Skip to main content

Bioengineering of the Human Neural Stem Cell Niche: A Regulatory Environment for Cell Fate and Potential Target for Neurotoxicity

  • Chapter
  • First Online:
Human Neural Stem Cells

Abstract

Human neural stem/progenitor cells of the developing and adult organisms are surrounded by the microenvironment, so-called neurogenic niche. The developmental processes of stem cells, such as survival, proliferation, differentiation, and fate decisions, are controlled by the mutual interactions between cells and the niche components. Such interactions are tissue specific and determined by the biochemical and biophysical properties of the niche constituencies and the presence of other cell types. This dynamic approach of the stem cell niche, when translated into in vitro settings, requires building up “biomimetic” microenvironments resembling natural conditions, where the stem/progenitor cell is provided with diverse extracellular signals exerted by soluble and structural cues, mimicking those found in vivo. The neural stem cell niche is characterized by a unique composition of soluble components including neurotransmitters and trophic factors as well as insoluble extracellular matrix proteins and proteoglycans. Biotechnological innovations provide tools such as a new generation of tunable biomaterials capable of releasing specific signals in a spatially and temporally controlled manner, thus creating in vitro nature-like conditions and, when combined with stem cell-derived tissue specific progenitors, producing differentiated neuronal tissue structures. In addition, substantial progress has been made on the protocols to obtain stem cell-derived cell aggregates such as neurospheres and self-assembled organoids.

In this chapter, we have assessed the application of bioengineered human neural stem cell microenvironments to produce in vitro models of different levels of biological complexity for the efficient control of stem cell fate. Examples of biomaterial-supported two-dimensional and three-dimensional (2D and 3D) complex culture systems that provide artificial neural stem cell niches are discussed in the context of their application for basic research and neurotoxicity testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

Central nervous system

DNT:

Developmental neurotoxicity testing

ECM:

Extracellular matrix

ESC:

Embryonic stem cells

Fn:

Fibronectin

GFAP:

Glial fibrillary acidic protein

hESC:

Human embryonic stem cells

HUCB-NSC:

Human umbilical cord blood-derived neural stem cells

iPSC:

Induced pluripotent stem cells

Map-2:

Microtubule-associated protein-2

MAPK:

Mitogen-activated protein kinase

mdDA:

Midbrain dopaminergic

MEA:

Multielectrode array

MeHgCl:

Methylmercury chloride

NFA:

Network formation assay

NSC:

Neural stem cells

PDMS:

Polydimethylsiloxane

PEO-like:

Poly(ethylene) oxide-like

PI-3K:

Phosphoinositide-3-kinase

SGZ:

Subgranular zone

SVZ:

Subventricular zone

TH:

Tyrosine hydroxylase

References

  • Aimone JB, Li Y, Lee SW et al (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94(4):991–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22(3):629–634

    Article  CAS  PubMed  Google Scholar 

  • Bal-Price A, Meek MEB (2017) Adverse outcome pathways: application to enhance mechanistic understanding of neurotoxicity. Pharmacol Ther 179:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal-Price AK, Hogberg HT, Buzanska L et al (2010) In vitro developmental neurotoxicity (DNT) testing: relevant models and endpoints. Neurotoxicology 31:545–554

    Article  CAS  PubMed  Google Scholar 

  • Barthes J, Özçelik H, Hindié M et al (2014) Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014:921905

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann J, Gassmann K, Masjosthusmann S et al (2016) Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 90(6):1415–1427

    Article  CAS  PubMed  Google Scholar 

  • Berthuy OI, Blum LJ, Marquette CA (2016) Cells on chip for multiplex screening. Biosens Bioelectron 15(76):29–37

    Article  Google Scholar 

  • Bjornsson C, Apostolopoulou TY et al (2015) It takes a village: constructing the neurogenic niche. Dev Cell 32(4):435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozza A, Coates EE, Incitti T et al (2014) Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials 35(16):4636–4645

    Article  CAS  PubMed  Google Scholar 

  • Breier JM, Gassmann K, Kayser R et al (2010) Neural progenitor cells as models for high-throughput screens of developmental neurotoxicity: state of the science. Neurotoxicol Teratol 32(1):4–15

    Article  CAS  PubMed  Google Scholar 

  • Brétagnol F, Lejeune M, Papadopoulou-Bouraoui A et al (2006) Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomater 2(2):165–172

    Article  PubMed  Google Scholar 

  • Brizzi MF, Tarone G, Defilippi P (2012) Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 24(5):645–651

    Article  CAS  PubMed  Google Scholar 

  • Buzanska L, Ruiz A, Zychowicz M et al (2009a) Patterned growth and differentiation of human cord blood-derived neural stem cells on bio-functionalized surfaces. Acta Neurobiol Exp 69(1):24–36

    Google Scholar 

  • Buzanska L, Sypecka J, Nerini-Molteni S et al (2009b) A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Stem Cells 27(10):2591–2601

    Article  CAS  PubMed  Google Scholar 

  • Buzanska L, Zychowicz M, Ruiz A et al (2010) Neural stem cells from human cord blood on bioengineered surfaces—novel approach to multiparameter bio-tests. Toxicology 270(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Buzanska L, Zychowicz M, Sarnowska A et al (2013) Bioengineering of neural stem cell niche. Postepy Biochem 59(2):175–186

    CAS  PubMed  Google Scholar 

  • Buzanska L, Zychowicz M, Ruiz A et al (2017) Neural stem cell fate control on micropatterned substrates. In: Srivastava AK, Snyder EY, Teng YD (eds). Springer ProtocolsStem cell technologies in neuroscience, Neuromethods, vol 126, pp 19–45

    Chapter  Google Scholar 

  • Capilla-Gonzalez V, Herranz-Pérez V, García-Verdugo JM (2015) The aged brain: genesis and fate of residual progenitor cells in the subventricular zone. Front Cell Neurosci 24(9):365

    Google Scholar 

  • Ceriotti L, Buzanska L, Rauscher H et al (2009) Fabrication and characterization of protein arrays for stem cells patterning. Soft Matters 5:1406–1416

    Article  CAS  Google Scholar 

  • Chen S, Lewallen M, Xie T (2013) Adhesion in the stem cell niche: biological roles and regulation. Development 140(2):255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway A, Schaffer DV (2012) Biophysical regulation of stem cell behavior within the niche. Stem Cell Res Ther 3(6):50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado AC, Ferro´ n, SR, Vicente D et al (2014) Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 83, 572–585

    Google Scholar 

  • Dityatev A, Seidenbecher CI, Schachner M (2010) Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 33:503–512

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Ernst A, Frisén J (2015) Adult neurogenesis in humans-common and unique traits in mammals. PLoS Biol 26, 13(1)

    Google Scholar 

  • Ernst A, Alkass K, Bernard S et al (2014) Neurogenesis in the striatum of the adult human brain. Cell 156(5):1072–1083

    Article  CAS  PubMed  Google Scholar 

  • Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2(2):119–125

    Article  CAS  PubMed  Google Scholar 

  • Flaim CJ, Teng D, Chien S et al (2008) Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev 17:29–39

    Article  CAS  PubMed  Google Scholar 

  • Frimat JP, Sisnaiske J, Subbiah S et al (2010) The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab Chip 10(6):701–709

    Article  CAS  PubMed  Google Scholar 

  • Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840(8):2506–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788

    Article  PubMed  Google Scholar 

  • Guilak F, Cohen DM, Estes BT et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen DV, Lui JH, Parker PR et al (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464(7288):554–561

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Imanishi S, Sone H et al (2012) Effects of methylmercury exposure on neuronal differentiation of mouse and human embryonic stem cells. Toxicol Lett 212(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Hogberg HT, Bressler J, Christian KM et al (2013) Toward a 3D model of human brain development for studying gene/environment interactions. Stem Cell Res Ther 4(Suppl 1):S4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou Z, Zhang J, Schwartz MP et al (2013) A human pluripotent stem cell platform for assessing developmental neural toxicity screening. Stem Cell Res Ther (Suppl 1):S12

    Google Scholar 

  • Ivanovic Z (2009) Hypoxia or in situ normoxia: the stem cell paradigm. J Cell Physiol 219:271–275

    Article  CAS  PubMed  Google Scholar 

  • Jang JM, Tran SH, Na SC et al (2015) Engineering controllable architecture in matrigel for 3D cell alignment. ACS Appl Mater Interfaces 7:2183–2188

    Article  CAS  PubMed  Google Scholar 

  • Jurga M, Lipkowski AW, Lukomska B et al (2009) Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Eng Part C Methods 15(3):365–372

    Article  CAS  PubMed  Google Scholar 

  • Kang KS, Trosko JE (2011) Stem cells in toxicology: fundamental biology and practical considerations. Toxicol Sci 120(Suppl 1):S269–S289

    Article  CAS  PubMed  Google Scholar 

  • Kerever A, Schnack J, Vellinga D et al (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25:2146–2157

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Sachdev P, Sidhu K (2013) Alginate microcapsule as a 3D platform for the efficient differentiation of human embryonic stem cells to dopamine neurons. Stem Cell Res 11(3):978–989

    Article  CAS  PubMed  Google Scholar 

  • Kirby ED, Kuwahara AA, Messer RL et al (2015) Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF. Proc Natl Acad Sci USA 112(13):4128–4133

    Article  CAS  PubMed  Google Scholar 

  • Kumar KK, Aboud AA, Bowman AB (2012) The potential of induced pluripotent stem cells as a translational model for neurotoxicological risk. Neurotoxicology 33(3):518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9(10):2329–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Article  CAS  PubMed  Google Scholar 

  • Lathia JD, Mattson MP, Cheng A (2008) Notch: from neural development to neurological disorders. J Neurochem 107(6):1471–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DA, Knight MM, Campbell JJ et al (2011) Stem cell mechanobiology. J Cell Biochem 112(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhu B, Strakova Z et al (2014) Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells. Biochem Biophys Res Commun 450(4):1377–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272):433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massirer KB, Carromeu C, Griesi-Oliveira K et al (2011) Maintenance and differentiation of neural stem cells. Wiley Interdiscip Rev Syst Biol Med 3:107–114

    Article  CAS  PubMed  Google Scholar 

  • McMurtrey RJ (2014) Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control. J Neural Eng 11(6):066009

    Article  PubMed  Google Scholar 

  • Meli L, Barbosa HS, Hickey AM et al (2014) Three dimensional cellular microarray platform for human neural stem cell differentiation and toxicology. Stem Cell Res 13(1):36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle FT, Tramontin AD, García-Verdugo JM et al (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 101(50):17528–17532

    Article  CAS  PubMed  Google Scholar 

  • Narla ST, Lee YW, Benson CA et al (2017) Common developmental genome deprogramming in schizophrenia: role of Integrative Nuclear FGFR1 Signaling (INFS). Schizophr Res 185:17–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navaei-Nigjeh M, Amoabedini G, Noroozi A et al (2013) Enhancing neuronal growth from human endometrial stem cells derived neuron-like cells in three-dimensional fibrin gel for nerve tissue engineering. J Biomed Mater Res A 102(8):2533–2543

    Article  PubMed  Google Scholar 

  • Ni N, Hu Y, Ren H et al (2013) Self-assembling peptide nanofiber scaffolds enhance dopaminergic differentiation of mouse pluripotent stem cells in 3-dimensional culture. PLoS One 8(12):e84504

    Article  PubMed  PubMed Central  Google Scholar 

  • Pamies D, Hartung T, Hogberg HT (2014) Biological and medical applications of a brain-on-a-chip. Exp Biol Med 239(9):1096–1107

    Article  Google Scholar 

  • Pamies D, Barreras P, Block K et al (2017) A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. Altex 34(3):362–376

    Article  PubMed  Google Scholar 

  • Peerani R, Rao BM, Bauwens C et al (2007) Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 26:4744–4755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellett S, Schwartz MP, Tepp WH et al (2015) A human induced pluripotent stem cell derived neuronal cells cultured on chemically-defined hydrogels for sensitive in vitro detection of botulinum neurotoxin. Sci Rep 5:14566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrucha K, Zychowicz M, Podobinska M et al (2017) Functional properties of different collagen scaffolds to create a biomimetic niche for neurally committed human induced pluripotent stem cells (iPSC). Folia Neuropathol 55(2):110–123

    Article  PubMed  Google Scholar 

  • Ranga A, Gjorevski N, Lutolf MP (2014a) Drug discovery through stem cell-based organoid models. Adv Drug Deliv Rev 69–70:19–28

    Article  PubMed  Google Scholar 

  • Ranga A, Gobaa S, Okawa Y et al (2014b) 3D niche microarrays for systems-level analyses of cell fate. Nat Commun 5:4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranga A, Girgin M, Meinhardt A, Eberle D et al (2016) Neural tube morphogenesis in synthetic 3D microenvironments. Proc Natl Acad Sci USA 113(44):E6831–E6839

    Article  CAS  PubMed  Google Scholar 

  • Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43:55–62

    Article  PubMed  Google Scholar 

  • Riquelme PA, Drapeau E, Doetsch F (2008) Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 12:123–137

    Article  Google Scholar 

  • Ruiz SA, Chen CS (2008) Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26:2921–2927

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz A, Valsesia A, Ceccone G et al (2007) Fabrication and characterization of plasma processed surfaces with tuned wettability. Langmuir 23(26):12984–12989

    Article  CAS  PubMed  Google Scholar 

  • Ruiz A, Buzanska L, Ceriotti L et al (2008a) Stem-cell culture on patterned bio-functional surfaces. J Biomater Sci Polym Ed 19(12):1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Ruiz A, Buzanska L, Gilliland D et al (2008b) Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials 29(36):4766–4774

    Article  CAS  PubMed  Google Scholar 

  • Ruiz A, Zychowicz M, Buzanska L et al (2009) Single stem cell positioning on polylysine and fibronectin microarrays. Micro Nanosyst 1:50–56

    Article  CAS  Google Scholar 

  • Ruiz A, Zychowicz M, Ceriotti L et al (2013) Microcontact printing and microspotting as methods for direct protein patterning on plasma deposited polyethylene oxide: application to stem cell patterning. Biomed Microdevices 15(3):495–507

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y, Eiraku M, Suga H (2012) In vitro organogenesis in three dimensions: self-organising stem cells. Development 139(22):4111–4121

    Article  CAS  PubMed  Google Scholar 

  • Schmuck MR, Temme T, Dach K et al (2017) Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro. Arch Toxicol 91(4):2017–2028

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MP, Hou Z, Propson NE et al (2015) Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc Natl Acad Sci USA 112:12516–12521

    Article  CAS  PubMed  Google Scholar 

  • Simão D, Pinto C, Piersanti S et al (2015) Modeling human neural functionality in vitro: three-dimensional culture for dopaminergic differentiation. Tissue Eng Part A 21(3–4):654–668

    Article  PubMed  Google Scholar 

  • Snyder EY (2017) Finding a new purpose for old drugs. Science 357(6354):869–870

    Article  CAS  PubMed  Google Scholar 

  • Soen Y, Mori A, Palmer TD et al (2006) Exploring the regulation of human neural precursor cell differentiation using arrays of signalling microenvironments. Mol Syst Biol 2:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Stabenfeldt E, Brown AC, Barker TH (2010) Engineering ECM complexity into biomaterials for directing cell fate. Stud Mechanobiol Tissue Eng Biomater 2:1–18

    Article  Google Scholar 

  • Sugiyama T, Osumi N, Katsuyama Y (2013) The germinal matrices in the developing dentate gyrus are composed of neuronal progenitors at distinct differentiation stages. Dev Dyn 242(12):1442–1453

    Article  CAS  PubMed  Google Scholar 

  • Suh H, Consiglio A, Ray J et al (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Stem Cell 1:515–528

    CAS  Google Scholar 

  • Szablowska-Gadomska I, Zayat V, Buzanska L (2011) Influence of low oxygen tensions on expression of pluripotency genes in stem cells. Acta Neurobiol Exp (Wars) 71(1):86–93

    Google Scholar 

  • Szablowska-Gadomska I, Sypecka J, Zayat V et al (2012) Treatment with small molecules is an important milestone towards the induction of pluripotency in neural stem cells derived from human cord blood. Acta Neurobiol Exp (Wars) 72(4):337–350

    Google Scholar 

  • Urbán N, Guillemot F (2014) Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 27(8):396

    Google Scholar 

  • van den Ameele J, Tiberi L, Vanderhaeghen P et al (2014) Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci 37(6):334–342

    Article  PubMed  Google Scholar 

  • Yang K, Han S, Shin Y et al (2013) A microfluidic array for quantitative analysis of human neural stem cell self-renewal and differentiation in three-dimensional hypoxic microenvironment. Biomaterials 34(28):6607–6614

    Article  CAS  PubMed  Google Scholar 

  • Ylä-Outinen L, Joki T, Varjola M et al (2014) Three-dimensional growth matrix for human embryonic stem cell-derived neuronal cells. J Tissue Eng Regen Med 8(3):186–194

    Article  PubMed  Google Scholar 

  • Zappaterra MW, Lehtinen MK (2012) The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 69:2863–2878

    Article  CAS  PubMed  Google Scholar 

  • Zychowicz M, Mehn D, Ana Ruiz A et al (2011) Proliferation capacity of cord blood derived neural stem cell line on different micro-scale biofunctional domains. Acta Neurobiol Exp 71:12–23

    Google Scholar 

  • Zychowicz M, Mehn D, Ruiz A et al (2012) Patterning of human cord blood-derived stem cells on single cell posts and lines: implications for neural commitment. Acta Neurobiol Exp 72:325–336

    Google Scholar 

  • Zychowicz M, Dziedzicka D, Mehn D et al (2014) Developmental stage dependent neural stem cells sensitivity to methylmercury chloride on different biofunctional surfaces. Toxicol In Vitro 28(1):76–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was sponsored by statutory funds to Mossakowski Medical Research Centre and Wroclaw Research Centre EIT+ under the project “Biotechnologies and advanced medical technologies”—BioMed (POIG.01.01.02-02-003/08) financed from the European Regional Development Fund (Operational Programme Innovative Economy, 1.1.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonora Buzanska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buzanska, L., Zychowicz, M., Kinsner-Ovaskainen, A. (2018). Bioengineering of the Human Neural Stem Cell Niche: A Regulatory Environment for Cell Fate and Potential Target for Neurotoxicity. In: Buzanska, L. (eds) Human Neural Stem Cells. Results and Problems in Cell Differentiation, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-319-93485-3_9

Download citation

Publish with us

Policies and ethics