Skip to main content

Pulmonary Hypertension Induced by Anticancer Drugs

  • Chapter
  • First Online:
Cardiovascular Complications in Cancer Therapy

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Pulmonary vascular damage is a rare but possible complication of treatment with chemotherapeutic agents or bone marrow transplantation. The main clinical manifestations involving the pulmonary vessels are the development of pulmonary arterial hypertension or pulmonary veno-occlusive disease. In this chapter we describe the main mechanisms underlying the development of this form of toxicity, the screening algorithm, and its clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Limsuwan A, Pakakasama S, Rochanawutanon M, Hong-eng S. Pulmonary arterial hypertension after childhood cancer therapy and bone marrow transplantation. Cardiology. 2006;105:188–94.

    Article  Google Scholar 

  2. Ranchoux B, Gunther S, Quarck R, Chaumais MC, Dorfmuller P, Antigny F, et al. Chemotherapy-induced pulmonary hypertension: role of alkylating agents. Am J Pathol. 2015;185:356–71.

    Article  CAS  Google Scholar 

  3. Montani D, Bergot E, Gunther S, Savale L, Bergeron A, Bourdin A, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 2012;125:2128–37.

    Article  CAS  Google Scholar 

  4. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.

    Article  Google Scholar 

  5. Rubin LJ. Primary pulmonary hypertension. N Engl J Med. 1997;336:111–7.

    Article  CAS  Google Scholar 

  6. Guilpain P, Montani D, Damaj G, Achouh L, Lefrere F, Le Pavec J, et al. Pulmonary hypertension associated with myeloproliferative disorders: a retrospective study of ten cases. Respiration. 2008;76:295–302.

    Article  CAS  Google Scholar 

  7. Adir Y, Humbert M. Pulmonary hypertension in patients with chronic myeloproliferative disorders. Eur Respir J. 2010;35:1396–406.

    Article  CAS  Google Scholar 

  8. Montani D, Price LC, Dorfmuller P, Achouh L, Jais X, Yaici A, et al. Pulmonary veno-occlusive disease. Eur Respir J. 2009;33:189–200.

    Article  CAS  Google Scholar 

  9. Koyama M, Yano T, Kikuchi K, Mizuno M, Nagano N, Hashimoto A, et al. Favorable response to an endothelin receptor antagonist in mitomycin-induced pulmonary veno-occlusive disease with pulmonary capillary hemangiomatosis. Intl J Cardiol. 2016;212:245–7.

    Article  Google Scholar 

  10. Botros L, Van Nieuw Amerongen GP, Vonk Noordegraaf A, Bogaard HJ. Recovery from mitomycin-induced pulmonary arterial hypertension. Ann Am Thoracic Soc. 2014;11:468–70.

    Article  Google Scholar 

  11. Perros F, Gunther S, Ranchoux B, Godinas L, Antigny F, Chaumais MC, et al. Mitomycin-induced pulmonary veno-occlusive disease: evidence from human disease and animal models. Circulation. 2015;132:834–47.

    Article  CAS  Google Scholar 

  12. Joselson R, Warnock M. Pulmonary veno-occlusive disease after chemotherapy. Hum Pathol. 1983;14:88–91.

    Article  CAS  Google Scholar 

  13. Knight BK, Rose AG. Pulmonary veno-occlusive disease after chemotherapy. Thorax. 1985;40:874–5.

    Article  CAS  Google Scholar 

  14. Swift GL, Gibbs A, Campbell IA, Wagenvoort CA, Tuthill D. Pulmonary veno-occlusive disease and hodgkin's lymphoma. Eur Respir J. 1993;6:596–8.

    CAS  PubMed  Google Scholar 

  15. Salzman D, Adkins DR, Craig F, Freytes C, LeMaistre CF. Malignancy-associated pulmonary veno-occlusive disease: report of a case following autologous bone marrow transplantation and review. Bone Marrow Transplant. 1996;18:755–60.

    CAS  PubMed  Google Scholar 

  16. Kuga T, Kohda K, Hirayama Y, Matsumoto S, Nakazawa O, Ando M, et al. Pulmonary veno-occlusive disease accompanied by microangiopathic hemolytic anemia 1 year after a second bone marrow transplantation for acute lymphoblastic leukemia. Intl J Hematol. 1996;64:143–50.

    Article  CAS  Google Scholar 

  17. Troussard X, Bernaudin JF, Cordonnier C, Fleury J, Payen D, Briere J, et al. Pulmonary veno-occlusive disease after bone marrow transplantation. Thorax. 1984;39:956–7.

    Article  CAS  Google Scholar 

  18. Yan L, Chen X, Talati M, Nunley BW, Gladson S, Blackwell T, et al. Bone marrow-derived cells contribute to the pathogenesis of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2016;193:898–909.

    Article  CAS  Google Scholar 

  19. Bradner WT. Mitomycin c: A clinical update. Cancer Treat Rev. 2001;27:35–50.

    Article  CAS  Google Scholar 

  20. Doll DC, Weiss RB, Issell BF. Mitomycin: ten years after approval for marketing. J Clin Oncol. 1985;3:276–86.

    Article  CAS  Google Scholar 

  21. Wu KY, Wang HZ, Hong SJ. Mechanism of mitomycin-induced apoptosis in cultured corneal endothelial cells. Mol Vis. 2008;14:1705–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Su C, Sui T, Zhang X, Zhang H, Cao X. Effect of topical application of mitomycin-c on wound healing in a postlaminectomy rat model: an experimental study. Eur J Pharmacol. 2012;674:7–12.

    Article  CAS  Google Scholar 

  23. Patil N, Paulose RM, Udupa KS, Ramakrishna N, Ahmed T. Pulmonary toxicity of bleomycin - a case series from a tertiary care center in southern India. J Clin Diagn Res. 2016;10:FR01–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sleijfer S. Bleomycin-induced pneumonitis. Chest. 2001;120:617–24.

    Article  CAS  Google Scholar 

  25. Ohtani T, Nakamura T, Toda K, Furukawa F. Cyclophosphamide enhances tnf-alpha-induced apoptotic cell death in murine vascular endothelial cell. FEBS Lett. 2006;580:1597–600.

    Article  CAS  Google Scholar 

  26. Hamano Y, Sugimoto H, Soubasakos MA, Kieran M, Olsen BR, Lawler J, et al. Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res. 2004;64:1570–4.

    Article  CAS  Google Scholar 

  27. Dumitrescu D, Seck C, ten Freyhaus H, Gerhardt F, Erdmann E, Rosenkranz S. Fully reversible pulmonary arterial hypertension associated with dasatinib treatment for chronic myeloid leukaemia. Eur Respir J. 2011;38:218–20.

    Article  CAS  Google Scholar 

  28. Rasheed W, Flaim B, Seymour JF. Reversible severe pulmonary hypertension secondary to dasatinib in a patient with chronic myeloid leukemia. Leuk Res. 2009;33:861–4.

    Article  Google Scholar 

  29. Mattei D, Feola M, Orzan F, Mordini N, Rapezzi D, Gallamini A. Reversible dasatinib-induced pulmonary arterial hypertension and right ventricle failure in a previously allografted cml patient. Bone Marrow Transplant. 2009;43:967–8.

    Article  CAS  Google Scholar 

  30. Orlandi EM, Rocca B, Pazzano AS, Ghio S. Reversible pulmonary arterial hypertension likely related to long-term, low-dose dasatinib treatment for chronic myeloid leukaemia. Leuk Res. 2012;36:e4–6.

    Article  Google Scholar 

  31. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70.

    Article  CAS  Google Scholar 

  32. Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, et al. Final 5-year study results of dasision: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34:2333–40.

    Article  CAS  Google Scholar 

  33. Hantschel O, Rix U, Superti-Furga G. Target spectrum of the bcr-abl inhibitors imatinib, nilotinib and dasatinib. Leukemia Lymphoma. 2008;49:615–9.

    Article  CAS  Google Scholar 

  34. Kurzrock R, Gutterman JU, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med. 1988;319:990–8.

    Article  CAS  Google Scholar 

  35. Calabretta B, Perrotti D. The biology of cml blast crisis. Blood. 2004;103:4010–22.

    Article  CAS  Google Scholar 

  36. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the abl tyrosine kinase on the growth of bcr-abl positive cells. Nat Med. 1996;2:561–6.

    Article  CAS  Google Scholar 

  37. Aguilera DG, Tsimberidou AM. Dasatinib in chronic myeloid leukemia: a review. Ther Clin Risk Manag. 2009;5:281–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guignabert C, Montani D. Key roles of src family tyrosine kinases in the integrity of the pulmonary vascular bed. Eur Respir J. 2013;41:3–4.

    Article  CAS  Google Scholar 

  39. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, et al. Discovery of n-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (bms-354825), a dual src/abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47:6658–61.

    Article  CAS  Google Scholar 

  40. Barst RJ. Pdgf signaling in pulmonary arterial hypertension. J Clin Invest. 2005;115:2691–4.

    Article  CAS  Google Scholar 

  41. Balasubramaniam V, Le Cras TD, Ivy DD, Grover TR, Kinsella JP, Abman SH. Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. Am J Phys. 2003;284:L826–33.

    Article  CAS  Google Scholar 

  42. Eddahibi S, Humbert M, Sediame S, Chouaid C, Partovian C, Maitre B, et al. Imbalance between platelet vascular endothelial growth factor and platelet-derived growth factor in pulmonary hypertension. Effect of prostacyclin therapy. Am J Respir Crit Care Med. 2000;162:1493–9.

    Article  CAS  Google Scholar 

  43. Montani D, Perros F, Gambaryan N, Girerd B, Dorfmuller P, Price LC, et al. C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;184:116–23.

    Article  Google Scholar 

  44. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by pdgf inhibition. J Clin Invest. 2005;115:2811–21.

    Article  CAS  Google Scholar 

  45. Hoeper MM, Barst RJ, Bourge RC, Feldman J, Frost AE, Galie N, et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized impres study. Circulation. 2013;127:1128–38.

    Article  CAS  Google Scholar 

  46. Frost AE, Barst RJ, Hoeper MM, Chang HJ, Frantz RP, Fukumoto Y, et al. Long-term safety and efficacy of imatinib in pulmonary arterial hypertension. J Heart Lung Transplant. 2015;34:1366–75.

    Article  Google Scholar 

  47. Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, et al. Chemical proteomic profiles of the bcr-abl inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood. 2007;110:4055–63.

    Article  CAS  Google Scholar 

  48. Baumgart B, Guha M, Hennan J, Li J, Woicke J, Simic D, et al. In vitro and in vivo evaluation of dasatinib and imatinib on physiological parameters of pulmonary arterial hypertension. Cancer Chem Pharmacol. 2017;79:711–23.

    Article  CAS  Google Scholar 

  49. Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–801.

    Article  Google Scholar 

  50. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685–713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo G. Tocchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mercurio, V., Agnetti, G., Pagliaro, P., Tocchetti, C.G. (2019). Pulmonary Hypertension Induced by Anticancer Drugs. In: Russo, A., Novo, G., Lancellotti, P., Giordano, A., Pinto, F. (eds) Cardiovascular Complications in Cancer Therapy. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-93402-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93402-0_14

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-93401-3

  • Online ISBN: 978-3-319-93402-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics