Skip to main content

Environmental Niches for NTM and Their Impact on NTM Disease

  • Chapter
  • First Online:

Part of the book series: Respiratory Medicine ((RM))

Abstract

Nontuberculous mycobacteria (NTM) are ubiquitous inhabitants of natural and man-made water sources as well as outdoor and indoor dusts and soils. Individuals that are susceptible to NTM pulmonary disease are likely acquiring infection through inhalation of aerosolized organisms and possibly also from aspiration of ingested organisms. Numerous studies have documented the colonization of municipal water supplies, commercial and institutional plumbing, and household plumbing with NTM. In addition, NTM have been found in high numbers in various natural and man-made dusts and soils. This chapter will review the current knowledge regarding environmental sources of NTM and the complex factors associated with their survival and transmissibility to humans. Interventions seeking to reduce numbers of NTM in the environment require further study, but avoidance of activities associated with a high risk of aerosolization of water, dusts, and soils can be recommended to individuals with host factors that deem them susceptible to NTM disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Strollo SE, Adjemian J, Adjemian MK, Prevots DR. The burden of pulmonary nontuberculous mycobacterial disease in the United States. Ann Am Thorac Soc. 2015;12(10):1458–64.

    PubMed  PubMed Central  Google Scholar 

  2. Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185(8):881–6.

    PubMed  PubMed Central  Google Scholar 

  3. Angenent L, Kelley S, Amand A, et al. Molecular identification of potential pathogens in water and air of a hospital therapy pool. PNAS. 2005;102(13):4860–5.

    CAS  PubMed  Google Scholar 

  4. Falkinham JO. Environmental sources of nontuberculous mycobacteria. Clin Chest Med. 2015;36:35–41.

    PubMed  Google Scholar 

  5. George KL, Parker BC, Gruft H. Epidemiology of infection by nontuberculous mycobacteria. Growth and survival in natural waters. Am Rev Respir Dis. 1980;122(1):89–94.

    CAS  PubMed  Google Scholar 

  6. Glazer CS, Martyny JW, Lee B. Nontuberculous mycobacteria in aerosol droplets and bulk water samples from therapy pools and hot tubs. J Occup Environ Hyg. 2007;4(11):831–40.

    CAS  PubMed  Google Scholar 

  7. Lande L, Kwait R, Williams M, et al. Hot water heaters are serving as incubators for nontuberculous mycobacteria in the home environment. Am J Respir Crit Care Med. 2015;191:A5270.

    Google Scholar 

  8. Thomson R, Tolson C, Sidjabat H. Mycobacterium abscessus isolated from municipal water – a potential source of human infection. BMC Infect Dis. 2013;13:241.

    PubMed  PubMed Central  Google Scholar 

  9. Halstrom S, Price P, Thomson R. Review: environmental mycobacteria as a cause of human infection. Int J Mycobacteriol. 2015;4:81–91.

    PubMed  Google Scholar 

  10. Thomson R, Carter R, Tolson C, Huygens F, Hargreaves M. Factors associated with the isolation of nontuberculous mycobacteria (NTM) from a large municipal water system in Brisbane, Australia. BMC Microbiol. 2013;13:89.

    PubMed  PubMed Central  Google Scholar 

  11. Torvinen E, Suomalainen S, Lehtola M, Miettinen I, Zacheus O, Paulin L, et al. Mycobacteria in water and loose deposits of drinking water distribution systems in Finland. Appl Environ Microbiol. 2004;70:1973–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Covert T, Rodgers M, Reyes A, Stelma G Jr. Occurrence of nontuberculous mycobacteria in environmental samples. Appl Environ Microbiol. 1999;65(6):2492–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M. Isolation of NTM from household water and shower aerosols in patients with NTM pulmonary disease. J Clin Microbiol. 2013;51:3006–11.

    PubMed  PubMed Central  Google Scholar 

  14. Slosarek M, Kubin M, Jaresova M. Water-borne household infections due to Mycobacterium xenopi. Central Eur J Publ Hlth. 1993;1(2):78–80.

    CAS  Google Scholar 

  15. Donohue MJ, Mistry JH, Donohue JM, O’Connell K, King D, Byran J, et al. Increased frequency of nontuberculous mycobacteria detection at potable water taps within the United States. Environ Sci Technol. 2015;49(10):6127–33.

    CAS  PubMed  Google Scholar 

  16. Falkinham J III, Iseman M, de Haas P, van Soolingen D. Mycobacterium avium in a shower linked to pulmonary disease. J Water Health. 2008;6:209–13.

    PubMed  Google Scholar 

  17. Feazel L, Baumgartner L, Peterson K, Frank D, Harris J, Pace N. Opportunistic pathogens enriched in showerhead biofilms. PNAS. 2009;106(38):16393–9.

    CAS  PubMed  Google Scholar 

  18. Mangione EJ, Huitt G, Lenaway D, Beebe J, Bailey A, Figoski M, et al. Nontuberculous mycobacterial disease following hot tub exposure. Emerg Infect Dis. 2001;7(6):1039.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Falkinham JO III. Ecology of nontuberculous mycobacteria – where do human infections come from? Semin Respir Crit Care Med. 2013;34(1):95–102.

    PubMed  Google Scholar 

  20. Assi MA, Beg JC, Marshall WF, et al. Mycobacterium gordonae pulmonary disease associated with a continuous positive airway pressure device. Transpl Infect Dis. 2007;9(3):249–52.

    CAS  PubMed  Google Scholar 

  21. Iivanainen E, Northrup J, Arbeit RD, Ristola M, Katila M-L, Von Reyn CF. Isolation of mycobacteria from indoor swimming pools in Finland. APMIS. 1999;107:193–200.

    CAS  PubMed  Google Scholar 

  22. De Groote MA, Pace NR, Fulton K, Falkinham JO. Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol. 2006;72:7602–6.

    PubMed  PubMed Central  Google Scholar 

  23. Iivanainen E, Martikainen P, Raisanen M, Katila M. Mycobacteria in coniferous forest soils. FEMS Microbiol Ecol. 1997;23(4):325–32.

    CAS  Google Scholar 

  24. Dawson D. Potential pathogens among strains of mycobacteria isolated from house-dusts. Med J Aust. 1971;1:679–81.

    CAS  PubMed  Google Scholar 

  25. Torvinen E, Torkko P, Rintala ANH. Real-time PCR detection of environmental mycobacteria in house dust. J Microbiol Methods. 2010;82:78–84.

    CAS  PubMed  Google Scholar 

  26. Falkinham JO III, Norton CD, LeChevallier MW. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol. 2001;67(3):1225–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bendinger B, Rijnaarts HHM, Altendorf K, et al. Physicochemical cell surface and adhesive properties of Coryneform Bacteria related to the presence and chain length of Mycolic acids. Appl Environ Microbiol. 1993;59(11):3973–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stelmack PL, Gray MR, Pickard MA. Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol. 1999;65(1):163–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mullis SN, Falkinham JO III. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J Appl Microbiol. 2013;115(3):908–14.

    CAS  PubMed  Google Scholar 

  30. Norton CD, LeChevallier MW, Falkinham JO III. Survival of Mycobacterium avium in a model distribution system. Water Res. 2004;38:1457–66.

    CAS  PubMed  Google Scholar 

  31. Pelletier PA, du Moulin GC, Stottmeier KD. Mycobacteria in public water supplies: comparative resistance to chlorine. Microbiol Sci. 1988;5(5):147–8.

    CAS  PubMed  Google Scholar 

  32. du Moulin GC, Sherman IH, Hoaglin DC, et al. Mycobacterium avium complex, an emerging pathogen in Massachusetts. J Clin Microbiol. 1985;22(1):9–12.

    PubMed  PubMed Central  Google Scholar 

  33. Norton CD, LeChevallier M. A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol. 2000;66(1):268–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sousa S, Bandeira M, Carvalho PA, Duarte A, Jordao L. Nontuberculous mycobacteria pathogenesis and biofilm assembly. Int J Mycobacteriol. 2015;4:36–43.

    PubMed  Google Scholar 

  35. Lumb R, Stapledon R, Scroop A, Bond P, et al. Investigation of spa pools associated with lung disorders caused by Mycobacterium avium complex in immunocompetent adults. Appl Environ Microbiol. 2004;70:4906–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Joseph O, Falkinham JO III. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17(3):419–24.

    Google Scholar 

  37. Nishiuchi Y, Maekura R, Kitada S, et al. The recovery of Mycobacterium avium-intracellulare complex (MAC) from the residential bathrooms of patients with pulmonary MAC. Clin Infect Dis. 2007;45(3):347–51.

    CAS  PubMed  Google Scholar 

  38. Lande L, Peterson D, Sawicki J, et al. Municipal water supply as a major source for Mycobacterium Avium pulmonary disease: a comparison of household and respiratory isolates. Am J Respir Crit Care Med. 2013;187:A5100.

    Google Scholar 

  39. Whiley H, Giglio S, Bentham R. Opportunistic pathogens Mycobacterium Avium complex (MAC) and Legionella spp. Colonise Model Shower. Pathogens. 2015;4(3):590–8.

    PubMed  PubMed Central  Google Scholar 

  40. Falkinham JO III. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol. 2009;107(2):356–67.

    CAS  PubMed  Google Scholar 

  41. Rodgers MR, Blackstone BJ, Reyes AL, Covert TC. Colonisation of point of use water filters by silver resistant non-tuberculous mycobacteria. J Clin Pathol. 1999;52(8):629.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Strahl ED, Gillaspy GE, Falkinham JO III. Fluorescent acid fast microscopy for measuring phagocytosis of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum by Tetrahymena pyriformis and their intracellular growth. Appl Environ Microbiol. 2001;67:4432–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ovrutsky AR, Chan ED, Kartalija M, et al. Cooccurrence of free-living amoebae and nontuberculous mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol. 2013;79(10):3185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Delafont V, Mougari F, Cambau E, et al. First evidence of amoebae-mycobacteria association in drinking water network. Environ Sci Technol. 2014;48(20):11872–82.

    CAS  PubMed  Google Scholar 

  45. Coulon C, Collignon A, McDonnell G, Thomas V. Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J Clin Microbiol. 2010;48(8):2689–97.

    PubMed  PubMed Central  Google Scholar 

  46. Thomas V, Bouchez T, Nicolas V, et al. Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol. 2004;97(5):950–63.

    CAS  PubMed  Google Scholar 

  47. Cirillo JD, Falkow S, Tompkins LS, Bermudez LE. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun. 1997;65(9):3759–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. duMoulin GC, Stottmeier KD, Pelletier PA, et al. Concentration of Mycobacterium avium by hospital hot water systems. JAMA. 1988;260:1599–601.

    CAS  Google Scholar 

  49. Tichenor WS, Thurlow J, McNulty S, Brown-Elliott BA, Wallace RJ Jr, Falkinham JO III. Nontuberculous mycobacteria in household plumbing as possible cause of chronic rhinosinusitis. Emerg Infect Dis. 2012;18(10):1612–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schulze-Röbbecke R, Buchholtz K. Heat susceptibility of aquatic mycobacteria. Appl Environ Microbiol. 1992;58(6):1869–73.

    PubMed  PubMed Central  Google Scholar 

  51. Grant IR, Ball HJ, Rowe MT. Thermal inactivation of several Mycobacterium spp. in milk by pasteurization. Lett Appl Microbiol. 1996;22(3):253–6.

    CAS  PubMed  Google Scholar 

  52. Sebakova H, Kozisek F, Mudra R, et al. Incidence of nontuberculous mycobacteria in four hot water systems using various types of disinfection. Can J Microbiol. 2008;54(11):891–8.

    CAS  PubMed  Google Scholar 

  53. Zwadyk P Jr, Down JA, Myers N, et al. Rendering of mycobacteria safe for molecular diagnostic studies and development of a lysis method for strand displacement amplification and PCR. J Clin Microbiol. 1994 Sep;32(9):2140–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Black WC, Berk SG. Cooling towers – a potential environmental source of slow-growing mycobacterial species. AIHA J (Fairfax, VA). 2003;64(2):238–42.

    Google Scholar 

  55. Adrados B, Julián E, Codony F, Torrents E, Luquin M, Morató J. Prevalence and concentration of non-tuberculous mycobacteria in cooling towers by means of quantitative PCR: a prospective study. Curr Microbiol. 2011;62(1):313–9.

    CAS  PubMed  Google Scholar 

  56. Torvinen E, Suomalainen S, Paulin L, Kusnetsov J. Mycobacteria in Finnish cooling tower waters. APMIS. 2014;122(4):353–8.

    PubMed  Google Scholar 

  57. Ichiyama S, Shimokata K, Tsukamura M. The isolation of Mycobacterium avium complex from soil, water and dusts. Microbiol Immunol. 1998;32:733–9.

    Google Scholar 

  58. Reed C, von Reyn CF, Chamblee S, Ellerbrock TV, Johnson JW, Marsh BJ, Johnson LS, Trenschel RJ, Horsburgh CR Jr. Environmental risk factors for infection with Mycobacterium avium complex. Am J Epidemiol. 2006;164(1):32–40.

    PubMed  Google Scholar 

  59. Fujita K, Ito Y, Hirai T. Genetic relatedness of Mycobacterium avium-intracellulare complex isolates from patients with pulmonary MAC disease and their residential soils. Clin Microbiol Infect. 2013;19(6):537–41.

    CAS  PubMed  Google Scholar 

  60. Falkinham JO III. Mycobacterial aerosols and respiratory disease. Emerg Infect Dis. 2003;9(7):763–7.

    PubMed  PubMed Central  Google Scholar 

  61. Parker BC, Ford MA, Gruft H, Falkinham JO III. Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural water. Am Rev Respir Dis. 1983;128:652–6.

    CAS  PubMed  Google Scholar 

  62. Gruft H, Katz J, Blanchard DC. Postulated source of Mycobacterium intracellulare (Battey) infection. Am J Epidemiol. 1975;102:311–8.

    CAS  PubMed  Google Scholar 

  63. Wendt S, George K, Parker B. Epidemiology of infection by nontuberculous mycobacteria III. Isolation of potentially pathogenic mycobacteria from aerosols. Am Rev Respir Dis. 1980;122(2):259–63.

    CAS  PubMed  Google Scholar 

  64. Wells WF. Airborne contagion and air hygiene. Cambridge, MA: Harvard University Press; 1955.

    Google Scholar 

  65. Zhou Y, Benson JM, Irvin C, et al. Particle size distribution and inhalation dose of shower water under selected operating conditions. Inhal Toxicol. 2007 Apr;19(4):333–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Porteous NB, Redding SW, Jorgensen JH. Isolation of non-tuberculosis mycobacteria in treated dental unit waterlines. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98(1):40–4.

    CAS  PubMed  Google Scholar 

  67. Dutil S, Veillette M, Mériaux A, et al. Aerosolization of mycobacteria and legionellae during dental treatment: low exposure despite dental unit contamination. Environ Microbiol. 2007;9(11):2836–43.

    CAS  PubMed  Google Scholar 

  68. Schulze-Röbbecke R, Feldmann C, Fischeder R, et al. Dental units: an environmental study of sources of potentially pathogenic mycobacteria. Tuber Lung Dis. 1995;76(4):318–23.

    PubMed  Google Scholar 

  69. Jr Wallace RJ, Iakhiaeva E, Williams MD, et al. Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilm samples of patients in the United States with Mycobacterium avium complex respiratory disease. J Clin Microbiol. 2013;51(6):1747–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cayer MP, Veillette M, Pageau P, et al. Identification of mycobacteria in peat moss processing plants: application of molecular biology approaches. Can J Microbiol. 2007;53(1):92–9.

    CAS  PubMed  Google Scholar 

  71. Reznikov M, Leggo JH, Dawson DJ. Investigation by seroagglutination of strains of the Mycobacterium intracellulare-M. scrofulaceum group from house dusts and sputum in Southeastern Queensland. Am Rev Respir Dis. 1971;104(6):951–3.

    CAS  PubMed  Google Scholar 

  72. Perkins KM, Lawsin A, Hasan NA, et al. Notes from the field: Mycobacterium chimaera contamination of heater-cooler devices used in cardiac surgery – United States. MMWR Morb Mortal Wkly Rep. 2016;65(40):1117–8.

    PubMed  Google Scholar 

  73. Sommerstein R, Rüegg C, Kohler P. Transmission of Mycobacterium chimaera from heater-cooler units during cardiac surgery despite an ultraclean air ventilation system. Emerg Infect Dis. 2016;22(6):1008–13.

    PubMed  PubMed Central  Google Scholar 

  74. Marras TK, Daley CL. Epidemiology of human pulmonary infection with nontuberculous mycobacteria. Clin Chest Med. 2002;23:553–6.

    PubMed  Google Scholar 

  75. Hoefsloot W, van Ingen J, Andrejak C. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604–13.

    PubMed  Google Scholar 

  76. Prevots DR, Adjemian J, Fernandez AG, et al. Environmental risks for nontuberculous mycobacteria. Individual exposures and climatic factors in the cystic fibrosis population. Ann Am Thorac Soc. 2014;11:1032–8.

    PubMed  PubMed Central  Google Scholar 

  77. Maekawa K, Ito Y, Hirai T, et al. Environmental risk factors for pulmonary Mycobacterium avium-intracellulare complex disease. Chest. 2011;140:723–9.

    PubMed  Google Scholar 

  78. Lee BY, Kim S, Hong YK, et al. Risk factors for recurrence after successful treatment of Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2015;59:2972–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Boyle DP, Zembower TR, Reddy S, Qi C. Comparison of clinical features, virulence, and relapse among Mycobacterium avium complex species. Am J Respir Crit Care Med. 2015;191:1310–7.

    CAS  PubMed  Google Scholar 

  80. Field SK, Fisher D, Cowie RL. Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest. 2004;126:566–81.

    PubMed  Google Scholar 

  81. Wallace RJ Jr, Zhang Y, Brown-Elliott BA, et al. Repeat positive cultures in Mycobacterium intracellulare lung disease after macrolide therapy represent new infections in patients with nodular bronchiectasis. J Infect Dis. 2002;186:266–73.

    CAS  PubMed  Google Scholar 

  82. Boyle DP, Zembower TR, Qi C. Relapse versus reinfection of Mycobacterium avium complex pulmonary disease. Patient characteristics and macrolide susceptibility. Ann Am Thorac Soc. 2016;13:1956–61.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah Lande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lande, L. (2019). Environmental Niches for NTM and Their Impact on NTM Disease. In: Griffith, D. (eds) Nontuberculous Mycobacterial Disease. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-93473-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93473-0_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-93472-3

  • Online ISBN: 978-3-319-93473-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics