Skip to main content

Neuropsychological Assessment of Older Adults with a History of Cancer

  • Chapter
  • First Online:
  • 4620 Accesses

Part of the book series: Clinical Handbooks in Neuropsychology ((CHNEURO))

Abstract

Older adults are at increased risk for developing cancer. Given the aging population, the incidence of cancer is predicted to rise, and, as a result, cancer is likely to become an even greater public health concern. Anticancer therapies can have potential untoward impacts on cognitive functioning, which is of particular concern for aging individuals that are already at increased risk for cognitive decline. This chapter reviews the potential cognitive side effects of cancer therapies and presents the most common considerations for differential diagnosis of cognitive complaints in this population. Instructive case examples are provided along with clinical pearls for the neuropsychologist working with older adults in an oncology setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer statistics review, 1975–2014. Bethesda, MD: National Cancer Institute. https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017.

  2. Ortman JM, Velkoff VA, Hogan H. An aging nation: the older population in the United States, current population reports. Washington, DC: U.S. Census Bureau; 2014. p. 25–1140.

    Google Scholar 

  3. Wefel JS, et al. Neurocognitive function varies by IDH1 genetic mutation status in patients with malignant glioma prior to surgical resection. Neuro-Oncology. 2016;18(12):1656–63.

    Article  Google Scholar 

  4. Kesler SR, et al. The effect of IDH1 mutation on the structural connectome in malignant astrocytoma. J Neuro-Oncol. 2017;131:565–74. https://doi.org/10.1007/s11060-016-2328-1.

    Article  Google Scholar 

  5. Wefel JS, et al. ‘Chemobrain’ in breast carcinoma? A prologue. Cancer. 2004;10:466–75.

    Article  Google Scholar 

  6. Hermelink K, et al. Cognitive function during neoadjuvant chemotherapy for breast cancer: results of a prospective, multicenter, longitudinal study. Cancer. 2007;109(9):1905–13.

    Article  Google Scholar 

  7. Schagen SB, et al. Change in cognitive function after chemotherapy: a prospective longitudinal study in breast cancer patients. J Natl Cancer Inst. 2006;98(23):1742–5.

    Article  Google Scholar 

  8. Hurria A, et al. Cognitive function of older patients receiving adjuvant chemotherapy for breast cancer: a pilot prospective longitudinal study. J Am Geriatr Soc. 2006;54(6):925–31.

    Article  Google Scholar 

  9. Meyers CA, Albitar M, Estey E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer. 2005;104(4):788–93.

    Article  Google Scholar 

  10. Yang M, et al. Hippocampal dysfunctions in tumor-bearing mice. Brain Behav Immun. 2014;36:147–55.

    Article  Google Scholar 

  11. Meyers CA, Byrne KS, Komaki R. Cognitive deficits in patients with small cell lung cancer before and after chemotherapy. Lung Cancer. 1995;12(3):231–5.

    Article  Google Scholar 

  12. Didelot A, Honnorat J. Paraneoplastic disorders of the central and peripheral nervous systems. Handb Clin Neurol. 2014;121:1159–79. https://doi.org/10.1016/B978-0-7020-4088-7.00078-X.

    Article  Google Scholar 

  13. Wefel JS, et al. Neuropsychological dysfunction associated with cancer and cancer therapies: a conceptual review of an emerging target. Br J Cancer. 2004;90(9):1691–6.

    Article  Google Scholar 

  14. Newman S, et al. Postoperative cognitive dysfunction after noncardiac surgery: a systematic review. Anesthesiology. 2007;106(3):572–90.

    Article  Google Scholar 

  15. Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys. 1980;6(9):1215–28.

    Article  Google Scholar 

  16. Markale MT, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol. 2017;13(1):52–64. https://doi.org/10.1038/nrneurol.2016.185. Epub 2016 Dec 16. Review.

    Article  Google Scholar 

  17. Crossen JR, et al. Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol. 1994;12(3):627–42.

    Article  Google Scholar 

  18. Lee AW, et al. Factors affecting risk of symptomatic temporal lobe necrosis: significance of fractional dose and treatment time. Int J Radiat Oncol Biol Phys. 2002;53(1):75–85.

    Article  Google Scholar 

  19. Tsai PF, et al. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study. Radiat Oncol. 2015;10:253. https://doi.org/10.1186/s13014-015-0562-x.

    Article  Google Scholar 

  20. Chang EL, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10(11):1037–44.

    Article  Google Scholar 

  21. Brown PD, et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA. 2016;316(4):401–9. https://doi.org/10.1001/jama.2016.9839.

    Article  Google Scholar 

  22. Ahles TA, et al. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol. 2002;20(2):485–93.

    Article  Google Scholar 

  23. Brezden CB, et al. Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol. 2000;18(14):2695–701.

    Article  Google Scholar 

  24. Schagen SB, et al. Late effects of adjuvant chemotherapy on cognitive function: a follow-up study in breast cancer patients. Ann Oncol. 2002;13(9):1387–97.

    Article  Google Scholar 

  25. Schagen SB, et al. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer. 1999;85(3):640–50.

    Article  Google Scholar 

  26. Hurria A, et al. A prospective, longitudinal study of the functional status and quality of life of older patients with breast cancer receiving adjuvant chemotherapy. J Am Geriatr Soc. 2006;54(7):1119–24.

    Article  Google Scholar 

  27. van Dam FS, et al. Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: high-dose versus standard-dose chemotherapy. J Natl Cancer Inst. 1998;90(3):210–8.

    Article  Google Scholar 

  28. Wefel JS, et al. The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer. 2004;100(11):2292–9.

    Article  Google Scholar 

  29. Wefel JS, et al. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer. 2010;116(14):3348–56.

    Article  Google Scholar 

  30. Collins B, et al. Cognitive effects of chemotherapy in breast cancer patients: a dose-response study. Psychooncology. 2013;22(7):1517–27. https://doi.org/10.1002/pon.3163. Epub 2012 Aug 30.

    Article  Google Scholar 

  31. Lange M, et al. Decline in cognitive function in older adults with early-stage breast cancer after adjuvant treatment. Oncologist. 2016;21:1337–48.

    Article  Google Scholar 

  32. Kesler SR, Blayney DW. Neurotoxic effects of anthracycline- vs nonanthracycline-based chemotherapy on cognition in breast cancer survivors. JAMA Oncol. 2016;2:185–92.

    Article  Google Scholar 

  33. Wefel JS, et al. A prospective study of cognitive function in men with non-seminomatous germ cell tumors. Psycho-Oncology. 2014;23:626–33.

    Article  Google Scholar 

  34. Hess LM, et al. Cognitive function during and six months following chemotherapy for front-line treatment of ovarian, primary peritoneal or fallopian tube cancer: an NRG oncology/gynecologic oncology group study. Gynecol Oncol. 2015;139(3):541–5. https://doi.org/10.1016/j.ygyno.2015.10.003. Epub 2015 Oct 9.

    Article  Google Scholar 

  35. Gonzalez BD, et al. Course and predictors of cognitive function in patients with prostate cancer receiving androgen-deprivation therapy: a controlled comparison. J Clin Oncol. 2015;33(18):2021–7. https://doi.org/10.1200/JCO.2014.60.1963. Epub 2015 May 11.

    Article  Google Scholar 

  36. Jones D, et al. Acute cognitive impairment in patients with multiple myeloma undergoing autologous hematopoietic stem cell transplant. Cancer. 2013;119(23):4188–95. https://doi.org/10.1002/cncr.28323. Epub 2013 Sep 16.

    Article  Google Scholar 

  37. Syrjala KL, et al. Neuropsychologic changes from before transplantation to 1 year in patients receiving myeloablative allogeneic hematopoietic cell transplant. Blood. 2004;104(10):3386–92.

    Article  Google Scholar 

  38. Ahles TA, et al. Psychologic and neuropsychologic impact of autologous bone marrow transplantation. J Clin Oncol. 1996;14(5):1457–62.

    Article  Google Scholar 

  39. Friedman MA, et al. Course of cognitive decline in hematopoietic stem cell transplantation: a within-subjects design. Arch Clin Neuropsychol. 2009;24(7):689–98.

    Article  Google Scholar 

  40. Vichaya EG, et al. Mechanisms of chemotherapy-induced behavioral toxicities. Front Neurosci. 2015;9:131. https://doi.org/10.3389/fnins.2015.00131. eCollection 2015. Review.

    Article  Google Scholar 

  41. National Cancer Institute. Biological therapy. Treatments that use your immune system to fight cancer (NIH Publication No 03-5406). 2003.

    Google Scholar 

  42. Clark JW. Biological response modifiers. Cancer Chemother Biol Response Modif. 1996;16:239–73.

    Google Scholar 

  43. Scheibel RS, et al. Cognitive dysfunction and depression during treatment with interferon-alpha and chemotherapy. J Neuropsychiatry Clin Neurosci. 2004;16(2):185–91.

    Article  Google Scholar 

  44. Bender CM, et al. Cognitive function and quality of life in interferon therapy for melanoma. Clin Nurs Res. 2000;9(3):352–63.

    Article  Google Scholar 

  45. Capuron L, et al. Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav Immun. 2004;18(3):205–13.

    Article  Google Scholar 

  46. Valentine AD, et al. Mood and cognitive side effects of interferon-alpha therapy. Semin Oncol. 1998;25(1 Suppl 1):39–47.

    Google Scholar 

  47. Valentine AD, Meyers CA. Neurobehavioral effects of interferon therapy. Curr Psychiatry Rep. 2005;7(5):391–5.

    Article  Google Scholar 

  48. Bonifant CL, et al. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics. 2016;3:16011. https://doi.org/10.1038/mto.2016.11. eCollection 2016. Review.

    Article  Google Scholar 

  49. Maki PM, Sundermann E. Hormone therapy and cognitive function. Hum Reprod Update. 2009;15(6):667–81.

    Article  Google Scholar 

  50. Nelson CJ, et al. Cognitive effects of hormone therapy in men with prostate cancer: a review. Cancer. 2008;113(5):1097–106.

    Article  Google Scholar 

  51. Jenkins V, et al. Does hormone therapy for the treatment of breast cancer have a detrimental effect on memory and cognition? A pilot study. Psychooncology. 2004;13(1):61–6.

    Article  Google Scholar 

  52. Schilder CM, et al. Effects of tamoxifen and exemestane on cognitive functioning of postmenopausal patients with breast cancer: results from the neuropsychological side study of the tamoxifen and exemestane adjuvant multinational trial. J Clin Oncol. 2010;28(8):1294–300.

    Article  Google Scholar 

  53. Green HJ, et al. Altered cognitive function in men treated for prostate cancer with luteinizing hormone-releasing hormone analogues and cyproterone acetate: a randomized controlled trial. BJU Int. 2002;90(4):427–32.

    Article  Google Scholar 

  54. Alibhai SM, et al. Impact of androgen-deprivation therapy on cognitive function in men with nonmetastatic prostate cancer. J Clin Oncol. 2010;28(34):5030–7. https://doi.org/10.1200/JCO.2010.30.8742. Epub 2010 Nov 1.

    Article  Google Scholar 

  55. Pallis AG, et al. EORTC elderly task force position paper: approach to the older cancer patient. Eur J Cancer. 2010;46(9):1502–13.

    Article  Google Scholar 

  56. Kemeny MM, et al. Barriers to clinical trial participation by older women with breast cancer. J Clin Oncol. 2003;21(12):2268–75.

    Article  Google Scholar 

  57. Taylor WC, Muss HB. Adjuvant chemotherapy of breast cancer in the older patient. Oncology (Williston Park). 2010;24(7):608–13.

    Google Scholar 

  58. Given B, Given CW. Older adults and cancer treatment. Cancer. 2008;113(12 Suppl):3505–11.

    Article  Google Scholar 

  59. Pal SK, Hurria A. Impact of age, sex, and comorbidity on cancer therapy and disease progression. J Clin Oncol. 2010;28(26):4086–93.

    Article  Google Scholar 

  60. Gállego Pérez-Larraya J. A phase II trial of temozolomide in elderly patients with glioblastoma and poor performance status (KPS < 70): preliminary results of the ANOCEF “TAG” trial. Neuro Oncol. 2010;12(Suppl 4):iv76.

    Google Scholar 

  61. Stummer W, et al. Favorable outcome in the elderly cohort treated by concomitant temozolomide radiochemotherapy in a multicentric phase II safety study of 5-ALA. J Neuro-Oncol. 2011;103(2):361–70.

    Article  Google Scholar 

  62. Gerstein J, et al. Postoperative radiotherapy and concomitant temozolomide for elderly patients with glioblastoma. Radiother Oncol. 2010;97(3):382–6.

    Article  Google Scholar 

  63. Perry JR, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027–37.

    Article  Google Scholar 

  64. Hurria A, Lachs M. Is cognitive dysfunction a complication of adjuvant chemotherapy in the older patient with breast cancer? Breast Cancer Res Treat. 2007;103(3):259–68.

    Article  Google Scholar 

  65. Bial AK, Schilsky RL, Sachs GA. Evaluation of cognition in cancer patients: special focus on the elderly. Crit Rev Oncol Hematol. 2006;60(3):242–55.

    Article  Google Scholar 

  66. Mohile SG, et al. Cognitive effects of androgen deprivation therapy in an older cohort of men with prostate cancer. Crit Rev Oncol Hematol. 2010;75(2):152–9.

    Article  Google Scholar 

  67. Lange M, et al. Baseline cognitive functions among elderly patients with localised breast cancer. Eur J Cancer. 2014;50(13):2181–9. https://doi.org/10.1016/j.ejca.2014.05.026. Epub 2014 Jun 20.

    Article  Google Scholar 

  68. Ahles TA, et al. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol. 2010;28(29):4434–40.

    Article  Google Scholar 

  69. Heflin LH, et al. Cancer as a risk factor for long-term cognitive deficits and dementia. J Natl Cancer Inst. 2005;97(11):854–6.

    Article  Google Scholar 

  70. Wefel JS, Meyers CA. Cancer as a risk factor for dementia: a house built on shifting sand. J Natl Cancer Inst. 2005;97(11):788–9.

    Article  Google Scholar 

  71. Nead KT, et al. Androgen deprivation therapy and future Alzheimer’s disease risk. J Clin Oncol. 2016;34(6):566–71. https://doi.org/10.1200/JCO.2015.63.6266. Epub 2015 Dec 7.

    Article  Google Scholar 

  72. Nead KT, et al. Association between androgen deprivation therapy and risk of dementia. JAMA Oncol. 2017;3:49–55.

    Article  Google Scholar 

  73. Kao L, et al. No increased risk of dementia in patients receiving androgen deprivation therapy for prostate cancer: a 5-year follow-up study. Asian J Androl. 2016;18:1–4.

    Google Scholar 

  74. Roe CM, et al. Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 2010;74(2):106–12.

    Article  Google Scholar 

  75. Burke WJ. Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 2010;75(13):1216. author reply 1216.

    Google Scholar 

  76. Roe CM, et al. Alzheimer disease and cancer. Neurology. 2005;64(5):895–8.

    Article  Google Scholar 

  77. Driver JA, et al. Inverse association between cancer and Alzheimer’s disease: results from the Framingham Heart Study. BMJ. 2012;344:e1442. https://doi.org/10.1136/bmj.e1442.

    Article  Google Scholar 

  78. Sun L-M, et al. Long-term use of tamoxifen reduces the risk of dementia: a nationwide population-based cohort study. QJM. 2016;109(2):103–9. https://doi.org/10.1093/qjmed/hcv072. Epub 2015 Apr 7.

    Article  Google Scholar 

  79. Baxter NN, et al. Risk of dementia in older breast cancer survivors: a population-based cohort study of the association with adjuvant chemotherapy. JAGS. 2009;57:403–11.

    Article  Google Scholar 

  80. Du XL, et al. Relationship between chemotherapy use and cognitive impairments in older women with breast cancer: findings from a large population-based cohort. Am J Clin Oncol. 2010;33:533–43.

    Article  Google Scholar 

  81. Raji MA, et al. Risk of subsequent dementia diagnoses does not vary by types of adjuvant chemotherapy in older women with breast cancer. Med Oncol. 2009;26:452–4599. https://doi.org/10.1007/s12032-008-9145-0. Epub 2008 Dec 9.

    Article  Google Scholar 

  82. Heck JE, et al. Patterns of dementia diagnosis in surveillance, epidemiology, and end results breast cancer survivors who use chemotherapy. J Am Geriatr Soc. 2008;56:1687–92. https://doi.org/10.1111/j.1532-5415.2008.01848.x. Epub 2008 Aug 4. Erratum in: J Am Geriatr Soc. 2008;56(10):1986. PMID: 18691280.

    Article  Google Scholar 

  83. DeAngelis LM, Delattre JY, Posner JB. Radiation-induced dementia in patients cured of brain metastases. Neurology. 1989;39(6):789–96.

    Article  Google Scholar 

  84. Levin VA, et al. Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. Int J Radiat Oncol Biol Phys. 2002;53(1):58–66.

    Article  Google Scholar 

  85. Mandelblatt JS, et al. Cognitive effects of cancer and its treatments at the intersection of aging: what do we know; what do we need to know? Semin Oncol. 2013;40:709–25.

    Article  Google Scholar 

  86. Ahles TA, et al. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol. 2012;30:3675–86.

    Article  Google Scholar 

  87. Prust MJ, et al. Standard chemoradiation for glioblastoma results in progressive volume loss. Neurology. 2015;85:1–8.

    Article  Google Scholar 

  88. Koppelmans V, et al. Global and focal brain volume in long-term breast cancer survivors exposed to adjuvant chemotherapy. Breast Cancer Res Treat. 2011;132:1099–106.

    Article  Google Scholar 

  89. Deprez S, et al. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol. 2012;30:274–81. https://doi.org/10.1200/JCO.2011.36.8571. Epub 2011 Dec 19.

    Article  Google Scholar 

  90. Kesler SR, et al. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer. Neurobiol Aging. 2015;36:2429–42.

    Article  Google Scholar 

  91. Kesler SR. Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging. 2014;35:S11–9.

    Article  Google Scholar 

  92. Castellon SA, et al. Neurocognitive performance in breast cancer survivors exposed to adjuvant chemotherapy and tamoxifen. J Clin Exp Neuropsychol. 2004;26(7):955–69.

    Article  Google Scholar 

  93. Keime-Guibert F, Napolitano M, Delattre JY. Neurological complications of radiotherapy and chemotherapy. J Neurol. 1998;245(11):695–708.

    Article  Google Scholar 

  94. Valentine AD. Managing the neuropsychiatric adverse effects of interferon treatment. BioDrugs. 1999;11(4):229–37.

    Article  Google Scholar 

  95. Gondi V, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32(34):3810–6. https://doi.org/10.1200/JCO.2014.57.2909. Epub 2014 Oct 27. PMID: 25349290.

    Article  Google Scholar 

  96. Brown PD, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology. 2013;15:1429–37.

    Article  Google Scholar 

  97. Bruera E, et al. Patient-controlled methylphenidate for the management of fatigue in patients with advanced cancer: a preliminary report. J Clin Oncol. 2003;21(23):4439–43.

    Article  Google Scholar 

  98. Bruera E, et al. Patient-controlled methylphenidate for cancer fatigue: a double-blind, randomized, placebo-controlled trial. J Clin Oncol. 2006;24(13):2073–8.

    Article  Google Scholar 

  99. Sarhill N, et al. Methylphenidate for fatigue in advanced cancer: a prospective open-label pilot study. Am J Hosp Palliat Care. 2001;18(3):187–92.

    Article  Google Scholar 

  100. Meyers CA, et al. Methylphenidate therapy improves cognition, mood, and function of brain tumor patients. J Clin Oncol. 1998;16(7):2522–7.

    Article  Google Scholar 

  101. Gehring K, et al. A randomized trial on the efficacy of methylphenidate and modafinil for improving cognitive functioning and symptoms in patients with a primary brain tumor. J Neuro-Oncol. 2012;107:165–74. https://doi.org/10.1007/s11060-011-0723-1. Epub 2011 Oct 2.

    Article  Google Scholar 

  102. Lundorff LE, et al. Modafinil for attentional and psychomotor dysfunction in advanced cancer: a double-blind, randomized, cross-over trial. Palliat Med. 2009;23:731–8. https://doi.org/10.1177/0269216309106872. Epub 2009 Jul 31.

    Article  Google Scholar 

  103. Mar Fan HG, et al. A randomised, placebo-controlled, double-blind trial of the effects of d-methylphenidate on fatigue and cognitive dysfunction in women undergoing adjuvant chemotherapy for breast cancer. Support Care Cancer. 2008;16:577–83. Epub 2007 Oct 31.

    Article  Google Scholar 

  104. Day J, et al. Interventions for the management of fatigue in adults with a primary brain tumour. Cochrane Database Syst Rev. 2016;4:CD011376. e-Pub 4/2016.

    Google Scholar 

  105. Shaw EG, et al. Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol. 2006;24(9):1415–20.

    Article  Google Scholar 

  106. Chan AS, et al. Phase II study of alpha-tocopherol in improving the cognitive function of patients with temporal lobe radionecrosis. Cancer. 2004;100(2):398–404.

    Article  Google Scholar 

  107. Lawrence JA, et al. A study of donepezil in female breast cancer survivors with self-reported cognitive dysfunction 1 to 5 years following adjuvant chemotherapy. J Cancer Surviv. 2016;10(1):176–84. https://doi.org/10.1007/s11764-015-0463-x. Epub 2015 Jul 1.

    Article  Google Scholar 

  108. Baker LD, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–9.

    Article  Google Scholar 

  109. Yaguez L, et al. The effects on cognitive functions of a movement-based intervention in patients with Alzheimer’s type dementia: a pilot study. Int J Geriatr Psychiatry. 2010;26(2):173–81.

    Article  Google Scholar 

  110. Korstjens I, et al. Quality of life of cancer survivors after physical and psychosocial rehabilitation. Eur J Cancer Prev. 2006;15(6):541–7.

    Article  Google Scholar 

  111. Janelsins MC, et al. YOCAS©® yoga reduces self-reported memory difficulty in cancer survivors in a nationwide randomized clinical trial: investigating relationships between memory and sleep. Integr Cancer Ther. 2016;15:263–71. https://doi.org/10.1177/1534735415617021. Epub 2015 Nov 29.

    Article  Google Scholar 

  112. Derry HM, et al. Yoga and self-reported cognitive problems in breast cancer survivors: a randomized controlled trial. Psychooncology. 2015;24(8):958–66. https://doi.org/10.1002/pon.3707. Epub 2014 Oct 21.

    Article  Google Scholar 

  113. Oh B, et al. Effect of medical Qigong on cognitive function, quality of life, and a biomarker of inflammation in cancer patients: a randomized controlled trial. Support Care Cancer. 2012;20(6):1235–42. https://doi.org/10.1007/s00520-011-1209-6. Epub 2011 Jun 19.

    Article  Google Scholar 

  114. Sprod LK, et al. Exercise and cancer treatment symptoms in 408 newly diagnosed older cancer patients. J Geriatr Oncol. 2012;3:90–7. Epub 2012 Jan 27.

    Article  Google Scholar 

  115. Von Ah D, et al. Advanced cognitive training for breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat. 2012;135(3):799–809. https://doi.org/10.1007/s10549-012-2210-6. Epub 2012 Aug 24.

    Article  Google Scholar 

  116. Kesler S, et al. Cognitive training for improving executive function in chemotherapy-treated breast cancer survivors. Clin Breast Cancer. 2013;13:299–306. https://doi.org/10.1016/j.clbc.2013.02.004. Epub 2013 May 4.

    Article  Google Scholar 

  117. Ferguson RJ, et al. Development of CBT for chemotherapy-related cognitive change: results of a waitlist control trial. Psychooncology. 2012;21:176–86. https://doi.org/10.1002/pon.1878. Epub 2010 Dec 2.

    Article  Google Scholar 

  118. Gehring K, et al. Cognitive rehabilitation in patients with gliomas: a randomized, controlled trial. J Clin Oncol. 2009;27:3712–22. https://doi.org/10.1200/JCO.2008.20.5765. Epub 2009 May 26.

    Article  Google Scholar 

  119. Miki E, et al. Feasibility and efficacy of speed-feedback therapy with a bicycle ergometer on cognitive function in elderly cancer patients in Japan. Psychooncology. 2014;23:906–13. https://doi.org/10.1002/pon.3501. Epub 2014 Feb 14.

    Article  Google Scholar 

  120. Sherer M, Meyers CA, Bergloff P. Efficacy of postacute brain injury rehabilitation for patients with primary malignant brain tumors. Cancer. 1997;80(2):250–7.

    Article  Google Scholar 

  121. Wong-Goodrich SJ, et al. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res. 2010;70(22):9329–38.

    Article  Google Scholar 

  122. Konat GW, et al. Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats. Metab Brain Dis. 2008;23(3):325–33.

    Article  Google Scholar 

  123. Sofis MJ, et al. KU32 prevents 5-fluorouracil induced cognitive impairment. Behav Brain Res. 2017;329:186–90. https://doi.org/10.1016/j.bbr.2017.03.042. Epub 2017 Mar 27.

    Article  Google Scholar 

  124. Zhou W, et al. Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice. PLoS One. 2016;11(3):e0151890. https://doi.org/10.1371/journal.pone.0151890.

    Article  Google Scholar 

  125. Callaghan CK, O’Mara SM. Long-term cognitive dysfunction in the rat following docetaxel treatment is ameliorated by the phosphodiesterase-4 inhibitor, rolipram. Behav Brain Res. 2015;290:84–9. https://doi.org/10.1016/j.bbr.2015.04.044. Epub 2015 May 1.

    Article  Google Scholar 

  126. Zhao W, et al. Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys. 2007;67(1):6–9.

    Article  Google Scholar 

  127. Acharya MM, et al. Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2009;106(45):19150–5.

    Article  Google Scholar 

  128. Siegers R, Fardell JE. Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci Biobehav Rev. 2011;35:729–41. https://doi.org/10.1016/j.neubiorev.2010.09.006. Epub 2010 Oct 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana E. Bradshaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bradshaw, M.E., Wefel, J.S. (2019). Neuropsychological Assessment of Older Adults with a History of Cancer. In: Ravdin, L.D., Katzen, H.L. (eds) Handbook on the Neuropsychology of Aging and Dementia. Clinical Handbooks in Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-319-93497-6_27

Download citation

Publish with us

Policies and ethics