Skip to main content

The Thermodynamics of Computation: A Contradiction

  • Chapter
  • First Online:
  • 719 Accesses

Abstract

In this chapter, we examine in detail Landauer’s influential argument that erasure of information is a fundamental source of energy dissipation. We will carefully define what we mean by general terms, such as “computation,” “reversibility,” and “entropy.” The literature contains quite a bit of confusion due to a lack of clear definitions of these terms. In particular, we will go to great length to distinguish between physical (thermodynamic) entropy and information entropy. We will be lead to conclude that Landauer’s influential argument contains a fundamental flaw in failing to distinguish between these two forms of entropy, and in using information entropy as if it were physical entropy. Erasure of information is not a fundamental source of energy dissipation in computation. Beyond Landauer’s argument, we will conclude that thermodynamics does not apply to the information-bearing degrees of freedom in a computer. The more a system can be described by thermodynamics, the less it can be used for computation. The main conclusion of this chapter is that the thermodynamics of computation is a contradiction in terms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.W. Keyes, R. Landauer, Minimal energy dissipation in logic. IBM J. Res. Dev. 14, 152–157 (1970)

    Article  Google Scholar 

  2. R.W. Keyes, Power dissipation in information processing. Science 168, 796–801 (1970)

    Article  Google Scholar 

  3. R. Landauer, Information is physical. Phys. Today 44(5), 23–29 (1991)

    Article  Google Scholar 

  4. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  5. W. Porod, R.O. Grondin, D.K. Ferry, G. Porod, Dissipation in computation. Phys. Rev. Lett. 52(3), 232–235 (1984). Rebuttals by: C.H. Bennett, Phys. Rev. Lett. 52(12), 1202 (1984); P. Benioff, ibid, p. 1203; T. Toffoli, ibid, p. 1204, and R. Landauer, ibid, p. 1205; Porod et al. Respond, ibid, p. 1206

    Article  Google Scholar 

  6. W. Porod, Comment on ‘energy requirement in communication’. Appl. Phys. Lett. 52, 2191 (1988)

    Article  Google Scholar 

  7. L.B. Kish, End of Moore’s law: thermal (noise) death of integration in micro and nano electronics. Phys. Lett. A 305, 144–149 (2002)

    Article  Google Scholar 

  8. L.B. Kish, C.G. Granqvist, Energy requirement of control: comments on Szilard’s engine and Maxwell’s demon. Europhys. Lett. 98, 68001 (2012)

    Article  Google Scholar 

  9. L.B. Kish, C.G. Granqvist, S.P. Khatri, H. Wen, Demons: Maxwell’s demon, Szilard’s engine and Landauer’s erasure–dissipation. Int. J. Mod. Phys. Conf. Ser. 33, 1460364 (2014)

    Article  Google Scholar 

  10. J.D. Norton, Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Sci. B 36, 375–411 (2005)

    MathSciNet  MATH  Google Scholar 

  11. J.D. Norton, Waiting for Landauer. Stud. Hist. Philos. Sci. B 42, 184–198 (2011)

    MathSciNet  MATH  Google Scholar 

  12. J.D. Norton, The end of the thermodynamics of computation: a no-go result. Philos. Sci. 80(5), 1182–1192 (2013)

    Article  MathSciNet  Google Scholar 

  13. T. Sagawa, M. Ueda, Minimal energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009)

    Article  Google Scholar 

  14. A. Turing, in 1948, Intelligent Machinery, ed. By C.R. Evans, A.D.J. Robertson. Reprinted in Cybernetics: Key Papers (University Park Press, Baltimore, 1968), p. 31

    Google Scholar 

  15. E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21(3/4), 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  16. D.J. Frank, Comparison of High Speed Voltage-scaled Conventional and Adiabatic Circuits, in Proc. Int. Workshop Low Power Electron. Design, (IEEE, New York, 1996), pp. 377–380

    Google Scholar 

  17. P. Solomon, D.J. Frank, The Case for Reversible Computation, in Proc. Int. Workshop Low Power Design, (ACM, New York, 1994), pp. 93–98

    Google Scholar 

  18. M.P. Frank, Introduction to Reversible Computing: Motivation, Progress, and Challenges, in Proceedings of the 2nd Conference on Computing Frontiers, (ACM, New York, 2005), pp. 385–390

    Chapter  Google Scholar 

  19. M.P. Frank, in Foundations of Generalized Reversible Computing, eds. By I. Phillips, H. Rahaman. Reversible Computation. RC 2017. Lecture Notes in Computer Science, vol. 10301 (Springer, Berlin, 2017), pp. 19–34

    Google Scholar 

  20. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  21. C.H. Bennett, The thermodynamics of computation – a review. Int. J. Theor. Phys. 21(12), 905–940 (1982)

    Article  Google Scholar 

  22. C.H. Bennett, Notes on the history of reversible computation. IBM J. Res. Dev. 44(1/2), 270–277 (2000)

    Article  Google Scholar 

  23. C.H. Bennett, Notes on Landauer’s principle, reversible computation, and Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 34, 501–510 (2003)

    Article  MathSciNet  Google Scholar 

  24. E. Lutz, S. Ciliberto, Information: From Maxwell’s demon to Landauer’s eraser. Phys. Today 68(9), 30 (2015)

    Article  Google Scholar 

  25. A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)

    Article  Google Scholar 

  26. J. Hong, B. Lambson, S. Dhuey, J. Bokor, Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv. 2, e1501492 (2016)

    Article  Google Scholar 

  27. L.L. Yan, T.P. Xiong, K. Rehan, F. Zhou, D.F. Liang, L. Chen, J.Q. Zhang, W.L. Yang, Z.H. Ma, M. Feng, Single-atom demonstration of quantum Landauer principle, arXiv:1803.10424 [quant-ph] (2018)

    Google Scholar 

  28. A.O. Orlov, C.S. Lent, C.C. Thorpe, G.P. Boechler, G.L. Snider, Experimental test of Landauer’s principle at the sub-kBT level. Jpn. J. Appl. Phys. 51, 06FE10 (2012)

    Article  Google Scholar 

  29. H. Leff, A.F. Rex, Maxwell Demon 2: Entropy, Classical and Quantum Information, Computing (IOP Publishing, Bristol, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Porod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porod, W. (2019). The Thermodynamics of Computation: A Contradiction. In: Lent, C., Orlov, A., Porod, W., Snider, G. (eds) Energy Limits in Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-93458-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93458-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93457-0

  • Online ISBN: 978-3-319-93458-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics