Advertisement

An Update of Erythrinan Alkaloids and Their Pharmacological Activities

  • Runner R. T. MajindaEmail author
Chapter
  • 507 Downloads
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 107)

Abstract

The period of the past 5 years has witnessed a remarkable increase in all of the number, structural variety, and complexity of erythrinan alkaloids reported. This structural diversity seems to be most pronounced in the alkaloids reported from the two species Erythrina arborescens and Erythrina variegata. Between them, work-up of these taxa yielded new polymeric (dimeric and trimeric) erythrinan alkaloids, a first example in one case where a normal 6,5,6,6-membered indoloisoquinoline spirocylic core has rearranged to a spiro-fused 6,5,7,6-skeleton. Furthermore, erythrinan alkaloids with a fifth ring containing a 2H-imidazole functionality were also reported for the first time, together with some new structures having an unusual substitution and with functionalities at positions C-3 and C-7 of the erythrinan core. This contribution has included 40 more erythrinan alkaloids that are either new or were omitted in the most recent major reviews on the same topic, leading to a total of 154 known erythrinan alkaloids to date. There are a few cases where the structures of the new alkaloids are contestable due to insufficient data having been obtained on isolation. To facilitate easier reference and identification, all structures having a common core have been placed in the same table or figure in this chapter.

The reported pharmacological activities of the new and known erythrinan alkaloids documented have shown a considerable bias towards central nervous system and related activities. Other prominent activities that have been reported are antifeedant, insecticidal, cytotoxic, antiprotozoal, anti-inflammatory, antioxidant, antifungal, and antiviral effects. Erythrinan alkaloids generally seem to lack antibacterial activity. Several new polymeric alkaloids were found to lack cytotoxicity against a number of human cancer cell lines, although two of them showed moderate aphicidal activity and one exhibited weak to moderate acetylcholinesterase inhibition. The biological activity of erythrinan alkaloids seems to be influenced by basic substructural requirements, such as a conjugated diene (Δ1,2, Δ6,7) system and is modulated by the presence (or absence) of other groups in rings A, B, C, and D of the erythrinan core. The erythrinan core may provide potential leads to structures that eventually may be useful therapeutically.

In recent years, a number of stereoselective chemical synthesis methods have been applied towards the erythinan alkaloids, and these are described in this contribution.

Keywords

Erythrinan alkaloids Erythrinan core Structural variety Pharmacological activities CNS activity Structure-activity relationship studies Chemical synthesis procedures 

Notes

Acknowledgments

I wish to thank Mr. J. O. Ombito for kindly sending me some of the references cited herein while he was in Germany. Messrs Japhet Omollo Ombito, Sampson Dominic Umoh, and Nayang Kgakatsi are thanked for reading through the draft of the manuscript.

References

  1. 1.
    Nesom GL (2015) Key to native and cultivated species of Erythrina (Fabaceae) in the USA and comments on naturalization of E. crista-galli. Phytoneuron 29:1Google Scholar
  2. 2.
    Krukoff BA, Barneby RC (1974) Conspectus of species of the genus Erythrina. Lloydia 37:332Google Scholar
  3. 3.
    Krukoff BA (1982) Notes on the species of Erythrina, XVIII. Allertonia 3:121Google Scholar
  4. 4.
    Mackinder B (1993) Erythrina L. in the Flora Zambesiaca area. Kirkia 14:114Google Scholar
  5. 5.
    Bruneau A (1996) Phylogenetic and biogeographical patterns in Erythrina (Leguminosae: Phaseolae) as inferred from morphological and chloroplast DNA characters. Syst Bot 21:587CrossRefGoogle Scholar
  6. 6.
    Mackinder B, Pasquet R, Polhill R, Verdcourt B (2001) Leguminosae. Flora Zambesiaca, vol 3, part 5. Royal Botanic Gardens, KewGoogle Scholar
  7. 7.
    Bean AR (2008) A taxonomic revision of Erythrina L. (Fabaceae: Faboideae) in Australia. Austrobaileya 7:641Google Scholar
  8. 8.
    Zhang B-J, Wu B, Bao M-F, Ni L, Cai X-H (2016) New dimeric and trimeric Erythrina alkaloids from Erythrina variegata. RSC Adv 6:87863CrossRefGoogle Scholar
  9. 9.
    Tan Q-W, Ni J-C, Fang P-H, Chen Q-J (2017) A new erythrinan alkaloid glycoside from the seeds of Erythrina crista-galli. Molecules 22:1558CrossRefGoogle Scholar
  10. 10.
    Soto-Hernández RM, García-Mateos R, Miguel-Chávez RS, Kite G, Martínez-Vázquez M, Ramos-Valdivia AC (2012) Erythrina, a potential source of chemicals from neotropics. In: Rasooli I (ed) Bioactive compounds in phytomedicine. InTech, Rijeka, p 163Google Scholar
  11. 11.
    García-Beltrán O, Soto-Delgado J, Iturriaga-Vásquez P, Areche C, Cassels BK (2012) Structural reassignment of epierythratidine, an alkaloid from Erythrina fusca, based on NMR studies and computational methods. J Chil Chem Soc 57:1323CrossRefGoogle Scholar
  12. 12.
    Reimann E (2007) Synthesis pathways to Erythrina alkaloids and Erythrina type alkaloids. Prog Chem Org Nat Prod 88:1CrossRefGoogle Scholar
  13. 13.
    Johns SR, Kowala C, Lamberton JA, Sioumis AA, Wunderlich JA (1968) “Homoerythrina” alkaloids from Schelhammera penduculata F. Muell. (family Liliaceae). J Chem Soc Chem Commun 18:1102Google Scholar
  14. 14.
    Tsuda Y, Sano T (1996) Erythrina and related alkaloids. In: Cordell GA (ed) The alkaloids, chemistry and pharmacology, vol 48. Academic Press, San Diego, p 249Google Scholar
  15. 15.
    Hill RK (1967) The Erythrina alkaloids. In: Manske RHF (ed) The alkaloids: chemistry and physiology, vol 9. Academic Press, New York, p 483Google Scholar
  16. 16.
    Kametani T (1969) Erythrina alkaloids. The chemistry of the isoquinoline alkaloids. Elsevier, Amsterdam, p 167Google Scholar
  17. 17.
    Mondon A (1970) Erythrina alkaloids. In: Pelletier SW (ed) Chemistry of the alkaloids. Van Nostrand-Reinhold, Princeton, NJ, p 173Google Scholar
  18. 18.
    Kametani T, Fukumoto K (1972) Application of phenolic oxidative to the total syntheses of the isoquinolines and related alkaloids. Biogenic–type synthesis. Synthesis 12:657CrossRefGoogle Scholar
  19. 19.
    Mathieson AML (1975) Structure of natural products-alkaloids. Int Rev Sci Phys Chem Ser 2(11):177Google Scholar
  20. 20.
    Dyke SF, Quessy SN (1981) Erythrina and related alkaloids. In: Rodrigo RGA (ed) The alkaloids, vol 18. Academic Press, New York, p 1Google Scholar
  21. 21.
    Amer ME, Shamma M, Freyer AJ (1991) Tetracyclic Erythrina alkaloids. J Nat Prod 54:329CrossRefGoogle Scholar
  22. 22.
    Barton DHR, James R, Kirby GW, Turner DW, Widdowson DA (1968) Phenolic oxidation and biosynthesis. Part XVIII. The structure and biosynthesis of Erythrina alkaloids. J Chem Soc C Org 12:1529CrossRefGoogle Scholar
  23. 23.
    Barton DHR, Boar RB, Widdowson DA (1970) Phenolic oxidation and biosynthesis. Part XXI. The biosynthesis of Erythrina alkaloids. J Chem Soc C 9:1213CrossRefGoogle Scholar
  24. 24.
    Barton DHR, Potter CJ, Widdowson DA (1974) Phenolic oxidation and biosynthesis. Part XXIII. On the benzyltetrahydroisoquinoline origins of the Erythrina alkaloids. J Chem Soc Perkin Trans 1:346CrossRefGoogle Scholar
  25. 25.
    Parsons AF, Palframan MJ (2010) Erythrina and related alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and biology, vol 68. Academic Press, Chennai, p 39Google Scholar
  26. 26.
    Barton DHR, Jerkins PN, Letcher R, Widdowson DA, Hough E, Rogers D (1970) Erythristemine, a new alkaloid from Erythrina lysistemon: spectroscopic and crystallographic study. Chem Commun 7:391CrossRefGoogle Scholar
  27. 27.
    Dagne E, Steglich W (1983) Erymelanthine, a new type of Erythrina alkaloid containing a 16-azaerithrinane skeleton. Tetrahedron Lett 24:5067CrossRefGoogle Scholar
  28. 28.
    Chawla AS, Jackson AH (1986) Erythrina and related alkaloids. Nat Prod Rep 1:555CrossRefGoogle Scholar
  29. 29.
    Ito K (1999) Studies on the alkaloids of Erythrina plants. Yakugaku Zasshi 119:340PubMedCrossRefGoogle Scholar
  30. 30.
    Amer ME, El-Masry S, Shamma M, Freyer AJ (1991) Three novel glucodienoid alkaloids from Erythrina lysistemon. J Nat Prod 54:161CrossRefGoogle Scholar
  31. 31.
    Chawla AS, Redha FMJ, Jackson AH (1985) Alkaloids in four Erythrina species. Phytochemistry 24:1821CrossRefGoogle Scholar
  32. 32.
    Wanjala CW, Majinda RRT (2000) Two novel glucodienoid alkaloids from Erythrina latissima seeds. J Nat Prod 63:871PubMedCrossRefGoogle Scholar
  33. 33.
    Ozawa M, Kishida A, Ohsaki A (2011) Erythrina alkaloids from seeds of Erythrina velutina. Chem Pharm Bull 59:564PubMedCrossRefGoogle Scholar
  34. 34.
    Flausino O, de Ávila Santos L, Verli H, Perreira AM, da Silva Bolzani V, Nunes de Souza RL (2007) Anxiolytic effects of erythrinian alkaloids from Erythrina mulungu. J Nat Prod 70:48PubMedCrossRefGoogle Scholar
  35. 35.
    Amer ME, Kassem FF, El-Masry S, Shamma M, Freyer AJ (1993) NMR spectral analysis of five alkaloids from Erythrina caffra. Alexandria J Pharm Sci 7:28Google Scholar
  36. 36.
    Hussain SS (2002) A new alkaloid from the flowers of Erythrina stricta. J Sci Islam Rep Iran 13:35Google Scholar
  37. 37.
    Wu J, Zhang B-J, Xiao W-N, Bao M-F, Cai X-H (2017) Alkaloids from the flower of Erythrina arborescens. RSC Adv 7:51245CrossRefGoogle Scholar
  38. 38.
    Tanaka H, Hattori H (2008) A new Erythrina alkaloid from Erythrina herbacea. J Nat Med 62:228PubMedCrossRefGoogle Scholar
  39. 39.
    Wanjala CCW, Juma BF, Bojase G, Gashe BA, Majinda RRT (2002) Erythraline alkaloids and antimicrobial flavonoids from Erythrina latissima. Planta Med 68:640PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Tanaka H, Tanaka T, Etoh H, Goto S, Terada Y (1999) Two new erythrinan alkaloids from Erythrina x bidwillii. Heterocycles 51:2759CrossRefGoogle Scholar
  41. 41.
    Tanaka H, Tanaka T, Etoh H (1998) Erythrinan alkaloid from Erythrina x bidwillii. Phytochemistry 48:1461CrossRefGoogle Scholar
  42. 42.
    Juma BF, Majinda RRT (2004) Erythrinaline alkaloids from the flowers and pods of Erythrina lysistemon and their DPPH radical scavenging properties. Phytochemistry 65:1397PubMedCrossRefGoogle Scholar
  43. 43.
    Sarragiotto MH, Hermogenes HL, Filho HL, Marsiaoli AJ (1981) Erysotrine N-oxide and erythrartine N-oxide, two novel alkaloids from Erythrina mulungu. Can J Chem 59:2771CrossRefGoogle Scholar
  44. 44.
    Ozawa M, Kawamata S, Etoh T, Hayashi M, Komiyama K (2010) Structure of new erythrinan alkaloids and nitric acid production inhibitors from Erythrina crista-galli. Chem Pharm Bull 58:1119PubMedCrossRefGoogle Scholar
  45. 45.
    Cui L, Thuong PT, Fomum T, Oh WK (2009) A new erythrinan alkaloid from the seeds of Erythrina addisoniae. Arch Pharm Res 32:325PubMedCrossRefGoogle Scholar
  46. 46.
    Lewis JR (1995) Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep 11:339CrossRefGoogle Scholar
  47. 47.
    Wang D, Xie N, Yi S, Liu C, Jiang H, Ma Z, Feng J, Yan H, Zhang X (2018) Bioassay-guided isolation of potent aphicidal Erythrina alkaloids against Aphis gossypii from the seeds of Erythrina crista-galli L. Pest Manag Sci 74:210PubMedCrossRefGoogle Scholar
  48. 48.
    Sharma SK, Chawla HM (1998) Structure elucidation of erythrosotidienone and erythromotidienone — two new isoquinoline alkaloids from Erythrina variegata flowers. J Indian Chem Soc 75:833Google Scholar
  49. 49.
    Ju-ichi M, Fujitani Y, Shingu T, Furukawa H (1981) Erythlaurine and erythramide, two new erythrinan alkaloids possessing a directly attached C1-unit to the aromatic ring. Heterocycles 16:555CrossRefGoogle Scholar
  50. 50.
    Bhat SV, Dornauer H, De Souza NJ (1980) Structure of pachygonine. A new quaternary alkaloid from Pachygone ovata. J Nat Prod 43:588CrossRefGoogle Scholar
  51. 51.
    Chawla AS, Krishnan TR, Jackson AH, Scalabrin DA (1988) Alkaloidal constituents of Erythrina variegata bark. Planta Med 54:526PubMedCrossRefGoogle Scholar
  52. 52.
    Chawla AS, Gupta MP, Jackson AH (1987) Alkaloidal constituents of Erythrina crista-galli flowers. J Nat Prod 50:1146CrossRefGoogle Scholar
  53. 53.
    Tsakadze D, Sturua M, Kupatashvilli N, Vepkhvadze T, Ziaiev R, Samsonia SH, Abdusamatov A (1997) Alkaloids of Cocculus laurifolius DC. Bull Georgian Acad Sci 155:372Google Scholar
  54. 54.
    Rukachaisirikul T, Innok P, Suksamrarn A (2008) Erythrina alkaloids and a pterocarpan from the bark of Erythrina subumbrans. J Nat Prod 71:156PubMedCrossRefGoogle Scholar
  55. 55.
    Ripperger H, Preiss A, Díaz M (1983) Alkaloids from Hyperbaena columbica. Phytochemistry 22:2603CrossRefGoogle Scholar
  56. 56.
    Freyer AJ, Huffman J, Menachery MD, Huey K, Leavens WJ, Fitch RW (2006) Isolation, structure elucidation, and biological evaluation of 15-amido-3-demethoxy-2α,3α-methylenedioxyerythroculine, a new alkaloid from Hyperbaena valida. J Nat Prod 69:1514PubMedCrossRefGoogle Scholar
  57. 57.
    Bhakuni DS, Jain S (1980) Alkaloids of Cocculus laurifolius DC. Tetrahedron 36:3107CrossRefGoogle Scholar
  58. 58.
    Chawla HM, Sharma SK (1993) Erythritol, a new isoquinoline alkaloid from Erythrina variegata flower. Fitoterapia 64:15Google Scholar
  59. 59.
    Ghosal S, Chakraborti A, Srivastava RS (1972) Erythrascine and other alkaloids in the seeds of Erythrina arborescens. Phytochemistry 11:2101CrossRefGoogle Scholar
  60. 60.
    Merlugo L, Santos MC, Sant’Anna LS, Cordeiro EWF, Batista LAC, Miotto STS, Garcia CV, Moreira CM, Mendez ASL (2015) Alkaloids in Erythrina by UPLC-ESI-MS and in vivo hypotensive potential of extractive preparations. J Evid-Based Complementary Altern Med 2015:959081Google Scholar
  61. 61.
    Ozawa M, Etoh T, Hayashi M, Komiyama K, Kishida A, Ohsaki A (2009) TRAIL-enhancing activity of erythrinan alkaloids from Erythrina velutina. Bioorg Med Chem Lett 19:234PubMedCrossRefGoogle Scholar
  62. 62.
    Wanjala CW, Akeng’a T, Obiero GO, Lutta KP (2009) Antifeedant activities of erythrinaline alkaloids from Erythrina latissima against Spodoptera littoralis (Lepidoptera noctuidae). Rec Nat Prod 3:96Google Scholar
  63. 63.
    Folkers K, Major RT (1937) Isolation of erythroidine, an alkaloid of curare action, from Erythrina americana Mill. J Am Chem Soc 59:1580CrossRefGoogle Scholar
  64. 64.
    Boekelheide V, Weinstock J, Grunden MF, Sauvage GL, Egnello EJ (1953) The structure of β-erythroidine and its derivatives. J Am Chem Soc 75:2550CrossRefGoogle Scholar
  65. 65.
    Aguilar MI, Giral F, Espejo O (1981) Alkaloids from the flowers of Erythrina americana. Phytochemistry 20:2061CrossRefGoogle Scholar
  66. 66.
    Chawla AS, Jackson AH, Ludgate P (1982) Erythrina alkaloids. Part 6. Isolation and characterization of alkaloids from Erythrina berteroana seeds and leaves: formation of oxoerythroidines. J Chem Soc Perkin Trans 1:2903CrossRefGoogle Scholar
  67. 67.
    Tanaka H, Etoh H, Shimizu H, Oh-Ochi T, Terada Y, Tateishi Y (2001) Erythrinan alkaloids and isoflavonoids from Erythrina poeppigiana. Planta Med 67:871PubMedCrossRefGoogle Scholar
  68. 68.
    Wada K, Marumo S, Munakata K (1966) An insecticidal alkaloid, cocculolidine from Cocculus trilobus DC. Tetrahedron Lett 7:5179CrossRefGoogle Scholar
  69. 69.
    Elsohly MA, Knapp JE, Shiff PL, Slatkin DJ (1976) Chemical constituents of fruit of Cocculus carolinus DC. (Menispermaceae). J Pharm Sci 65:132CrossRefGoogle Scholar
  70. 70.
    Ghosal S, Srivastava RS (1974) Structure of erysophorine: a new quaternary alkaloid from Erythrina arborescens. Phytochemistry 13:2603CrossRefGoogle Scholar
  71. 71.
    Tiwari KP, Masood M (1979) Alkaloids from the pods of Erythrina arborescens. Phytochemistry 18:704CrossRefGoogle Scholar
  72. 72.
    Tiwari KP, Masood M (1979) Erysopinophorine, a new quaternary alkaloid from the pods of Erythrina arborescens. Phytochemistry 18:2069CrossRefGoogle Scholar
  73. 73.
    Masood M, Tiwari KP (1980) Iso-erysopinophorine, a new quaternary alkaloid from the seeds of Erythrina arborescens. Phytochemistry 19:490CrossRefGoogle Scholar
  74. 74.
    Zhang B-J, Bao M-F, Zeng C-X, Zhong X-H, Ni L, Zeng Y, Cai X-H (2014) Dimeric alkaloids from the flowers of Erythrina variegata. Org Lett 16:6400PubMedCrossRefGoogle Scholar
  75. 75.
    Folkers K, Unna K (1938) Erythrina alkaloids, II. A review, and new data on the alkaloids of species of the genus Erythrina. J Am Pharm Assoc 27:693Google Scholar
  76. 76.
    Lozoya X, Lozoya M (1982) Flora medicinal de Méxíco. In: Plantas Indígenas, Primera Parte. Mexicano del Seguro Social, Méxíco, DF, p 74Google Scholar
  77. 77.
    Lehman A (1937) Actions of Erythrina americana, a possible curare substitute. J Pharmacol Exp Ther 60:69Google Scholar
  78. 78.
    Garín-Aguilar ME, Luna JE, Soto-Hernández M, Valencia de Toro G, Vazquez MM (2000) Effects of crude extracts of Erythrina americana Mill. on aggressive behavior in rats. J Ethnopharmacol 69:189PubMedCrossRefGoogle Scholar
  79. 79.
    Ghosal S, Dutta S, Bhattacharya SK (1972) Erythrina—chemical and pharmacological evaluation II. Alkaloids of Erythrina variegata L. J Pharm Sci 61:1274PubMedCrossRefGoogle Scholar
  80. 80.
    Decker MW, Anderson DJ, Brioni JD, Donelly-Roberts DL, Kang CW, O’Neil AB, Piattoni-Kaplan M, Swanson S, Sullivan JP (1995) Erysodine a competitive antagonist at neuronal nicotinic acetylcholine receptors. Eur J Pharmacol 280:79PubMedCrossRefGoogle Scholar
  81. 81.
    Flausino OA Jr, Pereira AM, da Silva Bolzani V, Nunes-de-Souza RL (2007) Effects of erythrinian alkaloids isolated from Erythrina mulungu (Papilionaceae) in mice submitted to animal models of anxiety. Biol Pharm Bull 30:375PubMedCrossRefGoogle Scholar
  82. 82.
    Pick EP, Unna K (1945) The effects of curare and curare-like substances on the central nervous system. J Pharmacol Exp Ther 83:59Google Scholar
  83. 83.
    Daly JW (2005) Nicotinic agonists, antagonists, and modulators from natural sources. Cell Mol Neurobiol 25:513PubMedCrossRefGoogle Scholar
  84. 84.
    Barabino B, Vailati S, Moretti M, Mcintosh JM, Longhi R, Clementi F, Gotti C (2001) An α4β4 nicotinic receptor subtype is present in chick retina: identification, characterization and pharmacological comparison with transfected α4β4 and α6β4 subtypes. Mol Pharmacol 59:1410PubMedCrossRefGoogle Scholar
  85. 85.
    Cassels BK, Bermúdez I, Dajas F, Abin-Carriquiry JA, Wonnacott S (2005) From ligand design to therapeutic efficacy: the challenge for nicotinic receptor research. Drug Discov Today 10:1657PubMedCrossRefGoogle Scholar
  86. 86.
    Iturriaga-Vásquez P, Carbone A, García-Beltrán O, Livingstone PD, Biggin PC, Cassels BK, Wonnacott S, Zapata-Torres G (2010) Molecular determinants for competitive inhibition of α4β2 nicotinic acetylcholine receptors. Mol Pharmacol 78:366PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Taly A, Corringer PG, Guedin D, Lestage P, Changeux JP (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 8:733PubMedCrossRefGoogle Scholar
  88. 88.
    Lippiello PM, Beaver JS, Gatto GJ, James JW, Jordan KG, Traina VM, Xie J, Bencherif M (2008) TC 5214 (+)-(S)-Mecamylamine: a neuronal nicotinic acetylcholine receptor modulator with antidepressant activity. CNS Neurosci Ther 14:266PubMedCrossRefGoogle Scholar
  89. 89.
    García-Mateos R, Garin-Aguilar ME, Soto-Hernández M, Martinez-Vázquez M (2000) Effect of β-erythroidine and β-dihydroerythroidine from Erythrina americana on rats aggressive behavior. Pharm Pharmacol Lett 10:34Google Scholar
  90. 90.
    Damaj MI, Welch SP, Martin BR (1995) In vivo pharmacological effects of dihydro-β-erythroidine, a nicotinic antagonist, in mice. Psychopharmacology 117:67PubMedCrossRefGoogle Scholar
  91. 91.
    Harvey SC, Maddox FN, Luetje CW (1996) Multiple determinants of dihydro-β-erythroidine sensitivity on rat neuronal nicotinic receptor α subunits. J Neurochem 7:1953Google Scholar
  92. 92.
    Xiao Y, Meyer EL, Thompson JM, Surin A, Wroblewski J, Kellar KJ (1998) Rat α3/β4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function. Mol Pharmacol 54:322PubMedCrossRefGoogle Scholar
  93. 93.
    Rodrigues Serrano MA, de Luca Baptista NA, da Silva Bolzani V, de Ávila Santos L, de Compos Nogueira PJ, Nunes-de-Souza RL, Latif A, Arfan M (2011) Anxiolytic-like effects of erythrinian alkaloids from Erythrina suberosa. Quim Nova 34:808Google Scholar
  94. 94.
    Onusic GM, Nogueira RL, Pereira MS, Viana MB (2002) Effect of acute treatment with a water-alcohol extract of Erythrina mulungu on anxiety-related responses in rats. Braz J Med Biol Res 35:473PubMedCrossRefGoogle Scholar
  95. 95.
    Onusic GM, Nogueira RL, Pereira MS, Flausino OA Jr, Viana MB (2003) Effects of chronic treatment with a water-alcohol extract from Erythrina mulungu on anxiety-related responses in rats. Biol Pharm Bull 26:1538PubMedCrossRefGoogle Scholar
  96. 96.
    Faggion SA, Cunha AOS, Fachim HA, Gavin AS, dos Santos WF, Pereira AMS, Beleboni RO (2011) Anticonvulsant profile of the alkaloids (+)-erythravine and (+)-11α-hydroxyerythravine isolated from the flowers of Erythrina mulungu Mart. ex Benth. (Leguminosae-Papilionaceae). Epilepsy Behav 20:441PubMedCrossRefGoogle Scholar
  97. 97.
    Rosa DS, Faggion SA, Gavin AS, de Souza MA, Fachim HA, dos Santos WF, Pereira AMS, Cunha AOS, Beleboni RO (2012) Erysothrine, an alkaloid extracted from the flowers of Erythrina mulungu Mart. ex Benth.: evaluating its anticonvulsant and anxiolytic potential. Epilepsy Behav 23:205CrossRefGoogle Scholar
  98. 98.
    Setti-Perdigão P, Serrano MAR, Flausino OA Jr, Bolzani VS, Guimarães MZP, Castro NG (2013) Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells. PLoS One 8(12):e82726PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ingkanina K, Changwijit K, Suwanborirux K (2006) Vobasinyl-iboga bisindole alkaloids, potent acetylcholinesterase inhibitors from Tabernaemontana divaricata root. J Pharm Pharmacol 58:847CrossRefGoogle Scholar
  100. 100.
    Ibarra-Estrada EI, Pacheco-Sánchez M, García-Mateos R, Miguel-Chávez RS, Ramirez-Valvede G, Soto-Hernández RM (2011) Antioxidant activity of Erythrina americana Miller alkaloids. Rev Fitotec Mex 34:241Google Scholar
  101. 101.
    Ibarra-Estrada E, Morales RT, Soto-Hernández M, Martínez-Vázquez M, García-Mateos R, Miguel-Chávez RS (2009) In vitro antifungal activity of erysodine. Rev Fitotec Mex 32:327Google Scholar
  102. 102.
    Mohammed MMD, Ibrahim NA, Awad NE, Matloub AA, Mohamed-Ali AG, Barakat EE, Mohamed AE, Colla PL (2012) Anti-HIV-1 and cytotoxicity of the alkaloids of Erythrina abyssinica Lam. growing in Sudan. Nat Prod Res 26:1565PubMedCrossRefGoogle Scholar
  103. 103.
    Maier UH, Zenk MH (1997) (S)-Norreticuline is the precursor for the biosynthesis of Erythrina alkaloids. Chem Commun 23:2313CrossRefGoogle Scholar
  104. 104.
    Vlietinck AJ, De Bryne T, Aspers S, Pieters LA (1998) Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med 64:97PubMedCrossRefGoogle Scholar
  105. 105.
    Callejon DR, Riul TB, Feitosa LGP, Guaratini T, Silva DB, Adhikari A, Shrestha RLS, Marques LMM, Baruffi MD, Lopes JLC, Lopes NP (2014) Leishmanicidal evaluation of tetrahydroprotoberberine and spirocyclic Erythrina-alkaloids. Molecules 19:5692PubMedCrossRefGoogle Scholar
  106. 106.
    Iranshahi M, Vu H, Pham N, Zencak D, Forster P, Quinn RJ (2012) Cytotoxic evaluation of alkaloids and isoflavonoids from the Australian tree Erythrina vespertilio. Planta Med 78:730PubMedCrossRefGoogle Scholar
  107. 107.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhães PJ, Di Virgilio F, Pozzan T (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22:8619PubMedCrossRefGoogle Scholar
  109. 109.
    Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628PubMedCrossRefGoogle Scholar
  110. 110.
    Djiogue S, Halabalaki M, Njamen D, Kretzschmar G, Lambrinidis G, Hoepping J, Raffaelli FM, Mikros E, Skaltsounis A-L, Vollmer G (2014) Erythroidine alkaloids: a novel class of phytoestrogens. Planta Med 80:861PubMedCrossRefGoogle Scholar
  111. 111.
    Herlina T, Mardianingrum R, Gaffer S, Supratman U (2017) Isoquinoline alkaloids from Erythrina poeppigiana (Leguminosae) and cytotoxic activity against breast cancer cell line MCF-7 in silico. J Phys Conf Ser 812:012091CrossRefGoogle Scholar
  112. 112.
    Hosoi S, Ishida K, Sangai M, Tsuda Y (1992) Chiral synthesis of enantio-type erythrinan alkaloids utilizing asymmetric acylation and kinetic resolution of diastereomers. Chem Pharm Bull 40:3115CrossRefGoogle Scholar
  113. 113.
    Tsuda Y, Hosoi S, Katagiri N, Kaneko C, Sano T (1993) Chiral synthesis of Erythrina alkaloids. I. Total synthesis of (+)-erysotrine via asymmetric Diels-Alder reaction under high pressure. Chem Pharm Bull 41:2087CrossRefGoogle Scholar
  114. 114.
    Tsuda Y, Hosoi S, Ishida K, Sangai M (1994) Chiral synthesis of Erythrina alkaloids. (2). Synthesis of enantio-type erythrinan alkaloids utilizing asymmetric acylation and kinetic resolution of diastereomers. Chem Pharm Bull 42:204CrossRefGoogle Scholar
  115. 115.
    Zhang F, Simpkins NS, Wilson C (2007) An enantiospecific synthesis of (+)-demethoxyerythratidinone from (S)-malic acid: key to observations concerning the diastereocontrol in malic acid-derived N-acylium ion cyclizations. Tetrahedron Lett 48:5942CrossRefGoogle Scholar
  116. 116.
    Moon TJ, Jung JA, Ha SH, Song SH, Park SJ, Kim J, Choo DJ, Lee YS, Lee JY (2011) Synthetic studies on Erythrina alkaloids: formal total synthesis of (+)-3-demethoxyeythratidonone. Synth Commun 41:1282CrossRefGoogle Scholar
  117. 117.
    Allin SM, Streetley GB, Slater M, James SL, Martin WP (2004) A formal asymmetric synthesis of both enantiomers of Erythrina alkaloid 3-demethoxyerythratidinone. Tetrahedron Lett 45:5493CrossRefGoogle Scholar
  118. 118.
    Gaskell SN, Duffy LJ, Allin SM (2008) Asymmetric N-acyliminium cyclization as an approach to heterocyclic natural product synthesis. Nat Prod Commun 3:1825Google Scholar
  119. 119.
    Motsowicz D, Dygas M, Kaluza Z (2015) Heck cyclization strategy for preparation of erythrinan alkaloids. Asymmetric synthesis of unusual (–)-erysotramidine from l-tartaric acid. J Org Chem 80:1957CrossRefGoogle Scholar
  120. 120.
    Tietze LF, Tölle N, Kratzert D, Stalke D (2009) Efficient formal total synthesis of the Erythrina alkaloid (+)-erysotramidine using a domino process. Org Lett 11:5230PubMedCrossRefGoogle Scholar
  121. 121.
    Zhang F, Simpkins NS, Blake AJ (2009) New approaches for the synthesis of erythrinan alkaloids. J Org Biomol Chem 7:1963CrossRefGoogle Scholar
  122. 122.
    Yasui Y, Suzuki K, Matsumoto T (2004) Transmission of axial chirality to spiro-center chirality, enabling enantiospecific access to erythrinan alkaloids. Synlett:619Google Scholar
  123. 123.
    Chuang KV, Navarro R, Reisman SE (2011) Benzoquinone-derived imines as versatile intermediates for alkaloid synthesis: total synthesis of (–)-3-demethoxyerysotramidine. Chem Sci 2:1086CrossRefGoogle Scholar
  124. 124.
    Isobe K, Mohri K, Takeda N, Suzuki K, Hosoi S, Tsuda Y (1994) Stereoselective introduction of oxygen functionalities at the 11β-position of erythrinan skeleton: total synthesis of (±)-erythristemine and (+)-erythrartine. Chem Pharm Bull 42:197CrossRefGoogle Scholar
  125. 125.
    Paladino M, Zaifman J, Ciufolini MA (2015) Total synthesis of (+)-3-demethoxyerythratidinone and (+)-erysotramidine via oxidative amidation of a phenol. Org Lett 17:3422PubMedCrossRefGoogle Scholar
  126. 126.
    Maertens G, Menard MA, Canesi S (2014) Catalytic enantioselective desymmetrizations of prochiral dienone systems. Synthesis 46:1573CrossRefGoogle Scholar
  127. 127.
    VanRheenen V, Kelly RC, Cha DY (1976) An improved catalytic OsO4 oxidation of olefins to cis-1,2-glycols using ternary amine oxides as the oxidant. Tetrahedron Lett 17:1973CrossRefGoogle Scholar
  128. 128.
    Chrisman W, Singaram B (1997) The effect of different amine bases in the Swern oxidation of β-amino alcohols. Tetrahedron Lett 38:2053CrossRefGoogle Scholar
  129. 129.
    Pace V, Cabrera AC, Fernández M, Sinisterra JV, Alcántara AR (2010) First general route to substituted α-arylamino-α′-chloropropan-2-ones by oxidation of N-protected aminohalohydrins: the importance of disrupting hydrogen bond networks. Synthesis 2010:3545CrossRefGoogle Scholar
  130. 130.
    Maier UH, Rödl W, Boar RB, Deus-Newmann B, Zenk MH (1999) Biosynthesis of Erythrina alkaloids in Erythrina crista-galli. Phytochemistry 52:373PubMedCrossRefGoogle Scholar
  131. 131.
    Umihara H, Yoshino T, Shimokawa J, Kitamura M, Fukuyama T (2016) Development of a divergent synthetic route to Erythrina alkaloids: asymmetric synthesis of 8-oxoerythrinine, crystamidine, 8-oxoerythraline, and erythraline. Angew Chem Int Ed 55:6915CrossRefGoogle Scholar
  132. 132.
    Franck B, Teetz V (1971) Modellreaktionen zur Biosynthese der Erythrina-alkaloide. Angew Chem 83:409CrossRefGoogle Scholar
  133. 133.
    Tanaka H, Shibata M, Ito K (1984) Synthesis of 3-demethoxyerythratidinone via formation of a dibenzazonine alkaloid. Chem Pharm Bull 32:1578CrossRefGoogle Scholar
  134. 134.
    Tanaka H, Shibata M, Ito K (1984) A novel synthesis of cis-15,16-dimethoxyerythrinan-3-one. Chem Pharm Bull 32:3271CrossRefGoogle Scholar
  135. 135.
    Shimokawa J (2014) Divergent strategy in natural product total synthesis. Tetrahedron Lett 55:6156CrossRefGoogle Scholar
  136. 136.
    Zhou Y, Dong J, Zhang F, Gong Y (2011) Synthesis of C1-symmetrical chiral secondary diamines and their applications in the asymmetric copper (II)-catalyzed Henry (nitroaldol) reactions. J Org Chem 76:588PubMedCrossRefGoogle Scholar
  137. 137.
    Mayaura N, Yanagi T, Suzuki A (1981) The palladium-catalyzed cross-coupling reaction of phenyl boronic acid with haloarenes in the presence of bases. Synth Commun 11:513CrossRefGoogle Scholar
  138. 138.
    Kunishima M, Kawachi C, Iwasaki F, Terao K, Tani S (1999) Synthesis and characterization of 4-(4,6-dimethoxy-1,3,5-trazin-2-yl)-4-methylmorpholinium chloride. Tetrahedron Lett 40:5327CrossRefGoogle Scholar
  139. 139.
    Carreno MC, Gonzalez-Lopez M, Ubrano A (2006) Oxidative de-aromatization of para-alkyl phenols into para-peroxyquinols mediated by oxone as a source of singlet oxygen. Angew Chem 118:2803CrossRefGoogle Scholar
  140. 140.
    Armwood S, Juma BF, Ombito JO, Majinda RRT, Gwebu ET (2018) Effect of erythrinaline alkaloids from Erythrina lysistemon on human recombinant caspase-3. Afr J Pharm Pharmacol 12:183CrossRefGoogle Scholar
  141. 141.
    Balci M (1981) Bicyclic endoperoxides and synthetic applications. Chem Rev 81:91CrossRefGoogle Scholar
  142. 142.
    Luche J-L (1978) Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones. J Am Chem Soc 100:2226CrossRefGoogle Scholar
  143. 143.
    Luche J-L, Rodgriguez-Hahn L, Crabbé P (1978) Reduction of natural enones in the presence of cerium trichloride. J Chem Soc Chem Commun 14:601CrossRefGoogle Scholar
  144. 144.
    Gemal AL, Luche J-L (1981) Lanthanides in organic synthesis. 6. The reduction of α-enones by sodium borohydride in the presence of lanthanoid chlorides: synthetic and mechanistic aspects. J Am Chem Soc 103:5454CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of BotswanaGaboroneBotswana

Personalised recommendations