–63.

    Article  CAS  PubMed  Google Scholar 

  39. Mora-Rodriguez R. Influence of aerobic fitness on thermoregulation during exercise in the heat. Exerc Sport Sci Rev. 2012;40(2):79–87.

    Article  PubMed  Google Scholar 

  40. Morrison S, Sleivert GG, Cheung SS. Passive hyperthermia reduces voluntary activation and isometric force production. Eur J Appl Physiol. 2004;91(5–6):729–36.

    Article  PubMed  Google Scholar 

  41. Nybo L, Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol. 2001;91(3):1055–60.

    Article  CAS  PubMed  Google Scholar 

  42. Périard JD, Caillaud C, Thompson MW. Central and peripheral fatigue during passive and exercise-induced hyperthermia. Med Sci Sports Exerc. 2011;43(9):1657–65.

    Article  PubMed  Google Scholar 

  43. Nielsen B, Savard G, Richter EA, Hargreaves M, Saltin B. Muscle blood flow and muscle metabolism during exercise and heat stress. J Appl Physiol. 1990;69(3):1040–6.

    Article  CAS  PubMed  Google Scholar 

  44. Nielsen B, Hales JRS, Strange S, Christensen NJ, Warberg J, Saltin B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol. 1993;460:467–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Périard JD, Cramer MN, Chapman PG, Caillaud C, Thompson MW. Neuromuscular function following prolonged intense self-paced exercise in hot climatic conditions. Eur J Appl Physiol. 2011;111(8):1561–9.

    Article  PubMed  Google Scholar 

  46. Racinais S, Girard O. Neuromuscular failure is unlikely to explain the early exercise cessation in hot ambient conditions. Psychophysiology. 2012;49(6):853–65.

    Article  PubMed  Google Scholar 

  47. Adreani CM, Hill JM, Kaufman MP. Responses of group III and IV muscle afferents to dynamic exercise. J Appl Physiol (1985). 1997;82(6):1811–7.

    Article  CAS  Google Scholar 

  48. Kaufman MP, Hayes SG, Adreani CM, Pickar JG. Discharge properties of group III and IV muscle afferents. Advances in experimental medicine and biology, vol. 508; 2002. p. 25–32.

    Google Scholar 

  49. Kaufman MP, Rybicki KJ. Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli. Circ Res. 1987;61(4 Pt 2):I60–5.

    CAS  PubMed  Google Scholar 

  50. Sidhu SK, Weavil JC, Mangum TS, Jessop JE, Richardson RS, Morgan DE, et al. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clin Neurophysiol. 2017;128(1):44–55.

    Article  PubMed  Google Scholar 

  51. Rowell LB. Human cardiovascular control. New York: Oxford University Press; 1993.

    Book  Google Scholar 

  52. Périard JD. Hyperthermia and supraspinal fatigue. Exp Physiol. 2016;101(11):1323–4.

    Article  PubMed  Google Scholar 

  53. Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports. 2015;25:52–64.

    Article  PubMed  Google Scholar 

  54. Attia M. Thermal pleasantness and temperature regulation in man. Neurosci Biobehav Rev. 1984;8:335–42.

    Article  CAS  PubMed  Google Scholar 

  55. Schlader ZJ, Stannard SR, Mundel T. Is peak oxygen uptake a determinant of moderate-duration self-paced exercise performance in the heat? Appl Physiol Nutr Metab. 2011;36(6):863–72.

    Article  PubMed  Google Scholar 

  56. Schlader ZJ, Simmons SE, Stannard SR, Mundel T. Skin temperature as a thermal controller of exercise intensity. Eur J Appl Physiol. 2011;111(8):1631–9.

    Article  PubMed  Google Scholar 

  57. Abbiss CR, Burnett A, Nosaka K, Green JP, Foster JK, Laursen PB. Effect of hot versus cold climates on power output, muscle activation, and perceived fatigue during a dynamic 100-km cycling trial. J Sports Sci. 2010;28(2):117–25.

    Article  PubMed  Google Scholar 

  58. Périard JD, De Pauw K, Zanow F, Racinais S. Cerebrocortical activity during self-paced exercise in temperate, hot and hypoxic conditions. Acta Physiol (Oxf). 2018;222:1–13.

    Article  CAS  Google Scholar 

  59. Racinais S, Périard JD, Karlsen A, Nybo L. Effect of heat and heat-acclimatization on cycling time-trial performance and pacing. Med Sci Sports Exerc. 2015;47(3):601–6.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Barwood MJ, Corbett J, White D, James J. Early change in thermal perception is not a driver of anticipatory exercise pacing in the heat. Br J Sports Med. 2012;46(13):936–42.

    Article  PubMed  Google Scholar 

  61. Sawka MN, Cheuvront SN, Kenefick RW. High skin temperature and hypohydration impair aerobic performance. Exp Physiol. 2012;97(3):327–32.

    Article  PubMed  Google Scholar 

  62. Fitts RH. Cellular mechanisms of muscle fatigue. Phys Rev. 1994;74(1):49–94.

    CAS  Google Scholar 

  63. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.

    Article  CAS  PubMed  Google Scholar 

  64. Racinais S, Oksa J. Temperature and neuromuscular function. Scand J Med Sci Sports. 2010;20(Suppl 3):1–18.

    Article  PubMed  Google Scholar 

  65. Bergh U, Ekblom B. Influence of muscle temperature on maximal strength and power output in human skeletal muscles. Acta Physiol Scand. 1979;107:33–7.

    Article  CAS  PubMed  Google Scholar 

  66. Sargeant AJ. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur J Appl Physiol. 1987;56:693–8.

    Article  CAS  Google Scholar 

  67. Asmussen E, Boje O. Body temperature and capacity for work. Acta Physiol Scand. 1945;10:1–22.

    Article  Google Scholar 

  68. Ball D, Burrows C, Sargeant AJ. Human power output during repeated sprint cycle exercise: the influence of thermal stress. Eur J Appl Physiol Occup Physiol. 1999;79(4):360–6.

    Article  CAS  PubMed  Google Scholar 

  69. Linnane DM, Bracken RM, Brooks S, Cox VM, Ball D. Effects of hyperthermia on the metabolic responses to repeated high-intensity exercise. Eur J Appl Physiol. 2004;93(1–2):159–66.

    Article  CAS  PubMed  Google Scholar 

  70. Périard JD, Racinais S, Thompson MW. Adjustments in the force-frequency relationship during passive and exercise-induced hyperthermia. Muscle Nerve. 2014;50(5):822–9.

    Article  PubMed  Google Scholar 

  71. Périard JD, Christian RJ, Knez WL, Racinais S. Voluntary muscle and motor cortical activation during progressive exercise and passively induced hyperthermia. Exp Physiol. 2014;99(1):136–48.

    Article  CAS  PubMed  Google Scholar 

  72. Arkesteijn M, Jobson SA, Hopker J, Passfield L. Effect of gradient on cycling gross efficiency and technique. Med Sci Sports Exerc. 2013;45(5):920–6.

    Article  PubMed  Google Scholar 

  73. Sarabon N, Fonda B, Markovic G. Change of muscle activation patterns in uphill cycling of varying slope. Eur J Appl Physiol. 2012;112(7):2615–23.

    Article  PubMed  Google Scholar 

  74. Bouillod A, Grappe F. Physiological and biomechanical responses between seated and standing positions during distance based uphill time trials in elite cyclists. J Sports Sci. 2018;36(10):1173–8.

    Article  PubMed  Google Scholar 

  75. Emanuele U, Horn T, Denoth J. The relationship between freely chosen cadence and optimal cadence in cycling. Int J Sports Physiol Perform. 2012;7(4):375–81.

    Article  PubMed  Google Scholar 

  76. Lucia A, Hoyos J, Chicharro JL. Preferred pedalling cadence in professional cycling. Med Sci Sports Exerc. 2001;33(8):1361–6.

    Article  CAS  PubMed  Google Scholar 

  77. McCole SD, Claney K, Conte JC, Anderson R, Hagberg JM. Energy expenditure during bicycling. J Appl Physiol (1985). 1990;68(2):748–53.

    Article  CAS  Google Scholar 

  78. Faria EW, Parker DL, Faria IE. The science of cycling: factors affecting performance - part 2. Sports Med. 2005;35(4):313–37.

    Article  PubMed  Google Scholar 

  79. di Prampero PE. Cycling on earth, in space, on the moon. Eur J Appl Physiol. 2000;82(5–6):345–60.

    Article  PubMed  Google Scholar 

  80. Lazzer S, Plaino L, Antonutto G. The energetics of cycling on Earth, Moon and Mars. Eur J Appl Physiol. 2011;111(3):357–66.

    Article  PubMed  Google Scholar 

  81. Junge N, Jørgensen R, Flouris AD, Nybo L. Prolonged self-paced exercise in the heat – environmental factors affecting performance. Temperature. 2016;3(4):539–48.

    Article  Google Scholar 

  82. Brotherhood JR. Heat stress and strain in exercise and sport. J Sci Med Sport. 2008;11(1):6–19.

    Article  PubMed  Google Scholar 

  83. Saunders AG, Dugas JP, Tucker R, Lambert MI, Noakes TD. The effects of different air velocities on heat storage and body temperature in humans cycling in a hot, humid environment. Acta Physiol Scand. 2005;183(3):241–55.

    Article  CAS  PubMed  Google Scholar 

  84. Goulet ED. Effect of exercise-induced dehydration on time-trial exercise performance: a meta-analysis. Br J Sports Med. 2011;45(14):1149–56.

    Article  PubMed  Google Scholar 

  85. Cheuvront SN, Kenefick RW. Dehydration: physiology, assessment, and performance effects. Compr Physiol. 2014;4(1):257–85.

    Article  PubMed  Google Scholar 

  86. Kenefick RW, Cheuvront SN. Hydration for recreational sport and physical activity. Nutr Rev. 2012;70(Suppl 2):S137–42.

    Article  PubMed  Google Scholar 

  87. Kenefick RW, Cheuvront SN. Physiological adjustments to hypohydration: impact on thermoregulation. Auton Neurosci. 2016;196:47–51.

    Article  PubMed  Google Scholar 

  88. Sawka MN, Cheuvront SN, Kenefick RW. Hypohydration and human performance: impact of environmental and physiological mechanisms. Sports Med. 2015;45(Suppl 1):51–60.

    Article  PubMed Central  Google Scholar 

  89. Maughan RJ, Shirreffs SM. Dehydration and rehydration in competitive sport. Scand J Med Sci Sports. 2010;20(Suppl 3):40–7.

    Article  PubMed  Google Scholar 

  90. Kenefick RW. Drinking strategies: planned drinking versus drinking to thirst. Sports Med. 2018;48(Suppl 1):31–7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Racinais S, Alonso J-M, Coutts AJ, Flouris AD, Girard O, Gonzalez-Alonso J, et al. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):6–19.

    Article  PubMed  Google Scholar 

  92. Bongers CC, Thijssen DH, Veltmeijer MT, Hopman MT, Eijsvogels TM. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med. 2015;49(6):377–84.

    Article  PubMed  Google Scholar 

  93. Bongers CCWG, Hopman MTE, Eijsvogel TMH. Cooling interventions for athletes- an overview of effectiveness, physiological mechanisms, and practical considerations. Temperature. 2017;4(1):60–78.

    Article  Google Scholar 

  94. Stevens CJ, Taylor L, Dascombe BJ. Cooling during exercise: an overlooked strategy for enhancing endurance performance in the heat. Sports Med. 2017;47(5):829–41.

    Article  PubMed  Google Scholar 

  95. Racinais S, Cocking S, Periard JD. Sports and environmental temperature: from warming-up to heating-up. Temperature (Austin). 2017;4(3):227–57.

    Article  Google Scholar 

  96. Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(S1):20–38.

    Article  PubMed  Google Scholar 

  97. Taylor NAS. Human heat adaptation. Compr Physiol. 2014;4(1):325–65.

    Article  PubMed  Google Scholar 

  98. Tyler CJ, Reeve T, Hodges GJ, Cheung SS. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 2016;46(11):1699–724.

    Article  PubMed  Google Scholar 

  99. Horowitz M. Heat acclimation, epigenetics, and cytoprotection memory. Compr Physiol. 2014;4(1):199–230.

    Article  PubMed  Google Scholar 

  100. Périard JD, Travers GJS, Racinais S, Sawka MN. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci. 2016;196:52–62.

    Article  PubMed  Google Scholar 

  101. Guy JH, Deakin GB, Edwards AM, Miller CM, Pyne DB. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Med. 2015;45(3):303–11.

    Article  PubMed  Google Scholar 

  102. Daanen HAM, Racinais S, Periard JD. Heat acclimation decay and re-induction: a systematic review and meta-analysis. Sports Med. 2018;48(2):409–30.

    Article  PubMed  Google Scholar 

  103. Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien D. Périard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Périard, J.D., Racinais, S. (2019). Cycling in the Heat. In: Périard, J., Racinais, S. (eds) Heat Stress in Sport and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-93515-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93515-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93514-0

  • Online ISBN: 978-3-319-93515-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics