Skip to main content

The Physics of Information: From Maxwell to Landauer

  • Chapter
  • First Online:
Energy Limits in Computation
  • 805 Accesses

Abstract

We summarize recent experimental and theoretical progress achieved in the physics of information. We highlight the intimate connection existing between information and energy from Maxwell’s demon and Szilard’s engine to Landauer’s erasure principle. We focus both on classical and quantum systems and conclude by discussing applications in engineering and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a more general definition of work and it coincides with the standard one only if λ is a displacement (for more details see Ref. [53]).

References

  1. R. Landauer, Information is physical. Phys. Today 44(5), 23 (1991)

    Google Scholar 

  2. W. Weaver, C.E. Shannon, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 2010)

    MATH  Google Scholar 

  3. R. Clausius, The Mechanical Theory of Heat (McMillan, London, 1879)

    MATH  Google Scholar 

  4. E. Lutz, S. Ciliberto, Information: from Maxwell’s demon to Landauer’s eraser. Phys. Today 68(9), 30 (2015)

    Google Scholar 

  5. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Thermodynamics of information. Nat. Phys. 11, 131 (2015)

    Article  Google Scholar 

  6. H.S. Leff, A.F. Rex (eds.), Maxwell’s Demon: Entropy, Classical and Quantum Information, Computing (Institute of Physics, Philadelphia, 2003)

    Google Scholar 

  7. M.B. Plenio, V. Vitelli, The physics of forgetting: Landauer’s erasure principle and information theory. Contemp. Phys. 42, 25 (2010)

    Article  Google Scholar 

  8. K.K. Maruyama, F. Nori, V. Vedral, The physics of Maxwell’s demon and information. Rev. Mod. Phys. 81, 1 (2009)

    Article  MathSciNet  Google Scholar 

  9. L. Szilard, On the minimization of entropy in a thermodynamic system with interferences of intelligent beings. Z. Phys. 53, 840 (1929)

    Article  Google Scholar 

  10. C.H. Bennett, The thermodynamcis of computation-a review. Int. J. Theor. Phys. 21, 905 (1982)

    Article  Google Scholar 

  11. H.S. Leff, A.F. Rex (eds.), Foundations of Statistical Mechanics (Pergamon, Oxford, 1970)

    Google Scholar 

  12. L. Brillouin, Science and Information Theory (Academic Press, Waltham, 1956)

    MATH  Google Scholar 

  13. M.G. Raizen, Comprehensive control of atomic motion. Science 324, 1403 (2009)

    Article  Google Scholar 

  14. G.N. Price, S.T. Bannerman, K. Viering, E. Narevicius, Single-photon atomic cooling. Phys. Rev. Lett. 100, 093004 (2008)

    Article  Google Scholar 

  15. J.J. Thorn, E.A. Schoene, T. Li, D.A. Steck, Experimental realization of an optical one-way barrier for neutral atoms. Phys. Rev. Lett. 100, 240407 (2008)

    Article  Google Scholar 

  16. S. Toyabe, T. Sagawa, M. Ueda, M. Muneyuki, M. Sano, Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988–992 (2010)

    Article  Google Scholar 

  17. T. Sagawa, M. Ueda, Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104, 090602 (2010)

    Article  Google Scholar 

  18. T. Sagawa, M. Ueda, Minimum energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009)

    Article  Google Scholar 

  19. J.V. Koski, V.F. Maisi, T. Sagawa, J.P. Pekola, Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon. Phys. Rev. Lett. 113, 030601 (2014)

    Article  Google Scholar 

  20. J.V. Koski, A. Kutvonen, I.M. Khaymovich, T. Ala-Nissila, J.P. Pekola, On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett. 115, 260602 (2015)

    Article  Google Scholar 

  21. J.V. Koski, J.P. Pekola, Maxwell’s demons realized in electronic circuits. C.R. Phys. 17, 1130–1138 (2016)

    Google Scholar 

  22. J.M. Horowitz, M. Esposito, Thermodynamics with continuous information flow. Phys. Rev. X 4, 031015 (2014)

    Google Scholar 

  23. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187 (2012)

    Article  Google Scholar 

  24. A. Bérut, A. Petrosyan, S. Ciliberto, Detailed Jarzynski equality applied to a logically irreversible procedure. Europhys. Lett. 103(6), 60002 (2013)

    Google Scholar 

  25. M. Gavrilov, J. Bechhoefer, Arbitrarily slow, non-quasistatic, isothermal transformations. Europhys. Lett. 114, 50002 (2016)

    Article  Google Scholar 

  26. E. Aurell, K. Gawedzki, C. Meja-Monasterio, R. Mohayaee, P. Muratore-Ginanneschi, Refined second law of thermodynamics for fast random processes. J. Stat. Phys. 147, 487 (2012)

    Article  MathSciNet  Google Scholar 

  27. S. Vaikuntanathan, C. Jarzynski, Dissipation and lag in irreversible processes. Europhys. Lett. 87, 60005 (2009)

    Article  Google Scholar 

  28. A.O. Orlov, C.S. Lent, C.C. Thorpe, G.P. Boechler, G.L. Snider, Experimental test of Landauer’s principle at the sub- kb t level. Jpn. J. Appl. Phys. 51(6S), 06FE10 (2012)

    Google Scholar 

  29. J.V. Koski, V.F. Maisi, J.P. Pekola, D.V. Averin, Experimental realization of a Szilard engine with a single electron. Proc. Natl. Acad. Sci. 111, 13786 (2014)

    Article  Google Scholar 

  30. Y. Jun, M. Gavrilov, J. Bechhoefer, High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 190601 (2014)

    Article  Google Scholar 

  31. M. Gavrilov, J. Bechhoefer, Erasure without work in an asymmetric, double-well potential. Phys. Rev. Lett. 117, 200601 (2016)

    Article  MathSciNet  Google Scholar 

  32. E. Roldàn, I.A. Martinez, J.M.R. Parrondo, D. Petrov, Universal features in the energetics of symmetry breaking. Nat. Phys. 10, 457 (2014)

    Article  Google Scholar 

  33. L. Martini, M. Pancaldi, M. Madami, P. Vavassori, G. Gubbiotti, S. Tacchi, F. Hartmann, M. Emmerling, S. Höfling, L. Worschech, G. Carlotti, Experimental and theoretical analysis of Landauer erasure in nano-magnetic switches of different sizes. Nano Energy 19(Supplement C), 108–116 (2016)

    Google Scholar 

  34. J. Hong, B. Lambson, S. Dhuey, J. Bokor, Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv. 2, e1501492 (2016)

    Article  Google Scholar 

  35. P.A. Camati, J.P.S. Peterson, T.B. Batalhão, K. Micadei, A.M. Souza, R.S. Sarthour, I.S. Oliveira, R.M. Serra. Experimental rectification of entropy production by Maxwell’s demon in a quantum system. Phys. Rev. Lett. 117, 240502 (2016)

    Article  Google Scholar 

  36. N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, B. Huard. Observing a quantum Maxwell demon at work. Proc. Natl. Acad. Sci. U. S. A. 114(29), 7561–7564 (2017)

    Article  Google Scholar 

  37. M.A. Ciampini, L. Mancino, A. Orieux, C. Vigliar, P. Mataloni, M. Paternostro, M. Barbieri, Experimental extractable work-based multipartite separability criteria. npj Quantum Inf. 3(1), 10 (2017)

    Google Scholar 

  38. S.M. Herre, S.J. van der Zant, F. Luis, R. Gaudenzi, E. Burzurí, Quantum-enhanced Landauer erasure and storage. arXiv:1703.04607

    Google Scholar 

  39. E. Lubkin, Keeping the entropy of measurement: Szilard revisited. Int. J. Theor. Phys. 26(6), 523–535 (1987). ISSN 1572–9575

    Google Scholar 

  40. V. Vedral, Landauer’s erasure, error correction and entanglement. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 456(1996), 969–984 (2000)

    Article  MathSciNet  Google Scholar 

  41. M.P. Frank, The physical limits of computing. Comput. Sci. Eng. 4, 16 (2002)

    Article  Google Scholar 

  42. E. Pop, Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147 (2010)

    Article  Google Scholar 

  43. K. Chida, S. Desai, K. Nishiguchi, A. Fujiwara, Power generator driven by Maxwell’s demon. Nat. Commun. 8, 15310 (2017)

    Article  Google Scholar 

  44. D. Bray, Energetic costs of cellular computation. Nature 376, 307 (1995)

    Article  Google Scholar 

  45. P. Mehta, D.J. Schwab, Energetic costs of cellular computation. Proc. Natl. Acad. Sci. 109, 17978 (2012)

    Article  Google Scholar 

  46. Y. Tu, The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons. Proc. Natl. Acad. Sci. 105, 11737 (2008)

    Article  Google Scholar 

  47. A.C. Barato, D. Hartich, U. Seifert, Efficiency of cellular information processing. New J. Phys. 16, 103024 (2014)

    Article  MathSciNet  Google Scholar 

  48. S. Ito, T. Sagawa, Maxwell’s demon in biochemical signal transduction with feedback loop. Nat. Comm. 6, 7498 (2015)

    Article  Google Scholar 

  49. A.C. Barato, U. Seifert, Cost and precision of Brownian clocks. Phys. Rev. X 6, 041053 (2016)

    Google Scholar 

  50. T.E. Ouldridge, C.C. Govern, P. Rein ten Wolde, Thermodynamics of computational copying in biochemical systems. Phys. Rev. X 7, 021004 (2017)

    Google Scholar 

  51. K. Sekimoto, Stochastic Energetics. Lecture Notes in Physics, vol. 799 (Springer, 2010)

    Google Scholar 

  52. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012). http://stacks.iop.org/0034-4885/75/i=12/a=126001

  53. S. Ciliberto, Experiments in stochastic thermodynamics: short history and perspectives. Phys. Rev. X 7, 021051 (2017)

    Google Scholar 

  54. C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)

    Article  Google Scholar 

  55. C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56, 5018 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Ciliberto .

Editor information

Editors and Affiliations

Appendix 1: Stochastic Thermodynamics and Information Energy Cost

Appendix 1: Stochastic Thermodynamics and Information Energy Cost

When the size of a system is reduced the role of fluctuations (either quantum or thermal) increases. Thus thermodynamic quantities such as internal energy, work, heat, and entropy cannot be characterized only by their mean values but also their fluctuations and probability distributions become relevant and useful to make predictions on a small system. Let us consider a simple example such as the motion of a Brownian particle subjected to a constant external force. Because of thermal fluctuations, the work performed on the particle by this force per unit time, i.e., the injected power, fluctuates and the smaller the force, the larger is the importance of power fluctuations [51,52,53]. The goal of stochastic thermodynamics is just that of studying the statistical properties of the above-mentioned fluctuating thermodynamic quantities in systems driven out of equilibrium by external forces, temperature differences, and chemical reactions. For this reason it has received in the last twenty years an increasing interest for its applications in microscopic devices, biological systems and for its connections with information theory[51,52,53].

Specifically it can be shown that the fluctuations on a time scale τ of the internal energy ΔUτ, the work Wτ and the heat Qτ are related by a first principle like equation, i.e.

$$\displaystyle \begin{aligned} \Delta U_\tau = U(t+\tau) - U(t) = \tilde W_\tau-Q_\tau {} \end{aligned} $$
(4)

at any time t.

Furthermore the statistical properties of energy and entropy fluctuations are constrained by fluctuations theorems which impose bounds on their probability distributions (for more details see Ref. [51,52,53]). We summarize in the next section one of them which can be related to information and to Landuer’s bound.

1.1 Estimate the Free Energy Difference from Work Fluctuations

In 1997 [54, 55] Jarzynski derived an equality which relates the free energy difference of a system in contact with a heat reservoir to the pdf of the work performed on the system to drive it from A to B along any path γ in the system parameter space. Specifically, when a system parameter λ is varied from time t = 0 to t = ts, Jarzynski defines for one realization of the “switching process” from A to B the work performed on the system as

$$\displaystyle \begin{aligned} W = \int_{0}^{t_s} \dot{\lambda}\, \frac{\partial H_{\lambda} [z(t)]} {\partial \lambda} \mathrm{d} t, {} \end{aligned} $$
(5)

where z denotes the phase-space point of the system and Hλ its λ-parametrized Hamiltonian.Footnote 1 One can consider an ensemble of realizations of this “switching process” with initial conditions all starting in the same initial equilibrium state. Then W may be computed for each trajectory in the ensemble. The Jarzynski equality states that [54, 55]

$$\displaystyle \begin{aligned} \exp{(-\beta \Delta F)} = \ \langle \exp{(-\beta W)} \rangle, {} \end{aligned} $$
(6)

where 〈⋅〉 denotes the ensemble average, β −1 = kB T with kB the Boltzmann constant and T the temperature. In other words \(\langle \exp {[-\beta W_{\mathrm {diss}}]} \rangle = 1\), since we can always write W =  ΔF + Wdiss where Wdiss is the dissipated work. Thus it is easy to see that there must exist some paths γ such that Wdiss ≤ 0. Moreover, the inequality \(\langle \exp {x} \rangle \geq \exp {\langle x \rangle }\) allows us to recover the second principle, namely 〈Wdiss〉≥ 0, i.e. 〈W〉≥ ΔF.

1.2 Landauer Bound and the Jarzynski Equality

We discuss in this appendix the strong relationship between the Jarzynski equality and the Landauer’s bound. In Box 1.2 we presented the Landauer’s principle as related to the system entropy. Let us consider as a specific example the experiment on the colloidal particle described in Sect. 2.2 [24]. In the memory erasure procedure which forces the system in the state 0, the entropy difference between the final and initial state is \(\Delta S = - k_{\text{B}} \ln (2)\). In contrast the internal energy is unchanged by the protocol. Thus it is natural to await \(\Delta F = k_{\text{B}}T \ln (2)\). However the ΔF that appears in the Jarzynski equality is the difference between the free energy of the system in the initial state (which is at equilibrium) and the equilibrium state corresponding to the final value of the control parameter: F(λ(τ)) − F(λ(0)). Since the height of the barrier is always finite there is no change in the equilibrium free energy of the system between the beginning and the end of the procedure. Then ΔF = 0, which implies \(\left \langle e^{- \beta W_{\text{st}}} \right \rangle = 1\). Thus it seems that there is a problem between the Landauer principle (see Box 1.2) and the Jarzynski equality of Eq. (6).

Nevertheless Vaikuntanathan and Jarzyski [27] have shown that when there is a difference between the actual state of the system (described by the phase-space density ρt) and the equilibrium state (described by \(\rho ^{\text{eq}}_{t}\)), the Jarzynski equality can be modified:

$$\displaystyle \begin{aligned} \left\langle e^{- \beta W_{\text{st}}(t)} \right\rangle _{(x,t)} = \frac{\rho ^{\text{eq}}(x,\lambda (t))}{\rho (x,t)} e^{-\beta \Delta F(t)} {} \end{aligned} $$
(7)

where \(\left \langle . \right \rangle _{(x,t)}\) is the mean on all the trajectories that pass through x at time t.

In the experiment presented in Sect. 2.2, the selection of the trajectories where the information is actually erased corresponds to fix x to the chosen final well at the time t = τ. It follows that ρ(0, τ) is the probability of finding the particle in the targeted state 0 at the time τ. Indeed because of the very low energy measured in the protocol thermal fluctuations play a role and the particle can be found in the wrong well at time τ, i.e. the proportion of success PS of the procedure is equal to ρ(0, τ). In contrast the equilibrium distribution is ρ eq(0, λ(τ)) = 1∕2. Then:

$$\displaystyle \begin{aligned} \left\langle e^{- \beta W(\tau)} \right\rangle _{\rightarrow 0} = \frac{1/2}{P_{S}} {} \end{aligned} $$
(8)

Similarly for the trajectories that end the procedure in the wrong well (i.e. state 1) we have:

$$\displaystyle \begin{aligned} \left\langle e^{- \beta W(\tau)} \right\rangle _{\rightarrow 1} = \frac{1/2}{1-P_{S}} {} \end{aligned} $$
(9)

Taking into account the Jensen’s inequality, i.e. \( \left \langle e^{-x } \right \rangle \ge e^ {-\left \langle x \right \rangle }\), we find that Eqs. (8) and (9) imply:

$$\displaystyle \begin{aligned} \begin{array}{l} \left\langle W \right\rangle_{\rightarrow 0} \geq k_{\text{B}} T \left[ \ln(2) + \ln(P_S) \right] \\ \left\langle W \right\rangle_{\rightarrow 1} \geq k_{\text{B}} T \left[ \ln(2) + \ln(1-P_S) \right] \end{array} \end{aligned} $$
(10)

Notice that the mean work dissipated to realize the procedure is simply:

$$\displaystyle \begin{aligned} \left\langle W \right\rangle = P_S \times \left\langle W \right\rangle_{\rightarrow 0} + (1-P_S) \times \left\langle W \right\rangle_{\rightarrow 1} \end{aligned} $$
(11)

where \(\left \langle . \right \rangle \) is the mean on all trajectories. Then using the previous inequalities it follows:

$$\displaystyle \begin{aligned} \left\langle W \right\rangle \geq k_{\text{B}} T \left[ \ln(2) + P_{S} \ln(P_{S}) + (1-P_{S}) \ln(1-P_{S}) \right] \end{aligned} $$
(12)

which is indeed the generalization of the Landauer’s limit for PS < 1. In the limit case where PS → 1, we have:

$$\displaystyle \begin{aligned} \left\langle e^{- \beta W} \right\rangle_{\rightarrow 0} = 1/2 \end{aligned} $$
(13)

Since this result remains approximatively verified for proportions of success close enough to 100%, it explains why in the experiment we find \(\Delta F_{\text{eff}} \approx k_{\text{B}} T \ln (2)\).

This result is useful because it strongly binds the generalized Jarzynski equality (a thermodynamic relation) to Landuer’s bound.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciliberto, S., Lutz, E. (2019). The Physics of Information: From Maxwell to Landauer. In: Lent, C., Orlov, A., Porod, W., Snider, G. (eds) Energy Limits in Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-93458-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93458-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93457-0

  • Online ISBN: 978-3-319-93458-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics