Skip to main content

Cardiovascular Damage in Clinical Trials

  • Chapter
  • First Online:
Cardiovascular Complications in Cancer Therapy

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 718 Accesses

Abstract

The Cardio-oncology field has grown considerably in the last two decades. The remarkable increase in the number of molecules used in oncology has brought with it a huge set of cardiovascular adverse events. For this reason, it is necessary to intervene on the early stages of drug development. This is what the Food and Drug Administration aims to do. This purpose can be achieved through a more careful analysis of the adverse event, development of guidelines, and identification of objective parameters that could guide the researcher in defining precisely the adverse event. It is also necessary to use additional methods not yet used in clinical trials that can allow an early detection of adverse events and to highlight subclinical damage. These measures will allow the researcher to intervene and treat them even before it can expose the patient to more serious complications or the drug can determine deaths in the post-marketing phase for unacknowledged cardiovascular adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaduganathan M, Prasad V. Cardiovascular risk assessment in oncological clinical trials: is there a role for centralized events adjudication? Eur J Heart Fail. 2016;18(2):128–32.

    Article  Google Scholar 

  2. Developments in cancer treatments, market dynamics, patient access and value. Global Oncology Trend Report. IMC Institute for Healthcare Informatics. 2015. Available at: https://morningconsult.com/wp-content/uploads/2016/06/IMS-Institute-Global-Oncology-Report-05.31.16.pdf.

  3. FDA Public Workshop: Cardiovascular toxicity assessment in oncology trials. Available at: http://www.fda.gov/Drugs/NewsEvents/ucm513031.htm.

  4. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900–5.

    Article  CAS  Google Scholar 

  5. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32(2):302–14.

    Article  CAS  Google Scholar 

  6. Sinha BK, Katki AG, Batist G, Cowan KH, Myers CE. Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. Biochem Pharmacol. 1987;36(6):793–6.

    Article  CAS  Google Scholar 

  7. Lorusso PM, Boerner SA, Hunsberger S. Clinical development of vascular disrupting agents: what lessons can we learn from ASA404? J Clin Oncol. 2011;29(22):2952–5.

    Article  Google Scholar 

  8. Steingart R. Mechanisms of late cardiovascular toxicity from cancer chemotherapy. J Clin Oncol. 2005;23(36):9051–2.

    Article  CAS  Google Scholar 

  9. Senan S, Smit EF. Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist. 2007;12(4):465–77.

    Article  CAS  Google Scholar 

  10. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  CAS  Google Scholar 

  11. Bronte G, Bronte E, Novo G, Pernice G, Lo Vullo F, Musso E, et al. Conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting tyrosine kinase inhibitor-based therapy. Expert Opin Drug Saf. 2015;14(2):253–67.

    Article  CAS  Google Scholar 

  12. Bronte E, Bronte G, Novo G, Bronte F, Bavetta MG, Lo Re G, et al. What links BRAF to the heart function? New insights from the cardiotoxicity of BRAF inhibitors in cancer treatment. Oncotarget. 2015;6(34):35589–601.

    Article  Google Scholar 

  13. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15(11):1224–35.

    Article  CAS  Google Scholar 

  14. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21(1):60–5.

    Article  CAS  Google Scholar 

  15. Vaklavas C, Lenihan D, Kurzrock R, Tsimberidou AM. Anti-vascular endothelial growth factor therapies and cardiovascular toxicity: what are the important clinical markers to target? Oncologist. 2010;15(2):130–41.

    Article  CAS  Google Scholar 

  16. Mackey JR, Clemons M, Côté MA, Delgado D, Dent S, Paterson A, et al. Cardiac management during adjuvant trastuzumab therapy: recommendations of the Canadian Trastuzumab Working Group. Curr Oncol. 2008;15(1):24–35.

    Article  CAS  Google Scholar 

  17. Varricchi G, Galdiero MR, Tocchetti CG. Cardiac toxicity of immune checkpoint inhibitors: cardio-oncology meets immunology. Circulation. 2017;136(21):1989–92.

    Article  Google Scholar 

  18. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    Article  Google Scholar 

  19. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.

    Article  CAS  Google Scholar 

  20. Shah SJ, Cogswell R, Ryan JJ, Sharma K. How to develop and implement a specialized heart failure with preserved ejection fraction clinical program. Curr Cardiol Rep. 2016;18(12):122.

    Article  Google Scholar 

  21. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93.

    Article  Google Scholar 

  22. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.

    Article  Google Scholar 

  23. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84.

    Article  Google Scholar 

  24. Narayan HK, Wei W, Feng Z, Lenihan D, Plappert T, Englefield V, et al. Cardiac mechanics and dysfunction with anthracyclines in the community: results from the PREDICT study. Open Heart. 2017;4(1):e000524.

    Article  Google Scholar 

  25. Mookadam F, Sharma A, Lee HR, Northfelt DW. Intersection of cardiology and oncology clinical practices. Front Oncol. 2014;4:259.

    Article  Google Scholar 

  26. Huang H, Nijjar PS, Misialek JR, Blaes A, Derrico NP, Kazmirczak F, et al. Accuracy of left ventricular ejection fraction by contemporary multiple gated acquisition scanning in patients with cancer: comparison with cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2017;19(1):34.

    Article  Google Scholar 

  27. Dhaun N, Webb DJ. Receptor tyrosine kinase inhibition, hypertension, and proteinuria: is endothelin the smoking gun? Hypertension. 2010;56(4):575–7.

    Article  CAS  Google Scholar 

  28. Aparicio-Gallego G, Afonso-Afonso FJ, León-Mateos L, Fírvida-Pérez JL, Vázquez-Estévez S, Lázaro-Quintela M, et al. Molecular basis of hypertension side effects induced by sunitinib. Anti-Cancer Drugs. 2011;22(1):1–8.

    Article  CAS  Google Scholar 

  29. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.

    Article  CAS  Google Scholar 

  30. Giorgini P, Weder AB, Jackson EA, Brook RD. A review of blood pressure measurement protocols among hypertension trials: implications for “evidence-based” clinical practice. J Am Soc Hypertens. 2014;8(9):670–6.

    Article  Google Scholar 

  31. Garg A, Li J, Clark E, Knott A, Carrothers TJ, Marier JF, et al. Exposure-response analysis of pertuzumab in HER2-positive metastatic breast cancer: absence of effect on QTc prolongation and other ECG parameters. Cancer Chemother Pharmacol. 2013;72(5):1133–41.

    Article  CAS  Google Scholar 

  32. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013–22.

    Article  CAS  Google Scholar 

  33. Morganroth J, Shah RR, Scott JW. Evaluation and management of cardiac safety using the electrocardiogram in oncology clinical trials: focus on cardiac repolarization (QTc interval). Clin Pharmacol Ther. 2010;87(2):166–74.

    Article  CAS  Google Scholar 

  34. Welch PA, Ng WT, Darstein CL, Musib L, Lesimple T. Effects of enzastaurin and its metabolites on the QT interval in cancer patients. J Clin Pharmacol. 2016;56(1):101–8.

    Article  CAS  Google Scholar 

  35. FDA Guidance and Compliance articles. Available at: https://www.fda.gov/RegulatoryInformation/Guidances/default.htm.

  36. Seltzer JH, Turner JR, Geiger MJ, Rosano G, Mahaffey KW, White WB, et al. Centralized adjudication of cardiovascular end points in cardiovascular and noncardiovascular pharmacologic trials: a report from the Cardiac Safety Research Consortium. Am Heart J. 2015;169(2):197–204.

    Article  Google Scholar 

  37. Common terminology criteria for adverse events (CTCAE). 2009: NIH publication no. 09-5410. Bethesda: U.S. Department of Health and Human Services, National Cancer Institute.

    Google Scholar 

  38. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    Article  CAS  Google Scholar 

  39. Hu X, Zhang J, Xu B, Jiang Z, Ragaz J, Tong Z, et al. Multicenter phase II study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer. Int J Cancer. 2014;135(8):1961–9.

    Article  CAS  Google Scholar 

  40. Thanarajasingam G, Hubbard JM, Sloan JA, Grothey A. The imperative for a new approach to toxicity analysis in oncology clinical trials. J Natl Cancer Inst. 2015;107(10). pii: djv216.

    Article  Google Scholar 

  41. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.

    Article  Google Scholar 

  42. Caprelsa Clinical Pharmacology review. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022405Orig1s000ClinPharmR.pdf.

  43. Pürerfellner H, Sanders P, Pokushalov E, Di Bacco M, Bergemann T, Dekker LR, et al. Miniaturized reveal LINQ insertable cardiac monitoring system: first-in-human experience. Heart Rhythm. 2015;12(6):1113–9.

    Article  Google Scholar 

  44. Pachulski R, Cockrell J, Solomon H, Yang F, Rogers J. Implant evaluation of an insertable cardiac monitor outside the electrophysiology lab setting. PLoS One. 2013;8(8):e71544.

    Article  CAS  Google Scholar 

  45. Jacoby D, Hajj J, Javaheri A, de Goma E, Lin A, Ahn P, et al. Carotid intima-media thickness measurement promises to improve cardiovascular risk evaluation in head and neck cancer patients. Clin Cardiol. 2015;38(5):280–4.

    Article  Google Scholar 

  46. Valenti V, Ó Hartaigh B, Heo R, Schulman-Marcus J, Cho I, Kalra DK, et al. Long-term prognosis for individuals with hypertension undergoing coronary artery calcium scoring. Int J Cardiol. 2015;187:534–40.

    Article  Google Scholar 

  47. Charakida M, Masi S, Lüscher TF, Kastelein JJ, Deanfield JE. Assessment of atherosclerosis: the role of flow-mediated dilatation. Eur Heart J. 2010;31(23):2854–61.

    Article  Google Scholar 

  48. Di Lisi D, Madonna R, Zito C, Bronte E, Badalamenti G, Parrella P, et al. Anticancer therapy-induced vascular toxicity: VEGF inhibition and beyond. Int J Cardiol. 2017;227:11–7.

    Article  Google Scholar 

  49. Ganesh T, Estrada M, Yeger H, Duffin J, Cheng HM. A non-invasive magnetic resonance imaging approach for assessment of real-time microcirculation dynamics. Sci Rep. 2017;7(1):7468.

    Article  Google Scholar 

  50. Jiang S, Bao Y, Hou X, Fang Q, Wang C, Pan J, et al. Serum C-reactive protein and risk of cardiovascular events in middle-aged and older chinese population. Am J Cardiol. 2009;103(12):1727–31.

    Article  CAS  Google Scholar 

  51. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106(5):506–12.

    Article  CAS  Google Scholar 

  52. Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6.

    Article  CAS  Google Scholar 

  53. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    Article  CAS  Google Scholar 

  54. Sun X, He S, Wara AK, Icli B, Shvartz E, Tesmenitsky Y, et al. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res. 2014;114(1):32–40.

    Article  CAS  Google Scholar 

  55. Boman K, Olofsson M, Berggren P, Sengupta PP, Narula J. Robot-assisted remote echocardiographic examination and teleconsultation: a randomized comparison of time to diagnosis with standard of care referral approach. JACC Cardiovasc Imaging. 2014;7(8):799–803.

    Article  Google Scholar 

  56. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327.

    PubMed  Google Scholar 

  57. Aminkeng F, Ross CJ, Rassekh SR, Hwang S, Rieder MJ, Bhavsar AP, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82(3):683–95.

    Article  CAS  Google Scholar 

  58. Zhang S, Liang F, Tannock I. Use and misuse of common terminology criteria for adverse events in cancer clinical trials. BMC Cancer. 2016;16:392.

    Article  Google Scholar 

  59. Alliance for Clincial Trials. Available at: https://www.allianceforclinicaltrialsinoncology.org/main/cmsfilecmsPath=/Public/Annual%20Meeting/files/Alliance.ePRO.5.2017.pdf.

  60. Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6(9):702–13.

    Article  CAS  Google Scholar 

  61. Zhou R, Scheurer ME, Gilbert MR, Bondy M, Sulman EP, Yuan Y. Polymorphisms risk modeling for vascular toxicity in patients with glioblastoma treated on NRG Oncology/RTOG 0825. J Clin Oncol. [online] Available at: https://doi.org/10.1200/JCO.2016.34.15_suppl.2049.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bronte, E., Novo, G., Bazan, V., Rolfo, C., Gori, S., Russo, A. (2019). Cardiovascular Damage in Clinical Trials. In: Russo, A., Novo, G., Lancellotti, P., Giordano, A., Pinto, F. (eds) Cardiovascular Complications in Cancer Therapy. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-93402-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93402-0_20

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-93401-3

  • Online ISBN: 978-3-319-93402-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics