Skip to main content

Human Fetal Neural Stem Cells for Neurodegenerative Disease Treatment

  • Chapter
  • First Online:
Human Neural Stem Cells

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 66))

Abstract

Clinical trials for Parkinson’s disease, which used primary brain fetal tissue, have demonstrated that neural stem cell therapy could be suitable for neurodegenerative diseases. The use of fetal tissue presents several issues that have hampered the clinical development of this approach. In addition to the ethical concerns related to the required continuous supply of fetal specimen, the necessity to use cells from multiple fetuses in a single graft greatly compounded the problem. Cell viability and composition vary in different donors, and, further, the heterogeneity in the donor cells increased the probability of immunological rejection or contamination. An ideal cell source for cell therapy is one that is renewable, thus eliminating the need for transplantation of primary fetal tissue, and that also allows for viability, sterility, cell composition, and cell maturation to be controlled, while being inherently not tumorigenic. The availability of continuous and standardized clinical grade normal human neural cells, able to combine the plasticity of fetal tissue with an extensive proliferating capacity and functional stability, would be of paramount importance for the translation of cell therapy for central nervous system (CNS) disorders into the clinic. Here we describe a well-established protocol to produce human neural stem cells following GMP guidelines that allows us to obtain “clinical grade” cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter refers only to the regulatory requirements dictated by the European Union Regulation.

References

  • Amariglio N, Hirshberg A, Scheithauer BW et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6(2):e1000029. https://doi.org/10.1371/journal.pmed.1000029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atassi N, Beghi E, Blanquer M et al (2016) Intraspinal stem cell transplantation for amyotrophic lateral sclerosis: ready for efficacy trials? Cytotherapy 18(12):1471–1475

    Article  CAS  Google Scholar 

  • Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L et al (2009) Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain 132(Pt 8):2239–2251

    Article  Google Scholar 

  • Bailey AM (2012) Balancing tissue and tumor formation in regenerative medicine. Sci Transl Med 4(147):147fs128

    Article  Google Scholar 

  • Ben-Hur T, Einstein O, Mizrachi-Kol R et al (2003) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41(1):73–80

    Article  Google Scholar 

  • Berkowitz AL, Miller MB, Mir SA et al (2016) Glioproliferative lesion of the spinal cord as a complication of “stem-cell tourism”. N Engl J Med 375(2):196–198

    Article  Google Scholar 

  • Capone C, Frigerio S, Fumagalli S et al (2007) Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS One 2(4):e373. https://doi.org/10.1371/journal.pone.0000373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter MK, Cui X, Hu ZY et al (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158(2):265–278

    Article  CAS  Google Scholar 

  • Carpenter MK, Frey-Vasconcells J, Rao MS (2009) Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 27(7):606–613

    Article  CAS  Google Scholar 

  • Daadi MM, Davis AS, Arac A et al (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41(3):516–523

    Article  Google Scholar 

  • Daley GQ, Hyun I, Apperley JF et al (2016) Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep 6(6):787–797

    Article  Google Scholar 

  • Diaferia GR, Conti L, Redaelli S et al (2011) Systematic chromosomal analysis of cultured mouse neural stem cell lines. Stem Cells Dev 20(8):1411–1423

    Article  CAS  Google Scholar 

  • Drago D, Cossetti C, Iraci N et al (2013) The stem cell secretome and its role in brain repair. Biochimie 95(12):2271–2285

    Article  CAS  Google Scholar 

  • Einstein O, Friedman-Levi Y, Grigoriadis N (2009) Transplanted neural precursors enhance host brain-derived myelin regeneration. J Neurosci 29(50):15694–15702

    Article  CAS  Google Scholar 

  • Feldman EL, Boulis NM, Hur J et al (2014) Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol 75(3):363–373

    Article  Google Scholar 

  • Ferrari D, Zalfa C, Nodari LR et al (2012) Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model. Cell Mol Life Sci 69(7):1193–1210

    Article  CAS  Google Scholar 

  • Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59(1):221–226

    Article  CAS  Google Scholar 

  • Foroni C, Galli R, Cipelletti B et al (2007) Resilience to transformation and inherent genetic and functional stability of adult neural stem cells ex vivo. Cancer Res 67(8):3725–3733

    Article  CAS  Google Scholar 

  • Frey-Vasconcells J, Whittlesey KJ, Baum E (2012) Translation of stem cell research: points to consider in designing preclinical animal studies. Stem Cells Transl Med 1(5):353–358

    Article  CAS  Google Scholar 

  • Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    Article  CAS  Google Scholar 

  • Garitaonandia I, Gonzalez R, Christiansen-Weber T et al (2016) Neural stem cell tumorigenicity and biodistribution assessment for phase i clinical trial in Parkinson’s disease. Sci Rep 6:34478. https://doi.org/10.1038/srep34478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelati M, Profico D, Projetti-Pensi M et al (2013) Culturing and expansion of “clinical grade” precursors cells from the fetal human central nervous system. Methods Mol Biol 1059:65–77

    Article  Google Scholar 

  • Giusto E, Donegà M, Cossetti C et al (2014) Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials. Exp Neurol 260:19–32

    Article  CAS  Google Scholar 

  • Glass JD (2010) The promise and the reality of stem-cell therapies for neurodegenerative diseases. Cerebrum 2010:24

    PubMed  PubMed Central  Google Scholar 

  • Glass JD, Boulis NM, Johe K et al (2012) Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 30(6):144–1151

    Article  Google Scholar 

  • Glass JD, Hertzberg VS, Boulis NM et al (2016) Transplantation of spinal cord-derived neural stem cells for ALS: analysis of phase 1 and 2 trials. Neurology 87(4):392–400

    Article  CAS  Google Scholar 

  • Gritti A, Galli R, Vescovi A (2000) Culture of stem cells of the CNS. In: Fedoroff S et al (eds) Protocols for neural cell culture. Humana, Totowa, pp 173–198

    Google Scholar 

  • Guo X, Johe K, Molnar P et al (2010) Characterization of a human fetal spinal cord stem cell line, NSI-566RSC, and its induction to functional motoneurons. J Tissue Eng Regen Med 4(3):181–193

    Article  CAS  Google Scholar 

  • Gupta N, Henry RG, Strober J et al (2012) Neural stem cell engraftment and myelination in the human brain. Sci Transl Med 4(155):155ra137

    Article  Google Scholar 

  • Heslop JA, Hammond TG, Santeramo I et al (2015) Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Transl Med 4(4):389–400

    Article  CAS  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28(2):254–260

    Article  CAS  Google Scholar 

  • Hoornaert CJ, Le Blon D, Quarta A et al (2017) Concise review: innate and adaptive immune recognition of allogeneic and xenogeneic cell transplants in the central nervous system. Stem Cells Transl Med 6(5):1434–1441

    Article  Google Scholar 

  • Iida T, Iwanami A, Sanosaka T et al (2017) Whole-genome DNA methylation analyses revealed epigenetic instability in tumorigenic human iPS cell-derived neural stem/progenitor cells. Stem Cells 35(5):1316–1327

    Article  CAS  Google Scholar 

  • Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26(13):3377–3389

    Article  CAS  Google Scholar 

  • Lee ST, Chu K, Jung KH et al (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131(Pt 3):616–629

    Article  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    Article  CAS  Google Scholar 

  • Luan Z, Liu W, Qu S et al (2012) Effects of neural progenitor cell transplantation in children with severe cerebral palsy. Cell Transplant 21(Suppl 1):S91–S98

    Article  Google Scholar 

  • Lunsford LD (2009) Stereotactic radiosurgery with the cyberknife for pituitary adenomas. J Korean Neurosurg Soc 45(6):405. https://doi.org/10.3340/jkns.2009.45.6.405

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzini L, Gelati M, Profico DC et al (2015) Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med 1:13–17

    Google Scholar 

  • Miura M, Miura Y, Padilla-Nash HM et al (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24(4):1095–1103

    Article  Google Scholar 

  • Neri M, Maderna C, Ferrari D et al (2010) Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice. PLoS One 5(4):e10145. https://doi.org/10.1371/journal.pone.0010145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parr AM, Kulbatski I, Tator CH (2007) Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma 24(5):835–845

    Article  Google Scholar 

  • Parr AM, Kulbatski I, Zahir T et al (2008) Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155(3):760–770

    Article  CAS  Google Scholar 

  • Pendharkar AV, Chua JY, Andres RH et al (2010) Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia. Stroke 41(9):2064–2070

    Article  Google Scholar 

  • Pluchino S, Quattrini A, Brambilla E et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422(6933):688–694

    Article  CAS  Google Scholar 

  • Pluchino S, Gritti A, Blezer E et al (2009a) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66(3):343–354

    Article  CAS  Google Scholar 

  • Pluchino S, Zanotti L, Brambilla E et al (2009b) Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One 4(6):e5959. https://doi.org/10.1371/journal.pone.0005959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock K, Stroemer P, Patel S et al (2006) A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol 199(1):143–155

    Article  Google Scholar 

  • Riley JP, Raore B, Taub JS et al (2011) Platform and cannula design improvements for spinal cord therapeutics delivery. Neurosurgery 69(2 Suppl Operative):ons147–154; discussion ons155

    Google Scholar 

  • Riley J, Federici T, Polak M et al (2012) Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery 71(2):405–416

    Article  Google Scholar 

  • Riley J, Glass J, Feldman EL et al (2014) Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery 74(1):77–87

    Article  Google Scholar 

  • Rota Nodari L, Ferrari D, Giani F et al (2010) Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 5(11):e14035. https://doi.org/10.1371/journal.pone.0014035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selden NR, Al-Uzri A, Huhn SL et al (2013) Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J Neurosurg Pediatr 11(6):643–652

    Article  Google Scholar 

  • Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7(2):118–130

    Article  CAS  Google Scholar 

  • Tadesse T, Gearing M, Senitzer D et al (2014) Analysis of graft survival in a trial of stem cell transplant in ALS. Ann Clin Transl Neurol 1(11):900–908

    Article  CAS  Google Scholar 

  • Uchida N, Buck DW, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97(26):14720–14725

    Article  CAS  Google Scholar 

  • Vescovi AL, Gritti A, Galli R et al (1999a) Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma 16(8):689–693

    Article  CAS  Google Scholar 

  • Vescovi AL, Parati EA, Gritti A et al (1999b) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156(1):71–83

    Article  CAS  Google Scholar 

  • Vukicevic V, Jauch A, Dinger TC et al (2010) Genetic instability and diminished differentiation capacity in long-term cultured mouse neurosphere cells. Mech Ageing Dev 131(2):124–132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Ferrari or Angelo Luigi Vescovi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrari, D., Gelati, M., Profico, D.C., Vescovi, A.L. (2018). Human Fetal Neural Stem Cells for Neurodegenerative Disease Treatment. In: Buzanska, L. (eds) Human Neural Stem Cells. Results and Problems in Cell Differentiation, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-319-93485-3_14

Download citation

Publish with us

Policies and ethics