The Search for Anticancer Agents from Tropical Plants

  • Joshua M. Henkin
  • Yulin Ren
  • Djaja Djendoel Soejarto
  • A. Douglas KinghornEmail author
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 107)


Many of the clinically used anticancer agents in Western medicine are derived from secondary metabolites found in terrestrial microbes, marine organisms, and higher plants, with additional compounds of this type being currently in clinical trials. If plants are taken specifically, it is generally agreed that the prospects of encountering enhanced small organic-molecule chemical diversity are better if tropical rather than temperate species are investigated in drug discovery efforts. Plant collection in tropical source countries requires considerable preparation and organization to conduct in a responsible manner that abides by the provisions of the 1992 Rio Convention of Biological Diversity and the 2010 Nagoya Protocol on Access to Genetic Resources. Correct taxonomic identifications and enhanced procedures for processing and documenting plant samples when collected in often difficult terrain are required. Phytochemical aspects of the work involve solvent fractionation, known compound dereplication, preliminary in vitro testing, and prioritization, leading to “activity-guided fractionation”, compound structure determination, and analog development. Further evaluation of lead compounds requires solubility, formulation, preliminary pharmacokinetics, and in vivo testing in suitable models. Covering the work of the authors carried out in two sequential multidisciplinary, multi-institutional research projects, examples of very promising compounds discovered from plants acquired from Africa, Southeast Asia, the Americas, and the Caribbean region, and with potential anticancer activity will be mentioned. These include plant secondary metabolites of the diphyllin lignan, cyclopenta[b]benzofuran, triterpenoid, and tropane alkaloid types.


Tropical plants Anticancer agents Relevant international conventions Plant collection logistics Taxonomic identification Laboratory processing Lead bioactive compound examples 



The authors of this chapter wish to acknowledge generous financial support through National Cooperative Drug Discovery Groups (NCDDG) project U01/U19 CA52956 (1990–2005) and program project grant P01-CA125066 (2007–2019) from the National Cancer Institute, National Institutes of Health, Bethesda, Maryland, U.S.A. We are extremely grateful to our taxonomic collaborators in many countries during the implementation of the NCDDG project, in particular, the late Dr. Leonardus Kardono and the late Dr. Soedarsono Riswan (Indonesia), Dr. Thawatchai Santisuk and Prof. Vichai Reutrakul (Thailand), Prof. Tangai E. Chagwedera (Zimbabwe), Dr. Domingo A. Madulid (Philippines), Ricardo Garcia (Dominican Republic), Prof. Rosa Pinos (Ecuador), Igr. Agr. Jose Castillo (Guatemala), Dr. R. Mukherjee (Brazil), Dr. Randrianaivo (Madagascar), Dr. T. Gözler and Dr. Abdulkerim Alpinas (Turkey), Dr. M.P. Gupta (Panama), Dr. I. Mbenkum (Cameroon), Dr. G. Mora (Costa Rica), and Dr. Lohi Matainaho (Papua New Guinea). The plants mentioned in this chapter that were collected in Vietnam and Laos were obtained under agreements between the University of Illinois at Chicago and the Institute of Ecology and Biological Resources (IEBR) of the Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam, and the Institute of Traditional Medicine (ITM), Ministry of Health, Vientiane, Lao PDR. We wish to express our thanks to Prof. Le Xuan Canh (former Director of IEBR) and Prof. Tran Huy Thai (present Director of IEBR), and to Prof. Kongmany Sydara (Director of ITM) for their collaboration, and to Dr. Tran Ngoc Ninh (IEBR) for his support and cooperation in the implementation of fieldwork in Vietnam. We wish to thank many present and former highly accomplished faculty, staff, and industrial colleagues, as well as postdoctoral associates, and graduate and undergraduate students who have participated in these collaborative projects to date, and whose names are included in the bibliography below. The two senior authors of this chapter (D.D.S. and A.D.K.) are particularly grateful to the late Dr. Norman R. Farnsworth, formerly Distinguished University Professor and Director, Program for Collaborative Research in the Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, for introducing them both in the 1970s to the scientific investigation of plants as potential anticancer agents.


  1. 1.
    Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52CrossRefPubMedGoogle Scholar
  2. 2.
    Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141CrossRefPubMedGoogle Scholar
  3. 3.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochem Biophys Acta 1830:3670CrossRefPubMedGoogle Scholar
  5. 5.
    Katz L, Baltz RH (2016) Natural products discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155CrossRefPubMedGoogle Scholar
  6. 6.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629CrossRefGoogle Scholar
  7. 7.
    Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or endless frontier? Science 325:161CrossRefPubMedGoogle Scholar
  8. 8.
    Butler MS, Robertson AAB, Cooper MA (2014) Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 31:1612CrossRefPubMedGoogle Scholar
  9. 9.
    Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111CrossRefPubMedGoogle Scholar
  10. 10.
    Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RH (2017) Retrospective analysis of natural products provides insights for future drug discovery. Proc Natl Acad Sci USA 114:5601CrossRefPubMedGoogle Scholar
  11. 11.
    Heinrich M, Barnes J, Prieto-Garcia J, Gibbons S, Williamson EM (2018) Fundamentals of pharmacognosy and phytotherapy, 3rd edn. Elsevier, EdinburghGoogle Scholar
  12. 12.
    Samuelsson G, Bohlin L (2015) Drugs of natural origin. A treatise of pharmacognosy, 7th edn. Apoteksocieten, Swedish Pharmaceutical Society, StockholmGoogle Scholar
  13. 13.
    Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431CrossRefPubMedGoogle Scholar
  14. 14.
    Kinghorn AD, Pan L, Fletcher JN, Chai H (2011) The relevance of higher plants in lead compound discovery programs. J Nat Prod 74:1539PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temmi V, Wang L, Schwaiger S, Heiss EH, Rolliger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant derived natural products: a review. Biotechnol Adv 33:1582PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Torre LA, Bray F, Siegel RL, Ferlay ME, Lortet-Tieuent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Seigel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7CrossRefGoogle Scholar
  18. 18.
    Cragg GM, Kingston DGI, Newman DJ (eds) (2012) Anticancer agents from natural products, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FLGoogle Scholar
  19. 19.
    Cragg GM, Grothaus TG, Newman DI (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012CrossRefPubMedGoogle Scholar
  20. 20.
    Cragg GM, Newman DJ (2005) Plants as a source of anticancer agents. J Ethnopharmacol 100:72CrossRefPubMedGoogle Scholar
  21. 21.
    Pan L, Chai H, Kinghorn AD (2010) The continuing search for antitumor agents from higher plants. Phytochem Lett 3:1PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: historic achievements in natural products research. J Nat Prod 67:129CrossRefPubMedGoogle Scholar
  23. 23.
    Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SPS (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13:5892CrossRefPubMedGoogle Scholar
  24. 24.
    Ouyang L, Luo Y, Tian M, Zhang S-Y, Lu R, Wang J-H, Kasimu R, Li X (2014) Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif 47:506CrossRefPubMedGoogle Scholar
  25. 25.
    Lucas DM, Still PC, Bueno Pérez L, Grever MR, Kinghorn AD (2010) Potential of plant-derived compounds in the treatment of leukemia and lymphoma. Curr Drug Targets 11:812PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Rossi F, Guéritte F, Fahy J (2012) The vinca alkaloids. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 177Google Scholar
  27. 27.
    Silverman JA, Dietcher SR (2013) Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 71:555CrossRefPubMedGoogle Scholar
  28. 28.
    Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST (2017) Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25CrossRefPubMedGoogle Scholar
  29. 29.
    Lee K-H, Xiao Z (2012) Podophyllotoxins and analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 95Google Scholar
  30. 30.
    Cragg GM, Newman DJ (2004) A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 67:232CrossRefPubMedGoogle Scholar
  31. 31.
    Rahier NJ, Thomas CJ, Hecht SM (2012) Camptothecin and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 5Google Scholar
  32. 32.
    Zhang H (2016) Onivyde for the therapy of multiple solid tumors. OncoTargets Ther 9:3001CrossRefGoogle Scholar
  33. 33.
    Kingston DGI (2012) Taxol and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 123Google Scholar
  34. 34.
    Schiff PB, Fant R, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665CrossRefPubMedGoogle Scholar
  35. 35.
    Galsky MD, Dritselis S, Kirkpatrick P, Oh WK (2010) Fresh from the pipeline. Cabazitaxel. Nat Rev Drug Discov 9:677CrossRefPubMedGoogle Scholar
  36. 36.
    Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennick WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging, and triggered release. Pharm Res 27:2569PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Cragg GM, Grothaus PG, Newman DJ (2014) New horizons for old drugs and drug leads. J Nat Prod 77:703CrossRefPubMedGoogle Scholar
  38. 38.
    Alvandi F, Kwitikowski VE, Ko C-W, Rothmann MD, Ricci S, Saber H, Ghosh D, Brown J, Pfeiler E, Chikhale E, Grillo J, Bullock J, Kane R, Kaminskas E, Farrell AT, Padzur R (2014) U.S. Food and Drug Administration approval summary: omacetaxine mepesuccinate as a treatment for chronic myeloid leukemia. The Oncologist 19:94CrossRefPubMedGoogle Scholar
  39. 39.
    Roshandler Y, Shen AQ, Cortes J, Khoury HJ (2016) Omacetaxine mepesuccinate for chronic myeloid leukemia. Exp Rev Hematol 9:419CrossRefGoogle Scholar
  40. 40.
    Powell RG, Weisleder D, Smith CR Jr, Rohwedder WK (1970) Structures of harringtonine, isoharringtonine, and harringtonine. Tetrahedron Lett 11:815CrossRefGoogle Scholar
  41. 41.
    Itokawa H, Hitotsuyanagi Y, Lee K-H (2012) Homoharringtonine and related compounds. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 65Google Scholar
  42. 42.
    Gandhi V, Plunkett W, Cortes JE (2014) Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin Cancer Res 20:1735PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith RM, Karim A, Gilmore CJ, Haltiwanger RC, Bryan RF (1972) Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc 94:1354CrossRefPubMedGoogle Scholar
  44. 44.
    Cassady JM, Chan KK, Floss HG, Leistner E (2004) Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull 52:1CrossRefPubMedGoogle Scholar
  45. 45.
    Yu T-W, Floss HG, Cragg GM, Newman DJ (2012) Ansamitocins (maytansinoids). In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 407Google Scholar
  46. 46.
    Kusari S, Lamshöft M, Kusari P, Gottfried S, Zühlke S, Louven K, Hentschel U, Kayser O, Spiteller M (2014) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577CrossRefPubMedGoogle Scholar
  47. 47.
    Leal M, Sapra P, Hurvitz SA, Senter P, Wahl A, Schutten M, Shah DK, Haddasih-Berthane N, Kabbarah O (2014) Antibody-drug conjugates: an emerging modality for the treatment of cancer. Ann NY Acad Sci 1321:41CrossRefPubMedGoogle Scholar
  48. 48.
    Amiri-Kordestan L, Blumenthal GM, Xu QC, Zhang L, Tang SW, Ha L, Weinberg WC, Chi B, Candau-Chacon R, Hughes P, Russell AM, Miksinski SP, Chen XH, McGuinn WD, Palmby T, Schrieber SJ, Liu Q, Wang J, Song P, Mehrotra N, Skarupa L, Clouse K, Al-Hakim A, Sridhara R, Ibrahim A, Justice R, Pazdur R, Cortazar P (2014) FDA approval: ado-tratuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res 20:4436CrossRefGoogle Scholar
  49. 49.
    Lebwohl M, Swanson N, Anderson LL, Melgaard A, Xu Z, Berman B (2012) Ingenol mebutate gel for actinic keratosis. N Engl J Med 366:1010CrossRefPubMedGoogle Scholar
  50. 50.
    Appendino G (2016) Ingenane diterpenoids. Prog Chem Org Nat Prod 102:1CrossRefPubMedGoogle Scholar
  51. 51.
    Huryn DM, Wipf P (2014) Natural product chemistry and cancer drug discovery. In: Neidle S (ed) Cancer drug design and discovery, 2nd edn. Elsevier, Atlanta, GA, p 91CrossRefGoogle Scholar
  52. 52.
    Verma RP, Hansch C (2009) Camptothecins: a SAR/QSAR study. Chem Rev 109:213CrossRefPubMedGoogle Scholar
  53. 53.
    Rowinsky EK (2005) Preclinical and clinical development of exatecan (DX-8951f): a hexacyclic camptothecin analog. In: Adams VR, Burke TG (eds) Camptothecins in cancer therapy (cancer drug discovery and development). Humana Press, Totowa, NJ, p 317CrossRefGoogle Scholar
  54. 54.
    Ajani JA, Takimoto C, Becerra CR, Silva A, Baez L, Cohn A, Major P, Kamida M, Feit K, De Jager R (2005) A phase II clinical and pharmacokinetic study of intravenous exatecan mesylate (DX-8951f) in patients with untreated metastatic gastric cancer. Invest New Drugs 23:479CrossRefPubMedGoogle Scholar
  55. 55.
    Abou-Alfa GK, Letourneau R, Harker G, Modiano M, Hurwitz H, Tchekmedyian NS, Feit K, Ackerman J, De Jager RL, Eckhardt SG, O’Reilly EM (2006) Randomized phase III study of exatecan and gemcitabine compared with gemcitabine alone in untreated advanced pancreatic cancer. J Clin Oncol 24:4441CrossRefPubMedGoogle Scholar
  56. 56.
    Takegawa N, Nonagase Y, Yonesaka K, Sakai K, Maenishi O, Ogitani Y, Tamura T, Nishio K, Nakagawa K, Tsurutani J (2017) DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer 141:1682CrossRefPubMedGoogle Scholar
  57. 57.
    Lerchen H-G, Baumgarten J, von dem Bruch K, Lehmann TE, Sperzel M, Kempka G, Fiebig H-H (2001) Design and optimization of 20-O-linked camptothecin glycoconjugates as anticancer agents. J Med Chem 44:4186CrossRefPubMedGoogle Scholar
  58. 58.
    Liu Y-Q, Li W-Q, Morris-Natschke SL, Qian K, Yang L, Zhu G-X, Wu X-B, Chen A-L, Zhang S-Y, Song Z-L, Lee K-H (2015) Perspectives on biologically active camptothecin derivatives. Med Res Rev 35:753PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Chen EX, Batist G, Siu LL, Bangash N, Maclean M, McIntosh L, Miller WH Jr, Oza AM, Lathia C, Petrenciuc O, Seymour L (2005) Phase I and pharmacokinetic study of BAY 38-3441, a camptothecin glycoconjugate, administered as a 30-minute infusion daily for five days every 3 weeks in patients with advanced solid malignancies. Invest New Drugs 23:455CrossRefPubMedGoogle Scholar
  60. 60.
    Xiang F, Yu J, Yin R, Ma Y, Yu L (2009) Structure-activity relationship of taxol inferring from docking taxol analogues to microtubule binding site. Z Naturforsch C: J Biosci 64:551CrossRefGoogle Scholar
  61. 61.
    Metzger-Filho O, Moulin C, de Azambuja E, Ahmad A (2009) Larotaxel: broadening the road with new taxanes. Expert Opin Invest Drugs 18:1183CrossRefGoogle Scholar
  62. 62.
    Sternberg CN, Skoneczna IA, Castellano D, Theodore C, Blais N, Voog E, Bellmunt J, Peters F, Le-Guennec S, Cerbone L, Risse M-L, Machiels J-P (2013) Larotaxel with cisplatin in the first-line treatment of locally advanced/metastatic urothelial tract or bladder cancer: a randomized, active-controlled, phase III trial (CILAB). Oncology 85:208CrossRefPubMedGoogle Scholar
  63. 63.
    Advani R, Fisher GA, Lum BL, Jambalos C, Cho CD, Cohen M, Gollerkeri A, Sikic BI (2003) Phase I and pharmacokinetic study of BMS-188797, a new taxane analog, administered on a weekly schedule in patients with advanced malignancies. Clin Cancer Res 9:5187PubMedGoogle Scholar
  64. 64.
    Fishman MN, Garrett CR, Simon GR, Chiappori AA, Lush RM, Dinwoodie WR, Mahany JJ, Dellaportas AM, Cantor A, Gollerki A, Cohen MB, Sullivan DM (2006) Phase I study of the taxane BMS-188797 in combination with carboplatin administered every 3 weeks in patients with solid malignancies. Clin Cancer Res 12:523CrossRefPubMedGoogle Scholar
  65. 65.
    Ren Y, Yu J, Kinghorn AD (2016) Development of anticancer agents from plant-derived sesquiterpene lactones. Curr Med Chem 23:2397PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Vander Griend DJ, Antony L, Dalrymple SL, Xu Y, Broegger Christensen S, Denmeade SR, Isaacs JT (2009) Amino acid containing thapsargin analogues deplete androgen receptor protein via synthesis inhibition and induce the death of prostate cancer cells. Mol Cancer Ther 8:1340PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Jansen FH, Adoubi I, Kouassi Comoe JC, de Cnodder T, Jansen N, Tschulakow A, Efferth T (2011) First study of oral Arteminol-R in advanced clinical cancer: clinical benefit, tolerability, and tumor markers. Anticancer Res 31:4417PubMedGoogle Scholar
  68. 68.
    Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N (2010) What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 15:668CrossRefPubMedGoogle Scholar
  69. 69.
    Fu L, Gribble GW (2013) Efficient and scalable synthesis of bardoxolone methyl (CDDO-methyl ester). Org Lett 15:1622CrossRefPubMedGoogle Scholar
  70. 70.
    Wang Y-Y, Yang Y-X, Zhe H, He Z-X, Zhou S-F (2014) Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Design Devel Ther 8:2075Google Scholar
  71. 71.
    Nagaraj S, Youn J-I, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, Sporn MB, Liby KT, Rawal B, Lee J-H, Gabrilovich DI (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16:1812PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Hong DS, Kurzrock R, Supko JG, He X, Naing A, Wheler J, Lawrence D, Eder JP, Meyer CJ, Ferguson DA, Mier J, Konopleva M, Konoplev S, Andreeff M, Kufe D, Lazarus H, Shapiro GI, Dezube BJ (2012) A Phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin Cancer Res 18:3396PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Ren Y, Lantvit DD, Carcache de Blanco EJ, Kardono LBS, Riswan S, Chai H-B, Cottrell CE, Farnsworth NR, Swanson SM, Ding Y, Li X-C, Marais JPJ, Ferreira D, Kinghorn AD (2010) Proteasome-inhibitory and cytotoxic constituents of Garcinia lateriflora: absolute configuration of caged xanthones. Tetrahedron 66:5311PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Ren Y, Yuan C, Chai H-B, Ding Y, Li X-C, Ferreira D, Kinghorn AD (2011) Absolute configuration of (–)-gambogic acid, an antitumor agent. J Nat Prod 74:460CrossRefPubMedGoogle Scholar
  75. 75.
    Zhou ZT, Wang JW (2007) Phase I human tolerability trial of gambogic acid. Chin J New Drugs 16:79Google Scholar
  76. 76.
    Zhang Y, Yang Z, Tan X, Tang X, Yang Z (2017) Development of a more efficient albumin-based delivery system for gambogic acid with low toxicity for lung cancer therapy. AAPS PharmSciTech 18:1987CrossRefPubMedGoogle Scholar
  77. 77.
    Pettit GR, Cragg GM, Herald DL, Schmidt JM, Lohavanijaya P (1982) Isolation and structure of combretastatin. Can J Chem 60:1374CrossRefGoogle Scholar
  78. 78.
    Pinney KG, Pettit GR, Trawick ML, Jelinek C, Chaplin DJ (2012) The discovery and development of the combretastatins. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 27Google Scholar
  79. 79.
    Arora S, Gonzalez AF, Solanki K (2013) Combretastatin A-4 and its analogs in cancer therapy. Int J Pharm Sci Rev Res 22:168Google Scholar
  80. 80.
    Zhai S, Senderowicz AM, Sausville EA, Figg WD (2002) Flavopiridol, a novel cyclin-dependent kinase inhibitor, in clinical development. Ann Pharmacother 36:905CrossRefPubMedGoogle Scholar
  81. 81.
    de Souza NJ (1993) Rohitukine and forskolin. Second-generation immunomodulatory, intraocular-pressure-lowering, and cardiotonic analogues. In: Kinghorn AD, Balandrin MF (eds) Human medicinal agents from plants. ACS symposium series 534. American Chemical Society Books, Washington, DC, p 331CrossRefGoogle Scholar
  82. 82.
    Stephens DM, Ruppert AS, Blum K, Jones J, Flynn JM, Johnson AJ, Ji J, Phelps MA, Grever MR, Byrd JC (2012) Flavopiridol treatment of patients aged 70 or older with refractory or relapsed chronic lymphocytic leukemia is a feasible and active therapeutic approach. Haematologica 97:423PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Convention on Biological Diversity. Text of the convention: Accessed 4 Dec 2017
  84. 84.
    Convention on Biological Diversity. Text of the Nagoya protocol: Accessed 4 Dec 2017
  85. 85.
    Cordell GA (2010) The Convention on Biological Diversity and its impact on natural product research. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. RSC Publishing, Cambridge, UK, p 81Google Scholar
  86. 86.
    Cragg GM, Katz F, Newman DJ, Rosenthal J (2012b) The impact of the United Nations Convention on Biological Diversity on natural products research. Nat Prod Rep 29:1407CrossRefPubMedGoogle Scholar
  87. 87.
    Cordell GA, Farnsworth NR, Beecher CWW, Soejarto DD, Kinghorn AD, Pezzuto JM, Wall ME, Wani MC, Brown DW, O’Neill MJ, Lewis JA, Tait RW, Harris TJR (1993) Novel strategies for the discovery of plant-derived anticancer agents. In: Kinghorn AD, Balandrin MF (eds) Human medicinal agents from plants. ACS symposium series 534. American Chemical Society Books, Washington, DC, p 191CrossRefGoogle Scholar
  88. 88.
    Cordell GA, Farnsworth NR, Beecher CWW, Soejarto DD, Kinghorn AD, Pezzuto JM, Wall ME, Wani MC, Cobb RR, O’Neill MJ, Lewis JA, Tait RW, Harris TJR (1994) Novel strategies for the discovery of plant-derived anticancer agents. In: Valeriote FA, Corbett TH, Baker LH (eds) Anticancer drug discovery and development: natural products and new molecular models. Kluwer Academic Publishers, Norwell, MA, p 63CrossRefGoogle Scholar
  89. 89.
    Kinghorn AD, Farnsworth NR, Beecher CWW, Soejarto DD, Cordell GA, Pezzuto JM, Wall ME, Wani MC, Brown DM, O’Neill MJ, Lewis JA, Besterman JM (1998) Novel strategies for the discovery of plant-derived anticancer agents. In: Atta-ur-Rahman, Choudhury MI (eds) New trends in natural products chemistry. Harwood Academic Publishers, Amsterdam, p 79Google Scholar
  90. 90.
    Kinghorn AD, Farnsworth NR, Soejarto DD, Cordell GA, Pezzuto JM, Udeani GO, Wani MC, Wall ME, Navarro HA, Kramer RA, Menendez AT, Fairchild CR, Lane KE, Forenza S, Vyas DM, Lam KS, Shu Y-Z (1999) Novel strategies for the discovery of plant-derived anticancer agents. Pure Appl Chem 71:1611CrossRefGoogle Scholar
  91. 91.
    Kinghorn AD, Farnsworth NR, Soejarto DD, Cordell GA, Swanson SM, Pezzuto JM, Wani MC, Wall ME, Oberlies NH, Kroll DJ, Kramer RA, Rose WC, Vite GD, Fairchild CR, Peterson RW, Wild R (2003) Novel strategies for the discovery of plant-derived anticancer agents. Pharm Biol 41(Suppl):53CrossRefGoogle Scholar
  92. 92.
    Kinghorn AD, Carcache-Blanco EJ, Chai H-B, Orjala J, Farnsworth NR, Soejarto DD, Oberlies NH, Wani MC, Kroll DJ, Pearce CJ, Swanson SM, Kramer RA, Rose WC, Fairchild CR, Vite GD, Emanuel S, Jarjoura D, Cope FO (2009) Discovery of anticancer agents of diverse natural origin. Pure Appl Chem 81:1051PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Orjala J, Oberlies NH, Pearce CJ, Swanson SM, Kinghorn AD (2012) Discovery of potential anticancer agents from aquatic cyanobacteria, filamentous fungi, and tropical plants. In: Tringali C (ed) Bioactive compounds from natural sources, Natural products as lead compounds in drug discovery, 2nd edn. Taylor & Francis, London, p 37Google Scholar
  94. 94.
    Bueno Pérez L, Still PC, Naman CB, Ren Y, Pan L, Chai H-B, Carcache de Blanco EJ, Ninh TN, Thanh BV, Swanson SM, Soejarto SM, Kinghorn AD (2014) Investigating Vietnamese plants for potential anticancer agents. Phytochem Rev 13:727CrossRefGoogle Scholar
  95. 95.
    Kinghorn AD, Carcache de Blanco EJ, Lucas DM, Rakotondraibe HL, Orjala J, Soejarto DD, Oberlies NH, Pearce CJ, Wani MC, Stockwell BR, Burdette JE, Swanson SM, Fuchs JR, Phelps MA, Xu L-H, Zhang X, Shen YY (2016) Discovery of anticancer agents of diverse natural origin. Anticancer Res 36:5623PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Soejarto DD, Tarzian-Sorensen J, Gyllenhaal C, Cordell GA, Farnsworth NR, Fong HHS, Kinghorn AD, Pezzuto JM (2002) The evolution of the University of Illinois policy of benefit-sharing in research on natural products. In: Stepp JR, Wyndham FS, Zarger RK (eds) Ethnobiology and and biocultural diversity: Proceedings of the 7th International Congress of Ethnobiology, October 23–27, 2000. University of Georgia Press, Athens, GA, p 21Google Scholar
  97. 97.
    Soejarto DD, Gyllenhaal C, Tarzian-Sorensen JA, Fong HHS, Xuan LT, Binh LT, Hiep NT, Hung NV, Vu BM, Bich TQ, Southavong B, Sydara K, Pezzuto JM (2004) Bioprospecting arrangement: experiences between the North and the South. In: Mahony R (ed) Handbook of best practices for management of intellectual property in health research and development. Centre for the Management of of Intellectual Property in Health Research and Development, Oxford, p 169Google Scholar
  98. 98.
    Fang L, Ito A, Chai H-B, Mi Q, Jones WP, Madulid DR, Oliveros M, Gao Q, Orjala J, Farnsworth NR, Soejarto DD, Cordell GA, Swanson SM, Pezzuto JM, Kinghorn AD (2006) Cytotoxic constituents from the stem bark of Dichapetatum gelonioides collected in the Philippines. J Nat Prod 69:332PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.
    Natural Products Alert: Accessed 4 Dec 2017
  100. 100.
    Henkin JM, Sydara K, Xayvue M, Souliya O, Kinghorn AD, Burdette JE, Chen W-L, Elkington B, Soejarto DD (2017) Revisiting the linkage between ethnomedical use and development of new medicines: a novel plant collection strategy towards the discovery of anticancer agents. J Med Plants Res 11:621CrossRefGoogle Scholar
  101. 101.
    Soejarto DD (1993) Logistics and politics in plant drug discovery: the other end of the spectrum. In: Kinghorn AD, Balandrin MF (eds) Human medicinal agents from plants. ACS symposium series 534. American Chemical Society Books, Washington, DC, p 96CrossRefGoogle Scholar
  102. 102.
    Soejarto DD (1996) Biodiversity prospecting and benefit-sharing: perspectives from the field. J Ethnopharmacol 51:1CrossRefPubMedGoogle Scholar
  103. 103.
    Vietnam Import and Export. Phytosanitary Certificate: Accessed 4 Dec 2017
  104. 104.
    Haslam E (1990) Plant polyphenols. Vegetable tannins revisited. Cambridge, UK, Cambridge University PressGoogle Scholar
  105. 105.
    Haslam E (1996) Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod 59:205CrossRefPubMedGoogle Scholar
  106. 106.
    Frampton JE (2013) Crofelemer: a review of its use in the management of non-infectious diarrhea in adult patients with HIV/AIDS on antiretroviral therapy. Drugs 73:1121CrossRefPubMedGoogle Scholar
  107. 107.
    Ding Y, Li XC, Ferreira D (2010) 4-Arylflavon-3-ols as proanthocyanidin models: absolute configuration via density functional calculation of electronic circular dichroism. J Nat Prod 73:435PubMedCentralCrossRefPubMedGoogle Scholar
  108. 108.
    Orabi MAA, Tanigichi S, Sakagami H, Yoshimura M, Yoshida T, Hatano T (2013) Hydrolyzable tannins of Tamaraceous plants. V. Structures of monomeric-trimeric tannins and cytotoxicity of macrocyclic-type tannins isolated from Tamarix nilotica. J Nat Prod 76:947CrossRefPubMedGoogle Scholar
  109. 109.
    Tan G, Pezzuto JM, Kinghorn AD, Hughes SH (1991) Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. J Nat Prod 54:143CrossRefPubMedGoogle Scholar
  110. 110.
    Wall ME, Wani MC, Brown DM, Fullas F, Oswald JB, Thornton NM, Pezzuto JM, Beecher CWW, Farnsworth NR, Cordell GA, Kinghorn AD (1996) Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytomedicine 3:281CrossRefPubMedGoogle Scholar
  111. 111.
    Wall ME, Taylor H, Ambrosio L, Davis K (1969) Plant antitumor agents. III. A convenient separation of tannins from other plant constituents. J Pharm Sci 58:839CrossRefPubMedGoogle Scholar
  112. 112.
    Jones WP, Kinghorn AD (2005) Extraction of plant secondary metabolites. In: Sarker SD, Latif A, Gray AI (eds) Methods of biotechnology, Natural products isolation, vol 20, 2nd edn. Humana Press, Totowa, NJ, p 323Google Scholar
  113. 113.
    Kupchan SM, Stevens KL, Rohlfing EA, Sickles BR, Sneden AT, Miller RW, Bryan RF (1978) New cytotoxic neolignans from Aniba megaphylla Mez. J Org Chem 43:586CrossRefGoogle Scholar
  114. 114.
    Seidel V (2005) Initial and bulk extraction. In: Sarker SD, Latif A, Gray AI (eds) Methods of biotechnology, Natural products isolation, vol 20, 2nd edn. Humana Press, Totowa, NJ, p 27Google Scholar
  115. 115.
    Nahar L, Sarkar SD (2005) Supercritical fluid extraction. In: Sarker SD, Latif A, Gray AI (eds) Methods of biotechnology, Natural products isolation, vol 20, 2nd edn. Humana Press, Totowa, NJ, p 47Google Scholar
  116. 116.
    Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815CrossRefPubMedGoogle Scholar
  117. 117.
    Turi CE, Finley J, Shipley PA, Murch SJ, Brown PN (2015) Metabolomics for phytochemical discovery: development of statistical approaches using a cranberry model system. J Nat Prod 78:953CrossRefPubMedGoogle Scholar
  118. 118.
    Clark A (2002) Natural products. In: Williams DA, Lemke TL (eds) Foye’s principles of medicinal chemistry, 5th edn. Lippincott Williams & Wilkins, Baltimore, MD, p 24Google Scholar
  119. 119.
    Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GE (1966) Plant anticancer agents. I. The isolation and structure elucidation of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888CrossRefGoogle Scholar
  120. 120.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant anticancer agents. VI. Isolation and structure elucidation of taxol, a novel antileukemic agent from Taxus brevifolia. J Am Chem Soc 93:2325CrossRefPubMedGoogle Scholar
  121. 121.
    Hartwell JL (1947) α-Peltatin, a new compound from Podophyllum peltatum. J Am Chem Soc 69:2918CrossRefPubMedGoogle Scholar
  122. 122.
    Pettit GR (1995) The scientific contribution of Jonathan L. Hartwell, Ph.D. J Nat Prod 58:359CrossRefGoogle Scholar
  123. 123.
    Messmer WM, Tin-Wa M, Fong HHS, Bevelle C, Farnsworth NR, Abraham DJ, Trojánek J (1972) Fagaronine, a new tumor inhibitor from Fagara zanthoxyloides Lam. (Rutaceae). J Pharm Sci 61:1858CrossRefPubMedGoogle Scholar
  124. 124.
    Cassady JM, Ojima N, Chang C-j, McLaughlin JL (1979) An investigation into the antitumor activity of Micromelium integerrimum (Rutaceae). J Nat Prod 42:274CrossRefPubMedGoogle Scholar
  125. 125.
    Lee KH, Imakura Y, Sumida Y, Ru R-Y, Hall IH, Huang H-C (1979) Antitumor agents. 33. Isolation and structure elucidation of bruceoside-A and -B, novel antileukemic quassinoid glucosides and brucein-D and -E from Brucea javanica. J Org Chem 44:2180CrossRefGoogle Scholar
  126. 126.
    Jolad SD, Hoffmann JJ, Schram KH, Cole JR, Tempesta MS, Kreik GR, Bates RB (1982) Uvaricin, a new antitumor agent from Uvaria acuminata (Annonaceae). J Org Chem 47:3151CrossRefGoogle Scholar
  127. 127.
    Kingston DGI, Hawkins DR, Ovington L (1982) New taxanes from Taxus brevifolia. J Nat Prod 45:466CrossRefPubMedGoogle Scholar
  128. 128.
    Badawi MM, Handa SS, Kinghorn AD, Cordell GA, Farnsworth NR (1983) Plant anticancer agents XXVII: Antileukemic and cytotoxic constituents of Dirca occidentalis (Thymelaeaceae). J Pharm Sci 72:1285CrossRefPubMedGoogle Scholar
  129. 129.
    Beutler JA, Kang MI, Robert F, Clement JA, Pelletier J, Colburn NH, McKee TC, Goncharova E, McMahon JB, Henrich CJ (2009) Quassinoid inhibition of AP-1 function does not correlate with cytotoxicity or protein synthesis inhibition. J Nat Prod 72:503PubMedCentralCrossRefPubMedGoogle Scholar
  130. 130.
    Litaudon M, Jolly C, Le Callonec C, Cuong DD, Retailleau P, Nosjean O, Nguyen VH, Pfeiffer B, Boutin JA, Guéritte F (2009) Cytotoxic pentacyclic triterpenoids from Combretum sundiacum and Lantana camara as inhibitors of Bcl-xL/BakBH3 domain peptide interaction. J Nat Prod 72:1314CrossRefPubMedGoogle Scholar
  131. 131.
    Peng J, Risinger AL, Fest GA, Jackson EM, Helms G, Polin LA, Mooberry SL (2011) Identification and biological activities of new taccalononide microtubule stabilizers. J Med Chem 54:6117PubMedCentralCrossRefPubMedGoogle Scholar
  132. 132.
    Gaudêncio SP, Pereira F (2015) Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 32:779CrossRefPubMedGoogle Scholar
  133. 133.
    Cordell GA, Beecher CWW, Kinghorn AD, Pezzuto JM, Constant HL, Chai H-B, Fang L, Seo E-K, Long L, Cui B, Slowing-Barillas K (1997) The dereplication of plant-derived natural products. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 19. Elsevier Scientific BV, Amsterdam, p 749Google Scholar
  134. 134.
    Konishi Y, Kiyota T, Draghici C, Gao J-M, Yebaoh G, Acoca S, Jurassophon S, Purisima E (2007) Molecular formula analysis by an MS/MS/MS technique to expedite dereplication of natural products. Anal Chem 79:1187CrossRefPubMedGoogle Scholar
  135. 135.
    Yang JY, Sanchez LM, Rath CM, Liu Z, Boudreau PD, Bruns N, Glukhov R, Wodtke A, de Felicio R, Fenner A, Wong WR, Linington RG, Zhang L, Debonsi HM, Gerwick WH, Dorrestein PC (2013) Molecular networking as a dereplication strategy. J Nat Prod 76:1686PubMedCentralCrossRefPubMedGoogle Scholar
  136. 136.
    Allard P-M, Péresse T, Bisson J, Gindro K, Marcourt L, Pham VC, Roussi F, Litaudon M, Wolfender J-L (2016) Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal Chem 88:3317CrossRefPubMedGoogle Scholar
  137. 137.
    Pauli GF, Chen S-N, Lankin DC, Bisson J, Case RJ, Chadwick LR, Gödecke T, Inui T, Krunic A, Jaki BU, McAlpine JB, Mo S, Napolitano JG, Orjala J, Lehtivarjo J, Korhonen S-P, Niemitz M (2014) Essential parameters for structural analysis and dereplication by 1H NMR spectroscopy. J Nat Prod 77:1473PubMedCentralCrossRefPubMedGoogle Scholar
  138. 138.
    Bakiri A, Hubert J, Reynaud R, Lanthony S, Harakat D, Renault J-H, Nuzillard J-M (2017) Computer-aided 13C NMR chemical profiling of crude natural extracts without fractionation. J Nat Prod 80:1387CrossRefPubMedGoogle Scholar
  139. 139.
    Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206CrossRefPubMedGoogle Scholar
  140. 140.
    Bugni TS, Harper MK, McCulloch MWB, Whitson EL (2010) Advances in instrumentation, automation, dereplication and prefractionation. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. RSC Publishing, Cambridge, UK, p 272Google Scholar
  141. 141.
    Budzikiewicz H (2015) Mass spectrometry in natural product structure elucidation. Prog Chem Org Nat Prod 100:77CrossRefPubMedGoogle Scholar
  142. 142.
    Reynolds WF, Mazzola EP (2015) Nuclear magnetic resonance in the structure elucidation of natural products. Prog Chem Org Nat Prod 100:223CrossRefPubMedGoogle Scholar
  143. 143.
    Robien W (2017) A critical examination of the quality of published 13C NMR data in natural product chemistry. Prog Chem Org Nat Prod 105:137CrossRefPubMedGoogle Scholar
  144. 144.
    Kong L-Y, Wang P (2013) Determination of the absolute configuration of natural products. Chin J Nat Med 11:193CrossRefPubMedGoogle Scholar
  145. 145.
    Li XC, Ferreira D, Ding Y (2010) Determination of absolute configuration of natural products: theoretical calculation of electronic circular dichroism as a tool. Curr Org Chem 14:1678PubMedCentralCrossRefPubMedGoogle Scholar
  146. 146.
    Joseph-Nathan P, Gordillo-Román B (2015) Vibrational circular dichroism absolute configuration determination of natural products. Prog Chem Org Nat Prod 100:311CrossRefPubMedGoogle Scholar
  147. 147.
    Su B-N, Chai H, Mi Q, Riswan S, Kardono LBS, Afriastini JJ, Santarsiero BD, Mesecar AD, Farnsworth NR, Cordell GA, Swanson SM, Kinghorn AD (2006) Activity-guided isolation of cytotoxic constituents from the bark of Aglaia crassinervia collected in Indonesia. Bioorg Med Chem 14:960CrossRefPubMedGoogle Scholar
  148. 148.
    Araya JJ, Kindscher K, Timmermann BN (2013) Cytotoxic cardiac glycosides and other compounds from Asclepias syriaca. J Nat Prod 75:400CrossRefGoogle Scholar
  149. 149.
    Xu YM, Bunting DP, Liu MX, Bandaranake HA, Gunatilaka AAL (2016) 17β-Hydroxy-18-acetoxywithanolides from aeroponially grown Physalis crassifolia and their potent and selective cytotoxicity for prostate cancer cells. J Nat Prod 79:821CrossRefPubMedGoogle Scholar
  150. 150.
    King ML, Chiang C-C, Ling H-C, Fujita E, Ochai M, McPhail AT (1982) X-Ray crystal structure of rocaglamide, a novel antileukemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. J Chem Soc Chem Commun:1150Google Scholar
  151. 151.
    Cavé A, Figadère B, Laurens A, Cortes D (1997) Acetogenins from Annonaceae. Prog Chem Org Nat Prod 70:81Google Scholar
  152. 152.
    Alali GQ, Liu X-X, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62:504CrossRefPubMedGoogle Scholar
  153. 153.
    Liaw C-C, Liou J-R, Wu T-Y, Chang F-R, Wu Y-C (2016) Acetogenins from Annonaceae. Prog Chem Org Nat Prod 101:113CrossRefPubMedGoogle Scholar
  154. 154.
    Ebada SS, Lajkiewicz N, Porco JA Jr, Li-Weber M, Proksch P (2011) Chemistry and biology of rocaglamides (= flavaglines) and related derivatives from Aglaia species (Meliaceae). Prog Chem Org Nat Prod 94:1PubMedCentralPubMedGoogle Scholar
  155. 155.
    Ribeiro N, Thuaud F, Nebigil C, Désaubry L (2012) Recent advances in the biology and chemistry of flavaglines. Bioorg Med Chem 20:1857CrossRefPubMedGoogle Scholar
  156. 156.
    Pan L, Woodard JL, Lucas DL, Fuchs JR, Kinghorn AD (2014) Rocaglamide, silvestrol, and stucturally related compounds from Aglaia species. Nat Prod Rep 31:924PubMedCentralCrossRefPubMedGoogle Scholar
  157. 157.
    Suffness M, Douros JD (1981) Current status of the NCI plant and animal program. J Nat Prod 45:1CrossRefGoogle Scholar
  158. 158.
    Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813CrossRefPubMedGoogle Scholar
  159. 159.
    Holbeck SL, Collins JM, Doroshow JH (2010) Analysis of Food and Drug Administration-approved agents in the NCI60 panel of human tumor cell lines. Mol Cancer Ther 9:1451PubMedCentralCrossRefPubMedGoogle Scholar
  160. 160.
    Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubenstein L, Plowman J, Boyd MR (1989) Display and analysis of patterns of differential activity in drugs. J Natl Cancer Inst 81:1088CrossRefPubMedGoogle Scholar
  161. 161.
    Zhou B-N, Hoch JM, Johnson RK, Mattern MR, Eng W-K, Ma J, Hecht SM, Newman DJ, Kingston DGI (2000) Use of COMPARE analysis to discover new natural product drugs: isolation of camptothecin and 9-methoxycamptothecin from a new source. J Nat Prod 63:1273CrossRefPubMedGoogle Scholar
  162. 162.
    Gunatilaka AAL, Samaranyake G, Kingston DGI, Hoftmann G, Johnson RK (1992) Bioactive ergost-5-ene-3β,7α-diol derivatives from Pseudobersema mossamicensis. J Nat Prod 55:1648CrossRefPubMedGoogle Scholar
  163. 163.
    Sugiyama H, Ehrenfeld GM, Shipley JB, Kilkuskie RE, Chang L-H, Hecht SM (1985) DNA strand scission by bleomycin group antibiotics. J Nat Prod 48:869CrossRefPubMedGoogle Scholar
  164. 164.
    Seo E-K, Huang L, Wall ME, Wani ME, Navarro H, Mukherjee R, Farnsworth NR, Kinghorn AD (1999) New biphenyl compounds with DNA strand-scission activity from Clusia paralicola. J Nat Prod 62:1484CrossRefPubMedGoogle Scholar
  165. 165.
    Sturm S, Gil RR, Chai H-B, Ngassapa OD, Santisuk T, Reutrakul V, Howe A, Moss M, Besterman JM, Yang S-L, Farthing JE, Tait RM, Lewis JA, O’Neill MJ, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (1995) Lupane derivatives from Lophopetalum wallichii with farnesyl protein transferase inhibitory activity. J Nat Prod 59:658CrossRefGoogle Scholar
  166. 166.
    Tan GT, Lee S-K, Lee I-S, Chen J, Leitner P, Besterman JM, Kinghorn AD, Pezzuto JM (1996) Natural-product inhibitors of human DNA ligase I. Biochem J 314:993PubMedCentralCrossRefPubMedGoogle Scholar
  167. 167.
    Su B-N, Hwang BY, Chai H, Carcache de Blanco EJ, Kardono LBS, Afriastini JJ, Riswan S, Wild R, Laing N, Farnsworth NR, Cordell GA, Swanson SM, Kinghorn AD (2004) Activity-guided fractionation of the leaves of Ormosia sumatrana using a proteasome inhibition assay. J Nat Prod 67:1911CrossRefPubMedGoogle Scholar
  168. 168.
    Pan L, Matthew S, Lantvit DD, Zhang X, Ninh TN, Chai H, Carcache de Blanco EJ, Soejarto DD, Swanson SM, Kinghorn AD (2011) Bioassay-guided isolation of constituents of Piper sarmentosum using a mitochondrial transmembrane potential assay. J Nat Prod 74:2193PubMedCentralCrossRefPubMedGoogle Scholar
  169. 169.
    Li J, Pan L, Deng Y, Muñoz-Acuña U, Yuan C, Lai H, Chai H-B, Chagwedera TE, Farnsworth NR, Carcache de Blanco EJ, Li C, Soejarto DD, Kinghorn AD (2013) Sphenostylins A-K, bioactive modified isoflavonoid constituents of the root bark of Sphenostylis marginata. J Org Chem 78:10166CrossRefPubMedGoogle Scholar
  170. 170.
    Yong Y, Pan L, Ren Y, Fatima N, Ahmed S, Chang LC, Zhang X, Kinghorn AD, Swanson SM, Carcache de Blanco EJ (2014) Assay development for the discovery of semaphorin 3B inducing agents from natural product sources. Fitoterapia 98:184PubMedCentralCrossRefPubMedGoogle Scholar
  171. 171.
    Ren Y, Yuan C, Deng W, Kanagasabai R, Ninh TN, Tu VT, Chai H-B, Soejarto DD, Fuchs JR, Yalowich JC, Yu J, Kinghorn AD (2015) Cytotoxic and natural killer cell stimulatory constituents of Phyllanthus songboiensis. Phytochemistry 111:132PubMedCentralCrossRefPubMedGoogle Scholar
  172. 172.
    Parker CN, Ottl J, Gabriel D, Zhang J-H (2010) Advances in biological screening for lead discovery. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. RSC Publishing, Cambridge, UK, p 245Google Scholar
  173. 173.
    Henrich CJ, Beutler JA (2013) Matching the power of high throughput screening to the chemical diversity of natural products. Nat Prod Rep 30:1284PubMedCentralCrossRefPubMedGoogle Scholar
  174. 174.
    Plowman J, Dykes DJ, Hollingshead M, Simpson-Herren L, Alley MC (1997) Human tumor xenograft models in NCI drug development. In: Teicher B (ed) Anticancer drug development guide: preclinical screening, clinical trials, and approval. Humana Press, Totowa, NJ, p 101CrossRefGoogle Scholar
  175. 175.
    Sausville EA, Burger AM (2006) Contributions of human tumor xenografts to anticancer drug development. Cancer Res 66:3351CrossRefPubMedGoogle Scholar
  176. 176.
    Casciari JJ, Hollingshead MD, Alley MC, Mayo JG, Malspeis L, Mayauchi S, Grever MR, Weinstein JN (1994) Growth and chemotherapeutic response of cells in in a hollow-fiber in vitro solid tumor cell model. J Natl Cancer Inst 86:1846CrossRefPubMedGoogle Scholar
  177. 177.
    Hollingshead MG, Alley MC, Carmalier RF, Abbott BJ, Mayo JG, Malspeis L, Grever MG (1995) In vivo cultivation of tumor cells in hollow fibers. Life Sci 57:131CrossRefPubMedGoogle Scholar
  178. 178.
    Mi Q, Pezzuto JM, Farnsworth NR, Wani MC, Kinghorn AD, Swanson SM (2009) Use of the in vivo hollow fiber assay in natural products drug discovery. J Nat Prod 72:573PubMedCentralCrossRefPubMedGoogle Scholar
  179. 179.
    Mi Q, Lantvit D, Reyes-Lim E, Chai H, Zhao W, Lee I-S, Peraza-Sánchez S, Ngassapa O, Kardono LBS, Riswan S, Hollingshead MG, Mayo JG, Farnsworth NR, Kinghorn AD, Pezzuto JM (2002) Evaluation of the potential cancer chemotherapeutic efficacy of natural product isolates employing in vivo hollow fiber tests. J Nat Prod 65:842CrossRefPubMedGoogle Scholar
  180. 180.
    Jones WP, Lobo-Echeverri T, Mi Q, Chai H, Lee D, Soejarto DD, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2005) Antitumour activity of 3-chlorodeoxylapachol, a naphthoquinone from Avicennia germinans collected from an experimental plot in southern Florida. J Pharm Pharmacol 57:1101CrossRefPubMedGoogle Scholar
  181. 181.
    Ren Y, Muñoz-Acuña U, Jiménez F, García R, Mejía M, Chai H, Gallucci JC, Farnsworth NR, Soejarto DD, Carcache de Blanco EJ, Kinghorn AD (2012) Cytotoxic and NF-κB inhibitory sesquiterpene lactones from Piptocoma rufescens. Tetrahedron 68:2671PubMedCentralCrossRefPubMedGoogle Scholar
  182. 182.
    Muñoz Acuña U, Shen Q, Ren Y, Lantvit DD, Wittwer JA, Kinghorn AD, Swanson SM, Carcache de Blanco EJ (2013) Goyazensolide induces apoptosis in cancer cells in vitro and in vivo. Int J Cancer Res 9:36CrossRefGoogle Scholar
  183. 183.
    Braca A, Armenise A, Morelli I, Mendez J, Mi Q, Chai H-B, Swanson SM, Kinghorn AD, De Tomassi N (2004) Structures of ent-kaurane-type diterpenes from Parinari sprucei and their potential anticancer activity. Planta Med 70:540CrossRefPubMedGoogle Scholar
  184. 184.
    Ren Y, Chen W-L, Lantvit DD, Sass EJ, Shriwas P, Ninh TN, Chai H-B, Zhang X, Soejarto DD, Chen X, Lucas DM, Swanson SM, Burdette JE, Kinghorn AD (2017) Cardiac glycoside constituents of Streblus asper with potential antineoplastic activity. J Nat Prod 80:659PubMedCentralCrossRefPubMedGoogle Scholar
  185. 185.
    Risinger AL, Li J, Du L, Benvides R, Robles AJ, Cichewicz RH, Kuhn JG, Mooberry SL (2017) Pharmacokinetic analysis and in vivo anticancer efficacy of taccalonolides AF and AJ. J Nat Prod 80:409PubMedCentralCrossRefPubMedGoogle Scholar
  186. 186.
    Ratnayake R, Covell D, Ransom TT, Gustafson KR, Beutler JB (2008) Englerin A, a selective inhibitor of renal cancer growth, from Phyllanthus engleri. Org Lett 11:57CrossRefGoogle Scholar
  187. 187.
    Wu Z, Zhao S, Fash DM, Li Z, Chain WJ, Beutler JB (2017) Englerins: a comprehensive review. J Nat Prod 80:771CrossRefPubMedGoogle Scholar
  188. 188.
    Yong Y, Matthew S, Wittwer J, Pan L, Shen Q, Kinghorn AD, Swanson SM, Carcache de Blanco EJ (2013) Dichamanetin inhibits cancer cell growth by affecting ROS-related signaling components through mitochondrial-related apoptosis. Anticancer Res 33:5349PubMedCentralPubMedGoogle Scholar
  189. 189.
    Hufford CD, Lasswell WL Jr (1978) Antimicrobial activities of constituents of Uvaria chamae. Lloydia 41:156PubMedGoogle Scholar
  190. 190.
    Urgaonkar S, La Pierre HS, Meir I, Lund H, RayChaudhuri D, Shaw JT (2005) Synthesis of antimicrobial natural products targeting FtsZ: (±)-dichamanetin and (±)-2‴-hydroxy-5″-benzylisourvarinol-B. Org Lett 7:5609PubMedCentralCrossRefPubMedGoogle Scholar
  191. 191.
    Jung JH, Pummangura S, Chaichantipyuth C, Patarapanich C, McLaughlin JL (1990) Bioactive constituents of Melodorum fruticosum. Phytochemistry 29:1667CrossRefGoogle Scholar
  192. 192.
    Kingston DGI (2009) Tubulin-interactive natural products as anticancer agents. J Nat Prod 72:507PubMedCentralCrossRefPubMedGoogle Scholar
  193. 193.
    Li J, Risinger AL, Mooberry SL (2014) Taccalonolide microtuble stabilizers. Bioorg Med Chem 22:5091PubMedCentralCrossRefPubMedGoogle Scholar
  194. 194.
    Chen Z-L, Wang B-D, Chen M-Q (1987) Steroidal bitter principles from Tacca plantaginea. Structures of taccalonolides A and B. Tetrahedron Lett 28:1673CrossRefGoogle Scholar
  195. 195.
    Tinley TL, Randall-Hlubek DA, Leal RM, Jackson EM, Cessac JW, Quada JC Jr, Hemsheidt TK, Mooberry SL (2003) Taccalonolides E and A: plant-derived steroids with microtubule-stabilizing activity. Cancer Res 63:3211PubMedGoogle Scholar
  196. 196.
    Shaffer CV, Cai S, Peng J, Robles AJ, Hartley RM, Powell DR, Du L, Cichewicz RH, Mooberry SL (2016) Texas native plants yield compounds with cytotoxic activities against prostate cancer cells. J Nat Prod 79:531PubMedCentralCrossRefPubMedGoogle Scholar
  197. 197.
    Hasinoff BB, Wu X, Krokhin OV, Ens W, Standing KG, Nitiss JL, Sivaram T, Giorgianni A, Yang S, Jiang Y, Yalowich JC (2005) Biochemical and proteomics approaches to characterize topoisomerase IIα cysteines and DNA as targets responsible for cisplatin-induced inhibition of topoisomerase IIα. Mol Pharmacol 67:937CrossRefPubMedGoogle Scholar
  198. 198.
    Wickramaratne DBM, Pengsuparp T, Mar W, Chai H-B, Chagwedera TE, Beecher CWW, Farnsworth NR, Kinghorn AD, Pezzuto JM, Cordell GA (1993) Novel antimitotic dibenzocyclo-octadiene lignan constituents of the stem bark of Steganotaenia araliacea. J Nat Prod 56:2083CrossRefPubMedGoogle Scholar
  199. 199.
    Salim AA, Su B-N, Chai H-B, Riswan S, Kardono LBS, Ruskandi A, Farnsworth NR, Swanson SM, Kinghorn AD (2007) Dioxodispiroketal compounds and a potential acyclic precursor from Amomum aculeatum. Tetrahedron Lett 48:1849PubMedCentralCrossRefPubMedGoogle Scholar
  200. 200.
    Chin Y-W, Salim AA, Su B-N, Mi Q, Chai H-B, Riswan S, Kardono LBS, Ruskandi A, Farnsworth NR, Swanson SM, Kinghorn AD (2008) Potential anticancer activity of naturally occurring and semi-synthetic derivatives of aculeatins A and B from Amomum aculeatum. J Nat Prod 71:390PubMedCentralCrossRefPubMedGoogle Scholar
  201. 201.
    Heilmann J, Mayr S, Brun R, Rali T, Sticher O (2000) Antiprotozoal activity and cytotoxicity of novel 1,7-dioxadispiro[]pentadeca-9,12-dien-11-one derivatives from Amomum aculeatum. Helv Chim Acta 83:2939CrossRefGoogle Scholar
  202. 202.
    Yadav JS, Thrimurtuli N, Venkatesh M, Prasad AR (2010) The stereoselective total synthesis of aculeatin A and B via Prins cyclization. Synthesis:431Google Scholar
  203. 203.
    Yao H, Song L, Tong R (2014) Total synthesis of aculeatin A via double intramolecular oxa-Michael addition of secondary/tertiary alcohols. J Org Chem 79:1498CrossRefPubMedGoogle Scholar
  204. 204.
    Zhang Z, Leng X, Yang S, Liang C, Huang S, Wang X (2017b) A novel total synthesis of aculeatin A via a stepwise approach. RSC Adv 7:9813CrossRefGoogle Scholar
  205. 205.
    Doan NTQ, Crestey F, Olsen CE, Christensen SB (2015) Chemo- and regioselective functionalization of nortrilobolide: application for semisynthesis of the natural product 2-acetoxytrilobolide. J Nat Prod 78:1406CrossRefPubMedGoogle Scholar
  206. 206.
    Xu S, Yao H, Hu M, Li D, Zhu Z, Xie W, Yao H, Wu L, Chen Z-S, Xu J (2017) 6,7-Seco-ent-kauranoids derived from oridonin as potential anticancer agents. J Nat Prod 80:2391CrossRefPubMedGoogle Scholar
  207. 207.
    Kodet JG, Beutler JA, Weimer DF (2014) Synthesis and structure activity relationships of schweinfurthin indoles. Bioorg Med Chem 22:2542PubMedCentralCrossRefPubMedGoogle Scholar
  208. 208.
    Dong Y, Shi Q, Pai H-C, Peng C-Y, Pan S-L, Teng C-M, Nakagawa-Goto K, Yu D, Liu Y-N, Wu P-C, Bastow KF, Morris-Natschke SL, Brossi A, Lang J-Y, Hsu JL, Hung M-C, Lee EY-HP, Lee K-H (2010) Antitumor agents. 272. Structure-activity relationships and in vivo selective anti-breast cancer activity of novel neo-tanshinlactone analogues. J Med Chem 53:2299PubMedCentralCrossRefPubMedGoogle Scholar
  209. 209.
    Wei L, Shi Q, Bastow KF, Brossi A, Morris-Natschke SL, Nakagawa-Goto K, Wu T-S, Pan S-L, Teng C-M, Lee K-H (2007) Antitumor agents. 253. Design synthesis, and antitumor evaluation of novel 9-substituted phenanthrene-based tylophorine derivatives as potential anticancer agents. J Med Chem 50:3674CrossRefPubMedGoogle Scholar
  210. 210.
    DeBono A, Capuano B, Scammels PJ (2015) Progress toward the development of noscapine and derivatives as anticancer agents. J Med Chem 58:5699CrossRefPubMedGoogle Scholar
  211. 211.
    Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 24:90CrossRefPubMedGoogle Scholar
  212. 212.
    Zhang D-M, Xu H-G, Wang L, Li Y-J, Sun P-H, Wu X-M, Wang G-J, Chen W-M, Ye W-C (2015) Betulinic acid and its derivatives as potential antitumor agents. Med Res Rev 35:1127CrossRefPubMedGoogle Scholar
  213. 213.
    Kawaguti R, Kim KW (1940) Constituents of the seeds of Zizyphus vulgaris Lamark var. spinosus Bunge. Yakagaku Zasshi 60:343CrossRefGoogle Scholar
  214. 214.
    Bruckner G Jr, Kovacs J, Koczka I (1948) Occurrence of betulinic acid in the bark of the plane tree. J Chem Soc:948Google Scholar
  215. 215.
    Pisha E, Chai H, Lee I-S, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CWW, Fong HHS, Kinghorn AD, Brown DM, Wani MC, Wall ME, Heijken TJ, Das Gupta TK, Pezzuto JM (1995) Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1:1046CrossRefPubMedGoogle Scholar
  216. 216.
    Udeani GO, Zhao G-M, Shin YG, Cooke BR, Graham J, Beecher CWW, Kinghorn AD, Pezzuto JM (1999) Pharmacokinetics and tissue distribution of betulinic acid in CD-1 mice. Biopharm Drug Disposit 20:379CrossRefGoogle Scholar
  217. 217.
    Hayek EWH, Jordis Y, Moche W, Sauter F (1989) A bicentennial of betulin. Phytochemistry 28:2229CrossRefGoogle Scholar
  218. 218.
    O’Connell MM, Bentley MD, Campbell CS, Cole BJW (1988) Betulin and lupeol in bark from four white-barked birches. Phytochemistry 27:2175CrossRefGoogle Scholar
  219. 219.
    Kim DSHL, Chen Z, Nguyen VT, Pezzuto JM, Qiu S, Lu Z-Z (1997) A concise synthetic approach to betulinic acid from betulin. Synth Commun 27:1607CrossRefGoogle Scholar
  220. 220.
    Kim DSHL, Pezzuto JM, Pisha E (1998) Synthesis of betulinic acid derivatives with activity against human melanoma. Bioorg Med Chem Lett 8:1707CrossRefPubMedGoogle Scholar
  221. 221.
    Schmidt ML, Kuzmanoff KL, Ling-Indeck L, Pezzuto JM (1997) Betulinic acid induces apoptosis in human neuroblastoma cell lines. Eur J Cancer 33:2007CrossRefPubMedGoogle Scholar
  222. 222.
    Fulda S, Jeremias I, Steiner HH, Pietsch T, Debatin K-M (1999) Betulinic acid: a new cytotoxic agent against malignant brain-tumor cells. Int J Cancer 82:435CrossRefPubMedGoogle Scholar
  223. 223.
    Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C, Formelli F (2002) Selective cytotoxicity of betulinic acid on tumor cell lines but not on normal cells. Cancer Lett 175:17CrossRefPubMedGoogle Scholar
  224. 224.
    Fulda S, Kroemer G (2009) Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today 14:885CrossRefPubMedGoogle Scholar
  225. 225.
    Ali-Seyed M, Jantan I, Viyjayaraghavan K, Bukhari SNA (2016) Betulinic acid: recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem Biol Drug Des 87:517CrossRefPubMedGoogle Scholar
  226. 226.
    Mehta RR, Bratescu L, Graves JM, Shilkaitis A, Green A, Mehta RG, Das Gupta TK (2002) In vitro transformation of human congenital naevus to malignant melanoma. Melanoma Res 12:27CrossRefPubMedGoogle Scholar
  227. 227.
    Salti GI, Kichina JV, Das Gupta TK, Uddin S, Bratescu L, Pezzuto JM, Mehta RG, Constantinou AI (2001) Betulinic acid reduces ultraviolet-C-induced DNA breakage in congenital naeval cells: evidence for a potential role as a chemopreventive agent. Melanoma Res 11:99CrossRefPubMedGoogle Scholar
  228. 228.
    Takimoto CH (2003) Anticancer drug development at the US National Cancer Institute. Cancer Chemother Pharmacol 52(Suppl 1):S29CrossRefPubMedGoogle Scholar
  229. 229.
    Das Gupta TK (2004) Private communication to A.D. Kinghorn, March 30Google Scholar
  230. 230.
    Clinical Evaluation of 20% betulinic acid ointment for treatment of dysplastic nevi (moderate to severe dysplasia). Accessed 4 Dec 2017
  231. 231.
    Rastogi S, Pandey MM, Rawat AKS (2015) Medicinal plants of the genus Betula – traditional uses and a phytochemical-pharmacological review. J Ethnopharmacol 159:62CrossRefPubMedGoogle Scholar
  232. 232.
    Pettit GR, Melody N, Hempenstall F, Chapuis J-C, Groy TL, Williams L (2014) Antineoplastic agents. 595. Structural modifications of betulin and the X-ray crystal structure of an unusual betulin amine dimer. J Nat Prod 77:863PubMedCentralCrossRefPubMedGoogle Scholar
  233. 233.
    Pal A, Ganguly A, Chowduri S, Yousuf M, Ghosh A, Barui AK, Kotcherlokota R, Adhikari S, Banerjee R (2015) bis-Arylidine oxindole-betulinic acid conjugate: a fluorescent cancer cell detector with a potent anticancer activity. ACS Med Chem Lett 6:612PubMedCentralCrossRefPubMedGoogle Scholar
  234. 234.
    Ye Y, Zhang T, Yuan H, Li D, Lou H, Fan P (2017) Mitochondria-targeted lupane triterpenoid derivatives and their selected apoptosis-inducing anticancer mechanisms. J Med Chem 60:6353CrossRefPubMedGoogle Scholar
  235. 235.
    Tsepaeva OV, Nemtarev AV, Abdullin TI, Grigor’eva LR, Kuznetsova EV, Akhmadishina RA, Ziganshina LE, Cong HH, Mironov VF (2017) Design, synthesis, and cancer cell growth inhibitory activity of triphenylphosphonium derivatives of the triterpenoid betulin. J Nat Prod 80:2232CrossRefPubMedGoogle Scholar
  236. 236.
    Seneja A, Sharma L, Dubey RD, Mintoo MJ, Singh A, Kumar A, Sangwan PL, Tasaduq SA, Singh G, Monghe DM, Gupta PN (2017) Synthesis, characterization and augmented anticancer potential of PEG-betulinic acid conjugate. Mat Sci Eng C 73:616CrossRefGoogle Scholar
  237. 237.
    Silva GL, Cui B, Chávez D, You M, Chai H-B, Rasoanaivo P, Lynn SM, O’Neill MJ, Lewis JA, Besterman JM, Monks A, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (2001) Modulation of the multidrug-resistance phenotype by new tropane alkaloid aromatic esters from Erythroxylum pervillei. J Nat Prod 64:1514CrossRefPubMedGoogle Scholar
  238. 238.
    Chávez D, Cui B, Chai H-B, García R, Mejía M, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (2002) Reversal of multidrug resistance by tropane alkaloids from the stems of Erythroxylum rotundifolium. J Nat Prod 65:606CrossRefPubMedGoogle Scholar
  239. 239.
    Mi Q, Cui B, Silva GL, Lantvit D, Lim E, Chai H, You M, Hollingshead MG, Mayo JG, Kinghorn AD, Pezzuto JM (2001) Pervilleine A, a novel tropane alkaloid that reverses the multidrug resistance phenotype. Cancer Res 61:4030PubMedGoogle Scholar
  240. 240.
    Mi Q, Cui B, Chávez D, Chai H, Zhu H, Cordell GA, Hedayat S, Kinghorn AD, Pezzuto JM (2002) Characterization of tropane alkaloid aromatic esters that reverse the multidrug resistance phenotype. Anticancer Res 22:1385PubMedGoogle Scholar
  241. 241.
    Mi Q, Cui B, Silva GL, Lantvit D, Lim E, Chai H, Hollingshead MG, Mayo JG, Kinghorn AD, Pezzuto JM (2002) Pervilleines B and C, new tropane alkaloid aromatic esters that reverse the multidrug resistance in the hollow fiber assay. Cancer Lett 184:13CrossRefPubMedGoogle Scholar
  242. 242.
    Mi Q, Cui B, Lantvit D, Reyes-Lim E, Chai H, Pezzuto JM, Kinghorn AD, Swanson SM (2003) Pervilleine F, a new tropane alkaloid aromatic ester that reverses multidrug-resistance. Anticancer Res 23:3607PubMedGoogle Scholar
  243. 243.
    Chin Y-W, Kinghorn AD, Patil PN (2007) Evaluation of the cholinergic and adrenergic effects of two tropane alkaloids from Erythroxylum pervillei. Phytother Res 21:1002PubMedCentralCrossRefPubMedGoogle Scholar
  244. 244.
    Chin Y-W, Jones WP, Waybright TJ, McCloud TG, Rasoanaivo P, Cragg GM, Cassady JM, Kinghorn AD (2006) Tropane aromatic ester alkaloids from a large scale re-collection of Erythroxylum pervillei obtained in Madagascar. J Nat Prod 69:414PubMedCentralCrossRefPubMedGoogle Scholar
  245. 245.
    Kulkarni K, Zhao A, Purcell AW, Perlmutter P (2008) The enantiomeric total synthesis and unambiguous proof of the absolute stereochemistry of perveilline C. Synlett:2209Google Scholar
  246. 246.
    Huang S-Y, Chang Z, Tuo S-C, Gao L-H, Wang A-E, Huang P-Q (2013) Versatile construction of functionalized tropane ring systems based on lactam activation: enantioselective synthesis of (+)-pervilleine B. Chem Commun 49:7088CrossRefGoogle Scholar
  247. 247.
    Teodori E, Dei S, Garnier-Suillerot A, Gualtieri F, Manetti D, Martelli C, Romanelli MN, Scapecchi S, Sudwan P, Salerno M (2005) Exploratory chemistry toward the identification of a new class of multidrug resistance reverters inspired by pervilleine and verapamil models. J Med Chem 48:7426CrossRefPubMedGoogle Scholar
  248. 248.
    Schnabel C, Stertz K, Müller H, Rehbein J, Wiese M, Hiersemann M (2011) Total synthesis of natural and non-natural Δ5,6 Δ12,13-jatrophane diterpenes and their evaluation as MDR modulators. J Org Chem 76:512CrossRefPubMedGoogle Scholar
  249. 249.
    Jiao W, Wan Z, Chen S, Lu R, Chen X, Fang D, Wang J, Pu S, Huang X, Gao H, Shao H (2015) Lathyrol diterpenes as modulators of P-glycoprotein dependent multidrug resistance: structure-activity relationship studies on Euphorbia factor L3 derivatives. J Med Chem 58:3720CrossRefPubMedGoogle Scholar
  250. 250.
    Versiani MA, Diyabalange T, Ratnayake R, Heinrich CJ, Bates SE, McMahon JB, Gustafson KR (2011) Flavonoids from eight tropical plant species that inhibit the multidrug resistance transporter ABCG2. J Nat Prod 74:262PubMedCentralCrossRefPubMedGoogle Scholar
  251. 251.
    Cruz-Morales S, Casteñeda-Gómez J, Figueroa-González G, Mendoza-García AD, Lorence A, Pereda-Miranda R (2012) Mammalian multidrug resistance lipopentasaccharide inhibitors from Ipomoea alba seeds. J Nat Prod 75:1603CrossRefPubMedGoogle Scholar
  252. 252.
    Webster GL (2002) A synopsis of the Brazilian taxa of Phyllanthus section Phyllanthus (Euphorbiaceae). Lundellia 5:1Google Scholar
  253. 253.
    Wu S-J, Wu T-S (2006) Cytotoxic arylnaphthalene lignans from Phyllanthus oligospermus. Chem Pharm Bull 54:1223CrossRefPubMedGoogle Scholar
  254. 254.
    Ren Y, Lantvit DD, Deng Y, Kanagasabai R, Gallucci JC, Ninh TN, Chai H-B, Soejarto DD, Fuchs JR, Yalowich JC, Yu J, Swanson SM, Kinghorn AD (2014) Potent cytotoxic arylnaphthalene lignan lactones from Phyllanthus poilanei. J Nat Prod 77:1494PubMedCentralCrossRefPubMedGoogle Scholar
  255. 255.
    Day S-H, Chiu N-Y, Won S-J, Lin C-N (1999) Cytotoxic lignans of Justicia ciliata. J Nat Prod 62:1056CrossRefPubMedGoogle Scholar
  256. 256.
    Susplagas S, Hung NV, Bignon J, Thoison O, Kurczynski A, Sévenet T, Guéritte F (2005) Cytotoxic arylnaphthalene lignans from a Vietnamese Acanthaceae, Justicia patentiflora. J Nat Prod 68:734CrossRefGoogle Scholar
  257. 257.
    Vasilev N, Elfahmi, Bos R, Kayser O, Momekov G, Konstantinov S, Ionkova I (2006) Production of justicidin B, a cytotoxic arylnaphthalene lignan from genetically transformed root cultures of Linum leonii. J Nat Prod 69:1014Google Scholar
  258. 258.
    Tuchinda P, Kumkao A, Pohmakotr M, Sophasan S, Santisuk T, Reutrakul V (2006) Cytotoxic arylnaphthalide lignan glycosides from the aerial parts of Phyllanthus taxodiifolius. Planta Med 72:60CrossRefPubMedGoogle Scholar
  259. 259.
    Tuchinda P, Kornsakulkarn J, Pohmakotr M, Kongsaeree P, Prabpai S, Yoosook C, Kasasit J, Napaswad C, Sophasan S, Reutrakul V (2008) Dichapetalin-type triterpenoids and lignans from the aerial parts of Phyllanthus acutissima. J Nat Prod 71:655CrossRefPubMedGoogle Scholar
  260. 260.
    Gui M, Shi D-K, Huang M, Zhao Y, Sun Q-M, Zhang J, Chen Q, Feng J-M, Liu C-H, Li M, Li Y-X, Geng MY, Ding J (2011) D11, a novel glycosylated derivative, exhibits anticancer activity by targeting topoisomerase IIα. Invest New Drugs 29:800CrossRefPubMedGoogle Scholar
  261. 261.
    Zhao Y, Ni C, Zhang Y, Zhu L (2012) Synthesis and bioevaluation of diphyllin glycosides as novel anticancer agents. Arch Pharm Chem Life Sci 345:622CrossRefGoogle Scholar
  262. 262.
    Deng Y, Chu J, Ren Y, Fan Z, Ji X, Mundy-Bosse B, Yuan S, Hughes T, Zhang J, Cheema B, Camardo AT, Xia Y, Wu L-C, Wang L-S, He X, Kinghorn AD, Li X, Caligiuri MA, Yu J (2014) The natural product phyllanthusmin C selectively enhances IFN-gamma production by human natural killer cells through upregulation of TLC-mediated NF-κB signaling. J Immunol 193:2994PubMedCentralCrossRefPubMedGoogle Scholar
  263. 263.
    Woodard JL, Huntsman AC, Patel PA, Chai H-B, Kanagasabai R, Karmahapatra S, Young AN, Ren Y, Yalowich JC, Kinghorn AD, Burdette JE, Fuchs JR (2018) Synthesis and cytotoxic activity of derivatives of the phyllanthusmin class of arylnaphthalene lignan lactones. Bioorg Med Chem 26:2354CrossRefPubMedGoogle Scholar
  264. 264.
    Fuchs JR, Kinghorn AD, Huntsman AC (2017) Preparation of arylnaphthalene ligand glycosides as antitumor agents. PCT Pat Appl WO2017476624 A1, August 31Google Scholar
  265. 265.
    Charlton JL, Oleshuck CJ, Chee G-L (1996) Hindered rotation in arylnaphthalene lignans. J Org Chem 61:3452CrossRefGoogle Scholar
  266. 266.
    Sorensen MG, Henriksen J, Neutzsky-Wulff AV, Dziegiel MH, Karsdal MA (2007) Diphyllin, a novel and naturally potent V-ATP-ase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J Bone Min Res 22:1640CrossRefGoogle Scholar
  267. 267.
    Zhao Y, Zhang R, Lu Y, Ma J, Zhu L (2015) Synthesis and bioevaluation of heterocyclic derivatives of cleistanthin-A. Bioorg Med Chem 23:4884CrossRefPubMedGoogle Scholar
  268. 268.
    Young AN, Herrera D, Huntsman AC, Korkmaz MA, Lantvit DD, Mazumdar S, Kolli S, Coss C, King S, Wang H, Swanson SM, Kinghorn AD, Zhang X, Phelps MA, Aldrich LN, Fuchs JR, Burdette JE (2018) Phyllanthusmin derivatives induce apoptosis and reduce tumor burden in high grade serous ovarian cancer by late-stage authophagy inhibition. Mol Cancer Ther 17:in pressGoogle Scholar
  269. 269.
    Hwang BY, Su B-N, Chai H, Mi Q, Kardono LBS, Afriastini JJ, Riswan S, Santarsiero BD, Mesecar AD, Wild R, Fairchild CR, Vite GD, Rose WC, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. J Org Chem 69:3350CrossRefPubMedGoogle Scholar
  270. 270.
    Pannell CM (1992) A taxonomic monograph of the genus Aglaia Lour. (Meliaceae), Kew Bulletin Additional Series XVI. HMSO, Richmond, Surrey, UKGoogle Scholar
  271. 271.
    Cui B, Chai H, Santisuk T, Reutrakul V, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (1997) Novel cytotoxic 1H-cyclopenta[b]benzofuran lignans from Aglaia elliptica. Tetrahedron 53:17625CrossRefGoogle Scholar
  272. 272.
    Lee SK, Cui B, Mehta RR, Kinghorn AD, Pezzuto JM (1998) Cytostatic mechanism and antitumor potential of novel 1H-cyclopenta[b]benzofuran lignans isolated from Aglaia elliptica. Chem-Biol Interact 115:215CrossRefPubMedGoogle Scholar
  273. 273.
    Rivero-Cruz JF, Chai H-B, Kardono LBS, Setyowati FM, Afriastini JJ, Riswan S, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Cytotoxic constituents of the twigs of Aglaia rubiginosa. J Nat Prod 67:343CrossRefPubMedGoogle Scholar
  274. 274.
    Kim S, Chin Y-W, Su B-N, Riswan S, Kardono LBS, Afriastini JJ, Chai H, Farnsworth NR, Cordell GA, Swanson SM, Kinghorn AD (2006) Cytotoxic flavaglines and bisamides from Aglaia edulis. J Nat Prod 69:1769PubMedCentralCrossRefPubMedGoogle Scholar
  275. 275.
    Pan L, Muñoz Acuña U, Li J, Jena N, Ninh TN, Pannell CM, Chai H, Fuchs JR, Carcache de Blanco EJ, Soejarto DD, Kinghorn AD (2013) Bioactive flavaglines and other constituents isolated from Aglaia perviridis. J Nat Prod 76:394PubMedCentralCrossRefPubMedGoogle Scholar
  276. 276.
    Mi Q, Su B-N, Chai H, Cordell GA, Farnsworth NR, Kinghorn AD, Swanson SM (2006) Rocaglaol induces apoptosis and cell-cycle arrest in LNCaP cells. Anticancer Res 26:947PubMedGoogle Scholar
  277. 277.
    Kim S, Salim AA, Swanson SM, Kinghorn AD (2006) Potential of cyclopenta[b]benzofurans from Aglaia species in cancer chemotherapy. Anticancer Agents Med Chem 6:319CrossRefPubMedGoogle Scholar
  278. 278.
    Hwang BY, Su B-N, Chai H, Mi Q, Kardono LBS, Afriastini JJ, Riswan S, Santarsiero BD, Mesecar AD, Fairchild CR, Wild R, Vite GD, Rose WC, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. J Org Chem 69:6156CrossRefGoogle Scholar
  279. 279.
    Salim AA, Chai H-B, Rachman I, Riswan S, Kardono LBS, Farnsworth NR, Carcache-Blanco EJ, Kinghorn AD (2007) Constituents of the leaves and stem bark of Aglaia foveolata. Tetrahedron 63:7926PubMedCentralCrossRefPubMedGoogle Scholar
  280. 280.
    Pan L, Kardono LBS, Riswan S, Chai H, Carcache de Blanco EJ, Pannell CM, Soejarto DD, McCloud TG, Newman DJ, Kinghorn AD (2010) Isolation and characterization of minor analogues of silvestrol and other constituents from a large-scale recollection of Aglaia foveolata. J Nat Prod 73:1873PubMedCentralCrossRefPubMedGoogle Scholar
  281. 281.
    Meurer-Grimes BM, Yu J, Vairo GL (2004) Therapeutic compounds and methods. US Patent 6710075 B2Google Scholar
  282. 282.
    Othman N, Pan L, Mejin M, Voong JCL, Chai H, Pannell CM, Kinghorn AD, Yeo TC (2016) Cyclopenta[b]benzofuran and secodammarane derivatives from the stems of Aglaia stellatopilosa. J Nat Prod 79:784PubMedCentralCrossRefPubMedGoogle Scholar
  283. 283.
    An F-L, Wang X-B, Wang H, Li Z-R, Yang M-H, Luo J, Kong L-Y (2016) Cytotoxic rocaglate derivatives from leaves of Aglaia perviridis. Sci Rep 6:20045PubMedCentralCrossRefPubMedGoogle Scholar
  284. 284.
    Gerard B, Cencic R, Pelletier J, Porco JA Jr (2007) Enantioselective synthesis of the complex rocaglate (–)-silvestrol. Angew Chem Int Ed 46:7831CrossRefGoogle Scholar
  285. 285.
    El Sous M, Khoo ML, Holloway G, Owen D, Scammells PJ, Rizzacasa MA (2007) Total synthesis of (–)-episilvestrol and (–)-silvestrol. Angew Chem Int Ed 46:7835CrossRefGoogle Scholar
  286. 286.
    Adams TE, El Sous M, Hawkins BC, Hirner S, Holloway G, Khoo ML, Owen DL, Savage GP, Scammells PJ, Rizzacasa MA (2009) Total synthesis of the potent anticancer Aglaia metabolites (–)-silvestrol and (–)-episilvestrol and the active analogue (–)-4′-desmethoxyepisilvestrol. J Am Chem Soc 131:1607CrossRefPubMedGoogle Scholar
  287. 287.
    Chambers JM, Huang DCS, Lindqvist LM, Savage GP, White JM, Rizzacasa MA (2012) Total synthesis of 2‴,5‴-diepisilvestrol and its C1‴epimer: key stucture activity relationships at C1‴ and C2″. J Nat Prod 75:1500CrossRefPubMedGoogle Scholar
  288. 288.
    Liu T, Nair SJ, Lescarbeau A, Belani J, Peluso S, Conley J, Tillotson B, O’Hearn P, Smith S, Slocum K, West K, Helble J, Douglas M, Bahadoor A, Ali J, McGovern K, Fritz C, Palombella VJ, Wylie A, Castro AC, Tremblay MR (2012) Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors. J Med Chem 55:8859CrossRefPubMedGoogle Scholar
  289. 289.
    Mi Q, Kim S, Hwang BY, Su B-N, Chai H, Arbieva ZH, Kinghorn AD, Swanson SM (2006) Silvestrol regulates G2/M checkpoint genes independent of p53 activity. Anticancer Res 26:3349PubMedGoogle Scholar
  290. 290.
    Kim S, Hwang BY, Su B-N, Chai H, Mi Q, Kinghorn AD, Wild R, Swanson SM (2007) Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosomal pathway without activation of executioner caspase-3 or -7. Anticancer Res 27:2175PubMedCentralPubMedGoogle Scholar
  291. 291.
    Chen W-L, Pan L, Kinghorn AD, Swanson SM, Burdette JE (2016) Silvestrol induces autophagy and apoptosis in human melanoma cells. BMC Cancer 16(1):17PubMedCentralCrossRefPubMedGoogle Scholar
  292. 292.
    Lucas DM, Edwards RB, Lozanski G, West DA, Shin JD, Vargo MA, Davis ME, Rozewski DM, Johnson AJ, Su B-N, Goettl WM, Heerema NA, Lin TS, Lehman A, Zhang X, Jarjoura D, Newman JM, Byrd JC, Kinghorn AD, Grever MR (2009) The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. Blood 113:4656PubMedCentralCrossRefPubMedGoogle Scholar
  293. 293.
    Bordeleau M-E, Robert F, Gerard B, Lindqvist L, Chen SMH, Wendel H-G, Brem B, Greger H, Lowe SW, Porco JA Jr, Pelletier J (2008) Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 118:2651PubMedCentralPubMedGoogle Scholar
  294. 294.
    Cencic R, Carrier M, Galicia-Vázquez G, Bordeleau M-E, Sukarieh R, Bourdeau A, Brem B, Teodoro JG, Greger H, Tremblay ML, Porco JA Jr, Pelletier J (2009) Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS One 4(4):e5223PubMedCentralCrossRefPubMedGoogle Scholar
  295. 295.
    Chambers JM, Lindqvist LM, Webb A, Huang DCS, Savage GP, Rizzacasa MA (2013) Synthesis of biotinylated episilvestrol: highly selective targeting of the translation factors eIF4AI/II. Org Lett 15:1406CrossRefPubMedGoogle Scholar
  296. 296.
    Cencic R, Camer M, Trnkus A, Porco JA Jr, Minden MN, Pelletier J (2010) Synergistic effect of inhibiting translation initiation in combination with cytotoxic agents in acute melogenous leukemia. Leuk Res 34:535CrossRefPubMedGoogle Scholar
  297. 297.
    Chu J, Cencic R, Wang W, Porco JA Jr, Pelletier J (2016) Translation inhibition by rocaglates is independent of eIF4E phosphorylation status. Mol Cancer Ther 15:136CrossRefPubMedGoogle Scholar
  298. 298.
    Gupta SV, Sass EJ, Davis ME, Edwards RE, Lozanski G, Heerema NA, Lehman A, Zhang X, Jarjoura D, Byrd JC, Kinghorn AD, Phelps MA, Grever MR, Lucas DM (2011) Resistance to the translation inhibitor silvestrol is mediated by ABCB1/P-glycoprotein overexpression in acute lymphoblastic leukemia cells. AAPS J 13:357PubMedCentralCrossRefPubMedGoogle Scholar
  299. 299.
    Alinari L, Prince CJ, Edwards RB, Towns WH, Mani R, Lehman A, Zhang X, Jarjoura D, Pan L, Kinghorn AD, Grever MR, Baiocchi RA, Lucas DM (2012) Dual targeting of the cyclin/Rb/E2F and mitochondrial pathways in mantle cell lymphoma with the novel translation inhibitor silvestrol. Clin Cancer Res 18:4600PubMedCentralCrossRefPubMedGoogle Scholar
  300. 300.
    Alkachar H, Santhanam R, Harb J, Lucas DM, Oaks J, Hickey CJ, Pan L, Kinghorn AD, Caligiuri MA, Perotti D, Byrd JC, Garzon R, Grever MR, Marcucci G (2013) Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia. J Hematol Oncol 6:21CrossRefGoogle Scholar
  301. 301.
    Kogure T, Kinghorn AD, Yan I, Bolon B, Lucas DM, Grever MR, Patel T (2013) Therapeutic potential of the translation inhibitor silvestrol in hepatocellular cancer. PLoS One 8(9):e76136PubMedCentralCrossRefPubMedGoogle Scholar
  302. 302.
    Patton JT, Lustburg ME, Lozanski G, Garman SL, Towns WH, Drohan CM, Lehman A, Zhang X, Bolon B, Pan L, Kinghorn AD, Grever MR, Lucas DM, Baiocchi RA (2015) The translation inhibitor silvestrol exhibits direct anti-tumor activity while preserving innate and adaptive immunity against EBV-driven lymphoproliferative disease. Oncotarget 6:2693CrossRefPubMedGoogle Scholar
  303. 303.
    Vijaya Sarathi UVR, Gupta SV, Chiu M, Wang J, Ling Y, Liu Z, Newman DJ, Covey JM, Kinghorn AD, Marcucci G, Lucas DM, Grever MR, Phelps MA, Chan KK (2011) Characterization of silvestrol pharmacokinetics in mice using liquid chromatography-tandem mass spectrometry. AAPS J 13:347CrossRefGoogle Scholar
  304. 304.
    Oblinger JL, Burns SS, Akhmametyeneva EM, Huang J, Pan L, Ren Y, Shen R, Miles-Markley B, Moberly AC, Kinghorn AD, Welling DB, Chang L-S (2016) Components of the eIF4F complex are potential therapeutic targets for malignant peripheral nerve sheath tumors and vestibular schwannomas. Neuro-Oncol 18:1265PubMedCentralCrossRefPubMedGoogle Scholar
  305. 305.
    Oblinger JL, Burns SS, Huang J, Pan L, Ren Y, Shen R, Kinghorn AD, Welling DB, Chang L-S (2018) Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol 299:299CrossRefPubMedGoogle Scholar
  306. 306.
    Daker M, Yeo J-T, Bakar N, Saiyidatina A, Rahman AA, Ahmad M, Yeo T-C, Khoo AS-B (2016) Inhibition of nasopharyngeal carcinoma cell proliferation and synergism of cisplatin with silvestrol and episilvestrol from Aglaia stellatopilosa. Exp Ther Med 11:2117PubMedCentralCrossRefPubMedGoogle Scholar
  307. 307.
    NExT NCI Experimental Therapeutic Program (2017): Accessed 4 Dec
  308. 308.
    Pillow T, Polson AG, Zheng B (2017) Silvestrol antibody-drug conjugates and method of use. US Pat Publ 20170348422 A1, December 7Google Scholar
  309. 309.
    Appendino G, Pollastro F (2010) Plants: revamping the oldest source of medicines with modern science. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. RSC Publishing, Cambridge, p 140Google Scholar
  310. 310.
    Tulp M, Bohlin L (2002) Functional versus chemical diversity: is biodiversity important for drug discovery? Trends Pharmacol Sci 23:225CrossRefPubMedGoogle Scholar
  311. 311.
    Gragg GM, Boyd MR, Cardellina JH II, Grever MR, Schepartz SA, Snader KM, Suffness S (1993) Role of plants in the National Cancer Institute drug discovery and development program. In: Kinghorn AD, Balandrin MF (eds) Human medicinal agents from plants. ACS symposium series 534. American Chemical Society Books, Washington, DC, p 80Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joshua M. Henkin
    • 1
  • Yulin Ren
    • 2
  • Djaja Djendoel Soejarto
    • 1
  • A. Douglas Kinghorn
    • 2
    Email author
  1. 1.Department of Medicinal Chemistry and PharmacognosyCollege of Pharmacy, University of Illinois at ChicagoChicagoUSA
  2. 2.Medicinal Chemistry and PharmacognosyCollege of Pharmacy, The Ohio State UniversityColumbusUSA

Personalised recommendations