Skip to main content

Laboratory Diagnosis and Antimicrobial Susceptibility Testing of Nontuberculous Mycobacteria

  • Chapter
  • First Online:

Part of the book series: Respiratory Medicine ((RM))

Abstract

This chapter discusses principles and methods for the laboratory identification of nontuberculous mycobacteria (NTM) beginning with biochemical and chemotaxonomic methods [high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC), and gas-liquid chromatography (GLC)] which have widely been replaced by the more definitive molecular methods including commercial probe technology, gene sequencing, and more recently mass spectrometry (MS) using the matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF). The MALDI-TOF-MS currently remains non-validated or beyond the capability of many clinical laboratories to implement into the NTM identification algorithm. As with all molecular methodologies, the creation and maintenance of adequate databases are critical to the success of implementation of these techniques. Notably, only limited gene sequencing (i.e., 16S rRNA gene) has been addressed by the Clinical and Laboratory Standards Institute (CLSI), and strict cutoff values for other genes are currently not available.

Early methods of antimicrobial susceptibility testing (AST) including agar dilution and agar disk diffusion have been replaced by broth microdilution as recommended by the CLSI M24-A guidelines published in 2003, 2011, and, more recently, proposals for revisions for a 2017 document. The CLSI has determined MIC breakpoints for multiple antimicrobials used for treatment of NTM disease and advised specific reporting criteria.

Genomic relatedness/diversity of species and subspecies along with antimicrobial resistance and biological properties such as virulence and pathogenic potential by whole genome sequencing is emerging as an important tool in both the identification and antimicrobial susceptibility of NTM. Currently, however, due to its requirement for bioinformatics and ability to interpret and analyze the sequence data which are not available in most clinical laboratories, the whole genomic approach has only been implemented in specialized research laboratories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev. 2014;27:727–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev. 2003;16:319–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Turenne CY, Tschetter L, Wolfe J, Kabani A. Necessity of quality-controlled 16S rRNA gene sequence databases: identifying nontuberculous Mycobacterium species. J Clin Microbiol. 2001;39:3637–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vestal AL. Procedures for the isolation and identification of mycobacteria, vol. 1995. In: US Department of Health E, and Welfare, editor. Washington, DC: United States Government Printint Office; 1969. p. 1–118.

    Google Scholar 

  5. Brown-Elliott BA, Wallace RJ Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev. 2002;15:716–46.

    PubMed  PubMed Central  Google Scholar 

  6. Wallace RJ Jr, Swenson JM, Silcox VA, Good RC. Disk diffusion testing with polymyxin and amikacin for differentiation of Mycobacterium fortuitum and Mycobacterium chelonei. J Clin Microbiol. 1982;16:1003–6.

    PubMed  PubMed Central  Google Scholar 

  7. Wallace RJ Jr, Wiss K, Bushby MB, Hollowell DC. In vitro activity of trimethoprim and sulfamethoxazole against the nontuberculous mycobacteria. Rev Infect Dis. 1982;4:326–31.

    CAS  PubMed  Google Scholar 

  8. Wallace RJ Jr, Brown BA, Onyi GO. Susceptibilities of Mycobacterium fortuitum biovar. fortuitum and the two subgroups of Mycobacterium chelonae to imipenem, cefmetazole, cefoxitin, and amoxicillin-clavulanic acid. Antimicrob Agents Chemother. 1991;35:773–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wallace RJ Jr, Brown BA, Onyi G. Skin, soft tissue, and bone infections due to Mycobacterium chelonae subspecies chelonae – importance of prior corticosteroid therapy, frequency of disseminated infections, and resistance to oral antimicrobials other than clarithromycin. J Infect Dis. 1992;166:405–12.

    PubMed  Google Scholar 

  10. Wilson RW, Steingrube VA, Böttger EC, Springer B, Brown-Elliott BA, Vincent V, Jost KC Jr, Zhang Y, Garcia MJ, Chiu SH, Onyi GO, Rossmoore H, Nash DR, Wallace RJ Jr. Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks, and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol. 2001;51:1751–64.

    CAS  PubMed  Google Scholar 

  11. Wallace RJJ, Brown-Elliott BA, Brown J, Steigerwalt AG, Hall L, Woods G, Cloud J, Mann L, Wilson R, Crist C, Jost KC Jr, Byrer DE, Tang J, Cooper J, Stamenova E, Campbell B, Wolfe J, Turenne C. Polyphasic characterization reveals that the human pathogen Mycobacterium peregrinum type II belongs to the bovine pathogen species Mycobacterium senegalense. J Clin Microbiol. 2005;43:5925–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wallace RJ Jr, Bedsole G, Sumter G, Sanders CV, Steele LC, Brown BA, Smith J, Graham DR. Activities of ciprofloxacin and ofloxacin against rapidly growing mycobacteria with demonstration of acquired resistance following single-drug therapy. Antimicrob Agents Chemother. 1990;34:65–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wallace RJ Jr, Silcox VA, Tsukamura M, Brown BA, Kilburn JO, Butler WR, Onyi G. Clinical significance, biochemical features, and susceptibility patterns of sporadic isolates of the Mycobacterium chelonae-like organism. J Clin Microbiol. 1993;31:3231–9.

    PubMed  PubMed Central  Google Scholar 

  14. Clinical and Laboratory Standards Institute. Laboratory detection and identification of mycobacteria; approved guidelines. CLSI document M48-A. 2008.

    Google Scholar 

  15. Brown-Elliott BA, Wallace RJ Jr. Enhancement of conventional phenotypic methods with molecular-based methods for the more definitive identification of nontuberculous mycobacteria. Clin Microbiol Newsl. 2012;34:109–15.

    Google Scholar 

  16. Soini H, Musser JM. Molecular diagnosis of mycobacteria. Clin Chem. 2001;47:809–14.

    CAS  PubMed  Google Scholar 

  17. Jagielski T, Minias A, van Ingen J, Rastogi N, Brzostek A, Żaczek A, Dziadek J. Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin Microbiol Rev. 2016;29:239–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tortoli E, Pecorari M, Fabio G, Messinò M, Fabio A. Commercial DNA probes for mycobacteria incorrectly identify a number of less frequently encountered species. J Clin Microbiol. 2010;48:307–10.

    CAS  PubMed  Google Scholar 

  19. Cook VJ, Turenne CY, Wolfe J, Pauls R, Kabani A. Conventional methods versus 16S ribosomal DNA sequencing for identification of nontuberculous mycobacteria: cost analysis. J Clin Microbiol. 2003;41:1010–5.

    PubMed  PubMed Central  Google Scholar 

  20. Reisner BS, Gatson AM, Woods GL. Use of Gen-Probe AccuProbes to identify Mycobacterium avium complex, Mycobacterium tuberculosis complex, Mycobacterium kansasii, and Mycobacterium gordonae directly from BACTEC TB broth cultures. J Clin Microbiol. 1994;32:2995–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. LeBrun L, Espinasse F, Poveda JD, Vincent-Levy-Frebault V. Evaluation of nonradioactive DNA probes for identification of mycobacteria. J Clin Microbiol. 1992;30:2476–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goto M, Oka S, Okuzumi K, Kimura S, Shimada K. Evaluation of acridinium-ester-labeled DNA probes for identification of Mycobacterium tuberculosis and Mycobacterium avium-Mycobacterium intracellulare complex in culture. J Clin Microbiol. 1991;29:2473–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brown-Elliott BA, Wallace RJ Jr. Mycobacterium: clinical and laboratory characteristics of rapidly growing mycobacteria. In: Manual of clinical microbiology, vol. 1. 11th ed. Washington, DC: ASM Press; 2015.

    Google Scholar 

  24. de Zwaan R, van Ingen J, van Soolingen D. Utility of rpoB gene sequencing for identification of nontuberculous mycobacteria in the Netherlands. J Clin Microbiol. 2014;52:2544–51.

    PubMed  PubMed Central  Google Scholar 

  25. Blauwendraat C, Dixon GLJ, Hartley JC, Foweraker J, Harris KA. The use of a two-gene sequencing approach to accurately distinguish between the species within the Mycobacterium abscessus complex and Mycobacterium chelonae. Eur J Clin Microbiol Infect Dis. 2012;31:1847–53.

    CAS  PubMed  Google Scholar 

  26. Tortoli E, Mariottini A, Mazzarelli G. Evaluation of INNO-LiPA MYCOBACTERIA v2: improved reverse hybridization multiple DNA probe assay for mycobacterial identification. J Clin Microbiol. 2003;41:4418–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Simner PJ, Stenger S, Richter E, Brown-Elliott BA, Wallace RJ Jr, Wengenack NL. Mycobacterium: clinical and laboratory characteristics of slowly growing mycobacteria. In: Manual of clinical microbiology, vol. 1. 11th ed. Washington, DC: ASM Press; 2015.

    Google Scholar 

  28. Richter E, Rüsch-Gerdes S, Hillemann D. Evaluation of the GenoType Mycobacterium assay for identification of mycobacterial species from cultures. J Clin Microbiol. 2006;44:1769–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Russo C, Tortoli E, Menichella D. Evaluation of the new GenoType mycobacterium assay for identification of mycobacterial disease. J Clin Microbiol. 2006;44:334–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Quezel-Guerraz NM, Arriaza MM, Avila JA, Sanchez-Yebra R, Martinez-Lirola MJ. Evaluation of the Speed-oligo(R) Mycobacteria assay for identification of Mycobacterium spp. from fresh liquid and solid cultures of human clinical samples. Diagn Microbiol Infect Dis. 2010;68:123–31.

    CAS  PubMed  Google Scholar 

  31. Lara-Oya A, Mendoza-Lopez P, Rodriguez-Granger J, Fernandez-Sanchez AM, Bermudez-Ruiz MP, Toro-Peinado I, Palop-Bornas B, Navarro-Mari JM, Martinez-Lirola MJ. Evaluation of the speed-oligo direct Mycobacterium tuberculosis assay for molecular detection of mycobacteria in clinical respiratory specimens. J Clin Microbiol. 2013;51:77–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hofmann-Thiel S, Turaev L, Alnour T, Drath L, Mullerova M, Hoffmann H. Multi-centre evaluation of the speed-oligo Mycobacteria assay for differentiation of Mycobacterium spp. in clinical isolates. BMC Infect Dis. 2011;11:353–9.

    PubMed  PubMed Central  Google Scholar 

  33. Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993;31:175–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Steingrube VA, Gibson JL, Brown BA, Zhang Y, Wilson RW, Rajagopalan M, Wallace RJ Jr. PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria [ERRATUM 1995;33:1686]. J Clin Microbiol. 1995;33:149–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Devallois A, Goh KS, Rastogi N. Rapid identification of mycobacteria to species level by PCR-restriction fragment length polymorphism analysis of the hsp65 gene and proposition of an algorithm to differentiate 34 mycobacterial species. J Clin Microbiol. 1997;35:2969–73.

    Google Scholar 

  36. Dai J, Chen Y, Lauzardo M. Web-accessible database of hsp65 sequences from Mycobacterium reference strains. J Clin Microbiol. 2011;49:2296–303.

    PubMed  PubMed Central  Google Scholar 

  37. Macheras E, Roux A-L, Bastian S, Leão SC, Palaci M, Silvadon-Tardy V, Gutierrez C, Richter E, Rüsch-Gerdes S, Pfyffer G, Bodmer T, Cambau E, Gaillard J-L, Heym B. Multilocus sequence analysis and rpo B sequencing of Mycobacterium abscessus (sensu Lato) strains. J Clin Microbiol. 2011;49:491–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hall L, Doerr KA, Wohlfiel SL, Roberts GD. Evaluation of the MicroSeq System for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol. 2003;41:1447–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kirschner P, Springer B, Vogel U, Meier A, Wrede A, Kiekenbeck M, Bange FC, Böttger EC. Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2 year experience in a clinical laboratory. J Clin Microbiol. 1993;31:2882–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Patel JB, Leonard DGB, Pan X, Musser JM, Berman RE, Nachamkin I. Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA bacterial identification system. J Clin Microbiol. 2000;38:246–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Clinical and Laboratory Standards Institute. Interpretive criteria for identification of bacteria and fungi by DNA target sequencing: approved guideline. CLSI document MM18-A. 2008.

    Google Scholar 

  42. Brown BA, Springer B, Steingrube VA, Wilson RW, Pfyffer GE, Garcia MJ, Menendez MC, Rodriguez-Salgado B, Jost KC Jr, Chiu SH, Onyi GO, Bottger EC, Wallace RJ Jr. Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: a cooperative study from the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol. 1999;49:1493–511.

    CAS  PubMed  Google Scholar 

  43. Tortoli E. Phylogeny of the genus Mycobacterium: many doubts, few certainties. Infect Genet Evol. 2012;12:827–31.

    PubMed  Google Scholar 

  44. Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late pigmented rapidly growing mycobacteria. J Clin Microbiol. 2003;41:5699–708.

    Google Scholar 

  45. Ben Salah I, Adekambi T, Raoult D, Drancourt M. rpoB sequence-based identification of Mycobacterium avium complex species. Microbiology. 2008;154:3715–23.

    Google Scholar 

  46. Kim B-J, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, Kim EC, Cha CY, Kook YH. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol. 1999;37:1714–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee H, Bang H-E, Bai G-H, Cho S-N. Novel polymorphic region of the rpoB gene containing Mycobacterium species-specific sequences and its use in identification of mycobacteria. J Clin Microbiol. 2003;41:2213–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tortoli E. Standard operating procedure for optimal identification of mycobacteria using 16S rRNA gene sequences. Stand Genomic Sci. 2010;3:145–52.

    PubMed  PubMed Central  Google Scholar 

  49. Ringuet H, Akoua-Koffi C, Honore S, Varnerot A, Vincent V, Berche P, Gaillard JL, Pierre-Audigier C. hsp65 sequencing for identification of rapidly growing mycobacteria. J Clin Microbiol. 1999;37:852–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Turenne CY, Semret M, Cousins DV, Collins DM, Behr MA. Sequencing of hsp65 distinguishes among subsets of the Mycobacterium avium complex. J Clin Microbiol. 2006;44:433–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009;53:1367–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim H-Y, Kim B-J, Kook Y, Yun Y-J, Shin JH, Kook YH. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol. 2010;54:347–53.

    CAS  PubMed  Google Scholar 

  53. Koh WJ, Jeon K, Lee NY, Kim B-J, Kook Y-H, Lee S-H, Park Y-K, Kim CK, Shin SJ, Huitt GA, Daley CL, Kwon OJ. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183:405–10.

    PubMed  Google Scholar 

  54. Nash KA, Andini N, Zhang Y, Brown-Elliott BA, Wallace RJ Jr. Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother. 2006;50:3476–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nash KA. Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38). Antimicrob Agents Chemother. 2003;47:3053–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nash DR, Wallace RJ Jr, Steingrube VA, Udou T, Steele LC, Forrester GD. Characterization of beta-lactamases in Mycobacterium fortuitum including a role in beta-lactam resistance and evidence of partial inducibility. Am Rev Respir Dis. 1986;134:1276–82.

    CAS  PubMed  Google Scholar 

  57. Brown-Elliott BA, Vasireddy S, Vasireddy R, Iakhiaeva E, Howard ST, Nash KA, Parodi N, Strong A, Gee M, Smith T, Wallace RJ Jr. Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. J Clin Microbiol. 2015;53:1211–5; ERRATUM J Clin Microbiol 1254:1172, April 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown-Elliott BA, Hanson K, Vasireddy S, Iakhiaeva E, Nash KA, Vasireddy R, Parodi N, Smith T, Gee M, Strong A, Baker A, Cohen S, Muir H, Slechta ES, Wallace RJ Jr. Absence of a functional erm gene in isolates of Mycobacterium immunogenum and the Mycobacterium mucogenicum group, based on in vitro clarithromycin susceptibility. J Clin Microbiol. 2015;53:875–8.

    PubMed  PubMed Central  Google Scholar 

  59. Adékambi T, Drancourt M. Dissection of phylogenetic relationships among nineteen rapidly growing mycobacterium species by 16S rRNA, hsp65, sodA, recA, and rpoB gene sequencing. Int J Syst Evol Microbiol. 2004;54:2095–105.

    PubMed  Google Scholar 

  60. Park H, Jang H, Kim J, Chung B, Chang CL, Park SK, Song S. Detection and identification of mycobacteria by amplification of the internal transcribed spacer regions with genus- and species-specific PCR primers. J Clin Microbiol. 2000;38:4080–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Macheras E, Roux A-L, Ripoll F, Sivadon-Tardy V, Gutierrez C, Gaillard J-L, Heym B. Inaccuracy of single-target sequencing for discriminating species of the Mycobacterium abscessus group. J Clin Microbiol. 2009;47:2596–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Adékambi T, Raoult D, D M. Mycobacterium barrassiae sp. nov., a Mycobacterium moriokaense group species associated with chronic pneumonia. J Clin Microbiol. 2006;44:3493–8.

    PubMed  PubMed Central  Google Scholar 

  63. Roth A, Reischl U, Streubel A, Naumann L, Kroppenstedt RM, Habicht M, Fischer M, Mauch H. Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. J Clin Microbiol. 2000;38:1094–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mohamed AM, Kuyper DJ, Iwen PC, Ali HH, Bastola DR, Hinrichs SH. Computational approach involving use of the internal transcribed spacer 1 region for identification of Mycobacterium species. J Clin Microbiol. 2005;43:3811–2817.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Frothingham R, Wilson KH. Molecular phylogeny of the Mycobacterium avium complex demonstrates clinically meaningful divisions. J Infect Dis. 1994;169:305–12.

    CAS  PubMed  Google Scholar 

  66. Frothingham R, Wilson KH. Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol. 1993;175:2818–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim H-Y, Kook Y, Yun Y-J, Park CG, Lee NY, Shim TS, Kim B-J, Kook Y-H. Proportions of Mycobacterium massiliense and Mycobacterium bolletii in Korean Mycobacterium chelonae-Mycobacterium abscessus group isolates. J Clin Microbiol. 2008;46:3384–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bao JR, Master RN, Schwab DA, Clark RB. Identification of acid-fast bacilli using pyrosequencing analysis. Diagn Microbiol Infect Dis. 2010;67:234–8.

    CAS  PubMed  Google Scholar 

  69. Heller LC, Jones M, Widen RH. Comparison of DNA pyrosequencing with alternative methods for identification of mycobacteria. J Clin Microbiol. 2008;46:2092–4.

    PubMed  PubMed Central  Google Scholar 

  70. Tuohy MJ, Hall GS, Sholtis M, Procop GW. Pyrosequencing as a tool for the identification of common isolates of Mycobacterium sp. Diagn Microbiol Infect Dis. 2005;51:245–50.

    CAS  PubMed  Google Scholar 

  71. Arnold C, Barrett A, Cross L, Magee JG. The use of rpoB sequence analysis in the differentiation of Mycobacterium abscessus and Mycobacterium chelonae: a critical judgement in cystic fibrosis? Clin Microbiol Infect. 2012;18:E131–3.

    CAS  PubMed  Google Scholar 

  72. Buckwalter SP, Olson SL, Connelly BJ, Lucas BC, Rodning AA, Walchak RC, Deml SM, Wohlfiel SL, Wengenack NL. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Mycobacterium species, Nocardia species, and other aerobic actinomycetes. J Clin Microbiol. 2016;54:376–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Saleeb PG, Drake SK, Murray PR, Zelazny AM. Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:1790–4.

    PubMed  PubMed Central  Google Scholar 

  74. Rodríguez-Sánchez B, Ruiz-Serrano MJ, Ruiz A, Timke M, Kostrzewa M, Bouza E. Evaluation of MALDI biotyper mycobacterial library v3.0 for identification of nontuberculous mycobacteria. J Clin Microbiol. 2016;54:1144–7.

    PubMed  PubMed Central  Google Scholar 

  75. Hettick JM, Kashon ML, Slaven JE, Ma Y, Simpson JP, Siegel PD, Mazurek GN, Weissman DN. Discrimination of intact mycobacteria at the strain level: a combined MALDI-TOF MS and biostatistical analysis. Proteomics. 2006;6:6416–25.

    CAS  PubMed  Google Scholar 

  76. Lefmann M, Honsich C, Böcker S, Storm N, von Wintzingerode F, Schlötelburg C, Moter A, van den Boom D, Göbel UB. Novel mass spectrometry-based tool for genotypic identification of mycobacteria. J Clin Microbiol. 2004;42:339–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lotz A, Gerroni A, Beretti J-L, Dauphin B, Carbonnelle E, Guet-Revillet H, Veziris N, Heym B, Jarlier V, Gaillard J-L, Pierre-Audigier C, Frapy E, Berche P, Nassif X, Bille E. Rapid identification of mycobacterial whole cells in solid and liquid culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010;48:4481–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan N, Sampath R, Abu Saleh OM, Tweet MS, Jevremovic D, Alniemi S, Wengenack NL, Sampathkumar P, Badley AD. Disseminated Mycobacterium chimaera infection after cardiothoracic surgery. Open Forum Infect Dis. 2016;3:1–3.

    CAS  Google Scholar 

  79. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:2233–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wallace RJ Jr, Zhang Y, Brown-Elliott BA, Yakrus MA, Wilson RW, Mann L, Couch L, Girard WM, Griffith DE. Repeat positive cultures in Mycobacterium intracellulare lung disease after macrolide therapy represent new infections in patients with nodular bronchiectasis. J Infect Dis. 2002;186:266–73.

    CAS  PubMed  Google Scholar 

  81. Zhang Y, Yakrus MA, Graviss EA, Williams-Bouyer N, Turenne C, Kabani A, Wallace RJ Jr. Pulsed-field gel electrophoresis study of Mycobacterium abscessus isolates previously affected by DNA degradation. J Clin Microbiol. 2004;42:5582–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Howard ST, Newman KL, McNulty S, Brown-Elliott BA, Vasireddy R, Bridge L, Wallace RJ Jr. Insertion site and distribution of a genomic island conferring DNA phosphorothioation in the Mycobacterium abscessus complex. Microbiology. 2013;159:2323–32.

    CAS  PubMed  Google Scholar 

  83. Hector JSR, Pang Y, Mazurek GH, Zhang Y, Brown BA, Wallace RJ Jr. Large restriction fragment patterns of genomic Mycobacterium fortuitum DNA as strain-specific markers and their use in epidemiologic investigation of four nosocomial outbreaks. J Clin Microbiol. 1992;30:1250–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lai KK, Brown BA, Westerling JA, Fontecchio SA, Zhang Y, Wallace RJ Jr. Long-term laboratory contamination by Mycobacterium abscessus resulting in two pseudo-outbreaks: recognition with use of random amplified polymorphic DNA (RAPD) polymerase chain reaction. Clin Infect Dis. 1998;27:169–75.

    CAS  PubMed  Google Scholar 

  85. Brown-Elliott BA, Wallace RJ Jr. Nontuberculous mycobacteria. In: Mayhall CG, editor. Hospital epidemiology and infection control. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 593–608.

    Google Scholar 

  86. Griffith DE, Brown-Elliott BA, Langsjoen B, Zhang Y, Pan X, Girard W, Nelson K, Caccitolo J, Alvarez J, Shepherd S, Wilson R, Graviss EA, Wallace RJ Jr. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006;174:928–34.

    CAS  PubMed  Google Scholar 

  87. Wallace RJ Jr, Zhang Y, Brown BA, Dawson D, Murphy DT, Wilson R, Griffith DE. Polyclonal Mycobacterium avium complex infections in patients with nodular bronchiectasis. Am J Respir Crit Care Med. 1998;158:1235–44.

    PubMed  Google Scholar 

  88. Zelazny AM, Root JM, Shea YR, Colombo RE, Shamputa IC, Stock F, Conlan SS, McNulty S, Brown-Elliott BA, Wallace RJ Jr, Olivier KN, Holland SM, Sampaio EP. Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense and Mycobacterium bolletii. J Clin Microbiol. 2009;47:1985–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cangelosi GA, Freeman RJ, Lewis KN, Livingston-Rosanoff D, Shah KS, Milan SJ, Goldberg SV. Evaluation of a high-throughput repetitive-sequence-based PCR system for DNA fingerprinting of Mycobacterium tuberculosis and Mycobacterium avium complex strains. J Clin Microbiol. 2004;42:2685–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang Y, Rajagopalan M, Brown BA, Wallace RJ Jr. Randomly amplified polymorphic DNA PCR for comparison of Mycobacterium abscessus strains from nosocomial outbreaks. J Clin Microbiol. 1997;35:3132–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sax H, Bloemberg G, Hasse B, Sommerstein R, Kohler P, Achermann Y, Rössle M, Falk V, Kuster SP, Böttger EC, Weber R. Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis. 2015;61:67–75.

    PubMed  Google Scholar 

  92. Sommerstein R, Rüegg C, Kohler P, Bloemberg G, Kuster SP, Sax H. Transmission of Mycobacterium chimaera from heater-cooler units during cardiac surgery despite an ultraclean air ventilation system. Emerg Infect Dis. 2016;22:1008–14.

    PubMed  PubMed Central  Google Scholar 

  93. Inagaki T, Nishimori K, Yagi T, Ichikawa K, Moriyama M, Nakagawa T, Shibayama T, Uchiya K-I, Nikai T, Ogawa K. Comparison of a variable-number tandem-repeat (VNTR) method for typing Mycobacterium avium with mycobacterial interspersed repetitive-unit-VNTR and IS1245 restriction fragment length polymorphism typing. J Clin Microbiol. 2009;47:2156–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wallace RJ Jr, Iakhiaeva E, Williams M, Brown-Elliott BA, Vasireddy S, Vasireddy R, Lande L, Peterson D, Sawicki J, Kwait R, Tichenor W, Turenne C, Falkinham JO III. Absence of Mycobacterium intracellulare and the presence of Mycobacterium chimaera in household water and biofilm samples of patients in the U.S. with Mycobacterium avium complex respiratory disease. J Clin Microbiol. 2013;51:1747–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Iakhiaeva E, Howard S, Brown-Elliott BA, McNulty S, Falkinham JO III, Newman K, Williams M, Kwait R, Lande L, Vasireddy R, Turenne C, Wallace RJ Jr. Variable number tandem-repeat (VNTR) analysis of respiratory and household water biofilm isolates of “Mycobacterium avium subspecies hominissuis” with establishment of a PCR database. J Clin Microbiol. 2016;54:891–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Iakhiaeva E, McNulty S, Brown-Elliott BA, Falkinham JO III., Williams MD, Vasireddy R, Wilson RW, Turenne C, Wallace RJ Jr. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping of Mycobacterium intracellulare for strain comparison with establishment of a PCR database. J Clin Microbiol. 2013;51:409–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wong YL, Ong CS, Ngeow YF. Molecular typing of Mycobacterium abscessus based on tandem-repeat polymorphism. J Clin Microbiol. 2012;50:3084–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Machado GE, Matsumoto CK, Chimara E, da Silva Duarte F, de Freitas D, Palaci M, Hadad DJ, Batista KV, Lopes LML, Ramos JP, Campos CE, Caldas PC, Heym B, Leão SC. Multilocus sequence typing scheme versus pulsed-field gel electrophoresis for typing Mycobacterium abscessus isolates. J Clin Microbiol. 2014;52:2881–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sampaio JL, Chimara E, Ferrazoli L, da Silva Telles MA, Del Guercio VM, Jericó ZV, Miyashiro K, Fortaleza CM, Padoveze MC, Leão SC. Application of four molecular typing methods for analysis of Mycobacterium fortuitum group strains causing post-mammaplasty infections. Clin Microbiol Infect. 2006;12:142–9.

    CAS  PubMed  Google Scholar 

  100. Sampaio JL, Viana-Niero C, de Freitas D, Höfling-Lima AL, Leão SC. Enterobacterial repetitive intergenic consensus PCR is a useful tool for typing Mycobacterium chelonae and Mycobacterium abscessus isolates. Diagn Microbiol Infect Dis. 2006;55:107–18.

    CAS  PubMed  Google Scholar 

  101. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Olivier K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–44.

    Google Scholar 

  102. Kohler P, Kuster SP, Bloemberg G, Schulthess B, Frank M, Tanner FC, Rössle M, Böni C, Falk V, Wilhelm MJ, Sommerstein R, Achermann Y, Ten Oever J, Debast SB, Wolfhagen MJHM, Bravo Bruinsma GJB, Vos MC, Bogers A, Serr A, Beyersdorf F, Sax H, Böttger EC, Weber R, van Ingen J, Wagner D, Hasse B. Healthcare-associated prosthetic heart valve, aortic vascular graft, and disseminated Mycobacterium chimaera infections subsequent to open heart surgery. Eur Heart J. 2015;36:2745–53.

    PubMed  Google Scholar 

  103. Choo SW, Wong YL, Tan JL, Ong CS, Wong GJ, Ng KP, Ngeow YF. Annotated genome sequence of Mycobacterium massiliense strain M154, belonging to the recently created taxon Mycobacterium abscessus subsp. bolletii comb. nov. J Bacteriol. 2012;194:4778.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ngeow YF, Wee WY, Wong YL, Tan JL, Ongi CS, Ng KP, Choo SW. Genomic analysis of Mycobacterium abscessus strain M139, which has an ambiguous subspecies taxonomic position. J Bacteriol. 2012;194:6002–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ngeow YF, Wong YL, Lokanathan N, Wong GJ, Ong CS, Ng KP, Choo SW. Genomic analysis of Mycobacterium massiliense strain M115, an isolate from human sputum. J Bacteriol. 2012;194:4786.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ngeow YF, Wong YL, Tan JL, Arumugam R, Wong GJ, Ong CS, Ng KP, Choo SW. Genome sequence of Mycobacterium massiliense M18, isolated from a lymph node biopsy specimen. J Bacteriol. 2012;194:4125.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tettelin H, Sampaio EP, Daugherty SC, Hine E, Riley DR, Sadzewicz L, Sengamalay N, Shefchek K, Su Q, Tallon LJ, Conville P, Olivier KN, Holland SM, Fraser CM, Zelazny AM. Genomic insights into the emerging human pathogen Mycobacterium massiliense. J Bacteriol. 2012;194:5450.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chan J, Halachev M, Yates E, Smith G, Pallen M. Whole-genome sequence of the emerging pathogen Mycobacterium abscessus strain 47J26. J Bacteriol. 2012;194:549.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Cardoso Leao S, Garcia MJ, Vasireddy S, Turenne CY, Griffith DE, Philley JV, Balden R, Campana S, Cariani L, Colombo C, Taccetti G, Teri A, Niemann S, Wallace RJ Jr, Cirillo DM. Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii and designation of Mycobacterium abscessus subsp. massiliense subsp. comb. nov. Int J Syst Evol Microbiol. 2016;66:4471–9.

    CAS  PubMed  Google Scholar 

  110. Woods GL, Brown-Elliott BA, Desmond EP, Hall GS, Heifets L, Pfyffer GE, Ridderhof JC, Wallace RJ Jr., Warren NG, Witebsky FG. Susceptibility testing of mycobacteria, norcardiae, and other aerobic actinomycetes; approved standard. NCCLS document M24-A. 2003.

    Google Scholar 

  111. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K. An official ATS/IDSA statement: diagnosis, treatment and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416.

    CAS  PubMed  Google Scholar 

  112. Brown-Elliott BA, Nash KA, Wallace RJ Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev. 2012;25:545–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes: approved standard—second edition. CLSI document M24-A2. 2011.

    Google Scholar 

  114. Forbes BA, Banaiee N, Beavis KG, Brown-Elliott BA, Della Latta P, Elliott LB, Hall GS, Hanna B, Perkins MD, Siddiqi SH, Wallace RJ Jr., Warren NG. Laboratory detection and identification of mycobacteria; approved guideline. CLSI document M48-A. 2008.

    Google Scholar 

  115. Vasireddy R, Vasireddy S, Brown-Elliott BA, Wengenack NL, Eke UA, Benwill JL, Turenne C, Wallace RJ Jr. Mycobacterium arupense, Mycobacterium heraklionense, and a newly proposed species, “Mycobacterium virginiense” sp. nov., but not Mycobacterium nonchromogenicum, as species of the Mycobacterium terrae complex causing tenosynovitis and osteomyelitis. J Clin Microbiol. 2016;54:1340–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Brown-Elliott BA, Iakhiaeva E, Griffith DE, Woods GL, Stout JE, Wolfe CR, Turenne CY, Wallace RJ Jr. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J Clin Microbiol. 2013;51:3389–94. ERRATUM J Clin Microbiol 3352:1311, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wallace RJ Jr, Meier A, Brown BA, Zhang Y, Sander P, Onyi GO, Bottger EC. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother. 1996;40:1676–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wallace RJ Jr, Hull SI, Bobey DG, Price KE, Swenson JM, Steele L, Christensen L. Mutational resistance as the mechanism of acquired drug resistance to aminoglycosides and antibacterial agents in Mycobacterium chelonae: Evidence based on plasmid analysis, mutational frequencies, and aminoglycoside modifying enzyme assays. Am Rev Respir Dis. 1985;132:409–16.

    CAS  PubMed  Google Scholar 

  119. Nash KA, Inderlied CB. Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease. Antimicrob Agents Chemother. 1995;39:2625–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. van Ingen J, Egelund EF, Levin A, Totten SE, Boeree MJ, Mouton JW, Aarnoutse RE, Heifets LB, Peloquin CA, Daley CL. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am J Respir Crit Care Med. 2012;186:559–65.

    PubMed  Google Scholar 

  121. Wallace RJ Jr, Swenson JM, Silcox VA. The rapidly growing mycobacteria: characterization and susceptibility testing. Antimicrob Newsl. 1985;2:85–92.

    CAS  Google Scholar 

  122. Stone MS, Wallace RJ Jr, Swenson JM, Thornsberry C, Christensen LA. Agar disk elution method for susceptibility testing of Mycobacterium marinum and Mycobacterium fortuitum complex to sulfonamides and antibiotics. Antimicrob Agents Chemother. 1983;24:486–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Biehle JR, Cavalieri SJ, Saubolle MA, Getsinger LJ. Evaluation of Etest for susceptibility testing of rapidly growing mycobacteria. J Clin Microbiol. 1995;33:1760–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Fabry W, Schmid EN, Ansorg R. Comparison of the E test and a proportion dilution method for susceptibility testing of Mycobacterium kansasii. Chemotherapy. 1995;41:247–52.

    CAS  PubMed  Google Scholar 

  125. Fabry W, Schmid EN, Ansorg R. Comparison of the E test and a proportion dilution method for susceptibility testing of Mycobacterium avium complex. J Med Microbiol. 1996;44:227–30.

    CAS  PubMed  Google Scholar 

  126. Jarboe E, Stone BL, Burman WJ, Wallace RJ Jr, Brown BA, Reves RR, Wilson ML. Evaluation of a disk diffusion method for determining susceptibility of Mycobacterium avium complex to clarithromycin. Diagn Microbiol Infect Dis. 1998;30:197–203.

    CAS  PubMed  Google Scholar 

  127. Woods GL, Bergmann JS, Witebsky FG, Fahle GA, Boulet B, Plaunt M, Brown BA, Wallace RJ Jr, Wanger A. Multisite reproducibility of Etest for susceptibility testing of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum. J Clin Microbiol. 2000;38:656–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Woods GL, Bergmann JS, Witebsky FG, Fahle GA, Wanger A, Boulet B, Plaunt M, Brown BA, Wallace RJ Jr. Multisite reproducibility of results obtained by the broth microdilution method for susceptibility testing of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum. J Clin Microbiol. 1999;37:1676–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Fernandez-Roblas R, Martin-de-Hijas NZ, Fernandez-Martinez AI, et al. In vitro activities of tigecycline and 10 other antimicrobials against nonpigmented rapidly growing mycobacteria. Antimicrob Agents Chemother. 2008;52:4184–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Brown BA, Wallace RJ Jr, Onyi GO. Activities of the glycylcyclines N, N-dimethylglycylamido-minocycline and N, N-dimethylglycylamido-6-demethyl-6-deoxytetracycline against Nocardia spp. and tetracycline-resistant isolates of rapidly growing mycobacteria. Antimicrob Agents Chemother. 1996;40:874–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Brown BA, Wallace RJ Jr, Onyi GO, De Rosas V, Wallace RJ III. Activities of four macrolides, including clarithromycin, against Mycobacterium fortuitum, Mycobacterium chelonae, and M. chelonae-like organisms. Antimicrob Agents Chemother. 1992;36:180–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Turenne CY, Wallace RJ Jr, Behr MA. Mycobacterium avium in the postgenomic era. Clin Microbiol Rev. 2007;20:205–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. van Ingen J, Turenne C, Tortoli E, Wallace RJ Jr, Brown-Elliott BA. A Definition of the Mycobacterium avium complex for taxonomic and clinical purposes. IJSEM. 2018. In Press.

    Google Scholar 

  134. Babady NE, Hall L, Abbenyi AT, Eisberner JJ, Brown-Elliott BA, Pratt CJ, McGlasson MC, Beierle KD, Wohlfiel SL, Deml SM, Wallace RJ Jr, Wengenack NL. Evaluation of Mycobacterium avium complex clarithromycin susceptibility testing using SLOMYCO sensititre panels and JustOne strips. J Clin Microbiol. 2010;48:1749–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Brown BA, Wallace RJ Jr, Onyi GO. Activities of clarithromycin against eight slowly growing species of nontuberculous mycobacteria, determined by using a broth microdilution MIC system. Antimicrob Agents Chemother. 1992;36:1987–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Eisenberg E, Barza M. Azithromycin and clarithromycin. Curr Clin Top Infect Dis Chest. 1994;14:52–79.

    CAS  Google Scholar 

  137. Brown-Elliott BA, Crist CJ, Mann LB, Wilson RW, Wallace RJ Jr. In vitro activity of linezolid against slowly growing nontuberculous mycobacteria. Antimicrob Agents Chemother. 2003;47:1736–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Woods GL, Williams-Bouyer N, Wallace RJ Jr, Brown-Elliott BA, Witebsky FG, Conville PS, Plaunt M, Hall G, Aralar P, Inderlied C. Multisite reproducibility of results obtained by two broth dilution methods for susceptibility testing of Mycobacterium avium complex. J Clin Microbiol. 2003;41:627–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. van Ingen J, Boeree MJ, van Soolingen D, Mouton JW. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat. 2012;15:149–61.

    PubMed  Google Scholar 

  140. Meier A, Heifets L, Wallace RJ Jr, Zhang Y, Brown BA, Sander P, Böttger EC. Molecular mechanisms of clarithromycin resistance in Mycobacterium avium: observation of multiple 23S rDNA mutations in a clonal population. J Infect Dis. 1996;174:354–60.

    CAS  PubMed  Google Scholar 

  141. Meier A, Kirschner P, Springer B, Steingrube VA, Brown BA, Wallace RJ Jr, Böttger EC. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob Agents Chemother. 1994;38:381–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Nash KA, Inderlied CB. Rapid detection of mutations associated with macrolide resistance in Mycobacterium avium complex. Antimicrob Agents Chemother. 1996;40:1748–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Griffith DE, Brown-Elliott BA, Wallace RJ Jr. Thrice-weekly clarithromycin-containing regimen for treatment of Mycobacterium kansasii lung disease: results of a preliminary study. Clin Infect Dis. 2003;37:1178–82.

    CAS  PubMed  Google Scholar 

  144. Burman WJ, Stone BL, Brown BA, Wallace RJ Jr, Böttger EC. AIDS-related Mycobacterium kansasii infection with initial resistance to clarithromycin. Diagn Microbiol Infect Dis. 1998;31:369–71.

    CAS  PubMed  Google Scholar 

  145. Klein JL, Brown TJ, French GL. Rifampin resistance in Mycobacterium kansasii is associated with rpoB mutations. Antimicrob Agents Chemother. 2001;45:3056–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wallace RJ Jr, Dunbar D, Brown BA, Onyi G, Dunlap R, Ahn CH, Murphy DT. Rifampin-resistant Mycobacterium kansasii. Clin Infect Dis. 1994;18:736–43.

    CAS  PubMed  Google Scholar 

  147. Jernigan JA, Farr BM. Incubation period and sources for cutaneous Mycobacterium marinum infection: case report and review of the literature. Clin Infect Dis. 2000;31:439–43.

    CAS  PubMed  Google Scholar 

  148. Tortoli E, Piersimoni C, Bacosi D, Bartoloni A, Betti F, Bono L, Burrini C, De Sio G, Lacchini C, Mantella A, Orsi PG, Penati V, Simonetti MT, Böttger EC. Isolation of the newly described species Mycobacterium celatum from AIDS patients. J Clin Microbiol. 1995;33:137–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Tortoli E, Piersimoni C, Kirschner P, Bartoloni A, Burrini C, Lacchini C, Mantella A, Muzzi G, Passerini-Tosi C, Penati V, Scarparo C, Simonetti MT, Böttger EC. Characterization of mycobacterial isolates phylogenetically related to, but different from Mycobacterium simiae. J Clin Microbiol. 1997;35:697–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. MacSwiggan DA, Collins CH. The isolation of M. kansasii and M. xenopi from water systems. Tubercle. 1974;55:291–7.

    Google Scholar 

  151. Buchholz UT, McNeill MM, Keyes LE, Good RC. Mycobacterium malmoense infections in the United States, January 1993 through June 1995. Clin Infect Dis. 1998;27:551–8.

    CAS  PubMed  Google Scholar 

  152. Heginbothom ML, Lindholm-Levy PJ, Heifets LB. Susceptibilities of Mycobacterium malmoense determined at the growth optimum pH (pH 6.0). Int J Tuberc Lung Dis. 1998;2:430–4.

    CAS  PubMed  Google Scholar 

  153. Ji B, Lefrançois S, Robert J, Chauffour A, Truffot C, Jarlier V. In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans. Antimicrob Agents Chemother. 2006;50:1921–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Vadney FS, Hawkins JE. Evaluation of a simple method for growing Mycobacterium haemophilum. J Clin Microbiol. 1985;28:884–5.

    Google Scholar 

  155. McBride ME, Rudolph AH, Tschen JA, Cernoch P, Davis J, Brown BA, Wallace RJ Jr. Diagnostic and therapeutic considerations for cutaneous Mycobacterium haemophilum infections. Arch Dermatol. 1991;127:276–7.

    CAS  PubMed  Google Scholar 

  156. Prammananan T, Sander P, Brown BA, Frischkorn K, Onyi GO, Zhang Y, Böttger EC, Wallace RJ Jr. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis. 1998;177:1573–81.

    CAS  PubMed  Google Scholar 

  157. Rahman SA, Singh Y, Kohli S, Ahmad J, Ehtesham NZ, Tyagi AK, Hasnain SE. Comparative analyses of nonpathogenic, opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis. mBio. 2014;5:e02020–14; ERRATUM mBio 02015;02026(02021):e02343–02014.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Stinear TP, Seemann T, Pidot S, Frigui W, Reysset G, Garnier T, Meurice G, Simon D, Bouchier C, Ma L, Tichit M, Porter JL, Ryan L, Johnson PDR, Davies JK, Jenkin GA, Small PLC, Jones LM, Tekaia F, Laval F, Daffé M, Parkhill J, Cole ST. Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res. 2007;17:192–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M, Haworth CS, Curran MD, Harris SR, Peacock SJ, Parkhill J, Floto RA. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381:1551–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Aitken ML, Limaye A, Pottinger P, Whimbey E, Goss GH, Tonelli MR, Cangelosi GA, Ashworth M, Olivier KN, Brown-Elliott BA, Wallace RJ Jr. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med. 2012;185:231–3.

    CAS  PubMed  Google Scholar 

  161. Davidson RM, Hasan N, Reynolds PR, Totten S, Garcia B, Levin A, Ramamoorthy P, Heifets L, Daley CL, Strong M. Genome sequencing of Mycobacterium abscessus isolates from patients in the United States and comparisons to globally diverse clinical strains. J Clin Microbiol. 2014;52:3573–82.

    PubMed  PubMed Central  Google Scholar 

  162. Duarte RS, Silva Lourenço MC, de Souza Fonseca L, Leão SC, Amorim EDLT, ILL R, Coelho FS, Viana-Niero C, Gomes KM, da Silva MG, de Oliveira Lorena NS, Pitombo MC, Ferreira RMC, de Oliveira Garcia MH, de Oliveira GP, Lupi O, Vilaça BR, Serradas LR, Chebato A, Marques EA, Teixeira LM, Dalcolmo M, Senna SG, Sampaio JLM. Epidemic of postsurgical infections caused by Mycobacterium massiliense. J Clin Microbiol. 2009;47:2149–55.

    PubMed  PubMed Central  Google Scholar 

  163. Leão SC, Matsumoto CK, Carneiro A, Ramos RT, Nogueira CL, Lima JD Jr, Lima KV, Lopes ML, Schneider H, Azevedo VA, Da Costa da Silva A. The detection and sequencing of a broad-host-range conjugative IncP-Ibeta plasmid in an epidemic strain of Mycobacterium abscessus subsp bolletii. PLoS One. 2013;8:e60746.

    PubMed  PubMed Central  Google Scholar 

  164. Raiol T, Ribeiro GM, Maranhão AQ, Bocca AL, Silva-Pereira I, Junqueira-Kipnis AP, Brigido MM, Kipnis A. Complete genome sequence of Mycobacterium massiliense. J Bacteriol. 2012;194:5455.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kim B-J, Kim B-R, Hong S-H, Seok S-H, Kook Y-H. Complete genome sequence of Mycobacterium massiliense clinical strain Asan 505945, belonging to the type II genotype. Genome Announc. 2013;1:e00429–00413.

    Google Scholar 

  166. Tettelin H, Davidson RM, Agrawal S, Aitken ML, Shallom S, Hasan NA, Strong M, de Moura VCN, De Groote MA, Duarte RS, Hine E, Parankush S, Su Q, Daugherty SC, Fraser CM, Brown-Elliott BA, Wallace RJ Jr, Holland SM, Sampaio EP, Olivier KN, Jackson M, Zelazny AM. High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. Emerg Infect Dis. 2014;20:364–71.

    PubMed  PubMed Central  Google Scholar 

  167. Brown-Elliott BA, Philley JV, Griffith DE, Thakkar F, Wallace RJ Jr. 2017. In vitro susceptibility testing of bedaquiline against Mycobacterium avium complex. Antimicrob Agents Chemother. In Press.

    Google Scholar 

  168. Brown-Elliott BA, Philley JV, Griffith DE, Wallace RJ Jr. Comparison of in vitro susceptibility testing of tedizolid and linezolid against isolates of nontuberculous mycobacteria, 1st ASM-Microbe Meeting, 2016, Boston, MA.

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank Richard J. Wallace, Jr. for his expert review of the chapter and Joanne Woodring for her excellent clerical skills.

This chapter is dedicated to my beloved husband, Clyde Elliott, and my dear mother Clifford Brown, who passed away during the preparation of this chapter. They provided constant support and encouragement to me throughout my years in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Brown-Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown-Elliott, B.A. (2019). Laboratory Diagnosis and Antimicrobial Susceptibility Testing of Nontuberculous Mycobacteria. In: Griffith, D. (eds) Nontuberculous Mycobacterial Disease. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-93473-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93473-0_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-93472-3

  • Online ISBN: 978-3-319-93473-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics