Skip to main content

Assessing Articulatory Modalities for Intercommunication Using Vibrotactile HMDs

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Abstract

In computer-mediated tactile intercommunication, users not only have to perceive tactile cues but also have to articulate them to carry a two-way interaction. By pressing buttons or performing specific gestures, interlocutors can exchange tactile signals but are not able to extrapolate the given vocabulary. When more access to hardware parameters is provided instead, interlocutors can have more autonomy. Yet, changes in articulation might produce tactile signals that are not perceptually suitable, hindering mutual understanding during intercommunication. In this paper, we explore the trade-off between freedom of articulation and mutual understanding by comparing three articulatory approaches. Dyads performed a collaborative task using their vibrotactile HMDs to communicate. Their performance during the task, as well as mutual understanding, workload and easiness, were assessed as a function of each articulatory condition. Results show that static and mediating conditions support higher performance and mutual understanding compared to a dynamic articulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As our utterances are related to our control over our vocal apparatus, tactile articulation should be related to our control over tactile parameters [23].

  2. 2.

    Suppressed signals are not rendered and the person who articulated the gesture is aware that the gesture was not recognized by the system.

References

  1. Ansar, A., Rodrigues, D., Desai, J.P., Daniilidis, K., Kumar, V., Campos, M.F.: Visual and haptic collaborative tele-presence. Comput. Graph. 25(5), 789–798 (2001)

    Article  Google Scholar 

  2. Biocca, F., Harms, C., Gregg, J.: The networked minds measure of social presence: Pilot test of the factor structure and concurrent validity. In: 4th Annual International Workshop on Presence, Philadelphia, PA, pp. 1–9 (2001)

    Google Scholar 

  3. Brave, S., Dahley, A.: inTouch: a medium for Haptic interpersonal communication. In: CHI 1997 Extended Abstracts on Human Factors in Computing Systems, pp. 363–364. ACM (1997)

    Google Scholar 

  4. Brewster, S., Brown, L.M.: Tactons: structured tactile messages for non-visual information display. In: Proceedings of the Fifth Conference on Australasian User Interface, vol. 28, pp. 15–23. Australian Computer Society, Inc. (2004)

    Google Scholar 

  5. Brown, L.M., Williamson, J.: Shake2Talk: multimodal messaging for interpersonal communication. In: Oakley, I., Brewster, S. (eds.) HAID 2007. LNCS, vol. 4813, pp. 44–55. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76702-2_6

    Chapter  Google Scholar 

  6. Chan, A., MacLean, K., McGrenere, J.: Designing haptic icons to support collaborative turn-taking. Int. J. Hum.-Comput. Stud. 66(5), 333–355 (2008)

    Article  Google Scholar 

  7. Chang, A., O’Modhrain, S., Jacob, R., Gunther, E., Ishii, H.: ComTouch: design of a vibrotactile communication device. In: Proceedings of the 4th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, DIS 2002, pp. 312–320. ACM, New York (2002)

    Google Scholar 

  8. Chebbi, B., Lazaroff, D., Bogsany, F., Liu, P.X., Niy, L., Rossi, M.: Design and implementation of a collaborative virtual Haptic surgical training system. In: 2005 IEEE International Conference on Mechatronics and Automation, vol. 1, pp. 315–320. IEEE (2005)

    Google Scholar 

  9. Cholewiak, R., Brill, J., Schwab, A.: Vibrotactile localization on the abdomen: effects of place and space. Percept. Psychophysics 66(6), 970–987 (2004)

    Article  Google Scholar 

  10. Clark, H.H., Brennan, S.E., et al.: Grounding in communication. Perspect. Socially Shared Cogn. 13(1991), 127–149 (1991)

    Article  Google Scholar 

  11. Cramer, H., Kemper, N., Amin, A., Wielinga, B., Evers, V.: give me a hug: the effects of touch and autonomy on people’s responses to embodied social agents. Comput. Anim. Virtual Worlds 20(2–3), 437–445 (2009)

    Article  Google Scholar 

  12. Dragovic, M.: Towards an improved measure of the edinburgh handedness inventory: a one-factor congeneric measurement model using confirmatory factor analysis. Laterality Asymmetries Body Brain Cogn. 9(4), 411–419 (2004)

    Article  Google Scholar 

  13. Field, T.: Touch, 2nd edn. MIT Press, Cambridge (2001)

    Google Scholar 

  14. Gallace, A., Spence, C.: The science of interpersonal touch: an overview. Neurosci. Biobehav. Rev. 34(2), 246–259 (2010)

    Article  Google Scholar 

  15. Gugenheimer, J., Dobbelstein, D., Winkler, C., Haas, G., Rukzio, E.: FaceTouch: enabling touch interaction in display fixed UIs for mobile virtual reality. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST 2016, pp. 49–60. ACM, New York (2016)

    Google Scholar 

  16. Gugenheimer, J., Stemasov, E., Sareen, H., Rukzio, E.: FaceDisplay: enabling multi-user interaction for mobile virtual reality. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 369–372. ACM (2017)

    Google Scholar 

  17. Haans, A., IJsselsteijn, W.: Mediated social touch: a review of current research and future directions. Virtual Reality 9(2–3), 149–159 (2006)

    Article  Google Scholar 

  18. Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 904–908. Sage Publications (2006)

    Article  Google Scholar 

  19. Hashimoto, T., Ishibashi, Y.: Group synchronization control over Haptic media in a networked real-time game with collaborative work. In: Proceedings of 5th ACM SIGCOMM Workshop on Network and System Support for Games, p. 8. ACM (2006)

    Google Scholar 

  20. Iglesias, R., Prada, E., Uribe, A., Garcia-Alonso, A., Casado, S., Gutierrez, T.: Assembly simulation on collaborative haptic virtual environments (2007)

    Google Scholar 

  21. Israr, A., Zhao, S., Schneider, O.: Exploring embedded Haptics for social networking and interactions. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1899–1904. ACM (2015)

    Google Scholar 

  22. de Jesus Oliveira, V.A., Brayda, L., Nedel, L., Maciel, A.: Designing a vibrotactile head-mounted display for spatial awareness in 3D spaces. IEEE Trans. Vis. Comput. Graph. 23(4), 1409–1417 (2017)

    Article  Google Scholar 

  23. de Jesus Oliveira, V.A., Nedel, L., Maciel, A.: Proactive Haptic articulation for intercommunication in collaborative virtual environments. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 91–94. IEEE (2016)

    Google Scholar 

  24. de Jesus Oliveira, V.A., Nedel, L., Maciel, A., Brayda, L.: Localized magnification in vibrotactile HMDs for accurate spatial awareness. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) EuroHaptics 2016. LNCS, vol. 9775, pp. 55–64. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42324-1_6

    Chapter  Google Scholar 

  25. Kaul, O.B., Rohs, M.: HapticHead: 3D guidance and target acquisition through a vibrotactile grid. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 2533–2539. ACM (2016)

    Google Scholar 

  26. Kerdegari, H., Kim, Y., Prescott, T.J.: Head-mounted sensory augmentation device: designing a tactile language. IEEE Trans. Haptics 9(3), 376–386 (2016)

    Article  Google Scholar 

  27. Núñez, O.J.A., Lange, M., Steinicke, F., Bruder, G.: Vibrotactile assistance for user guidance towards selection targets in VR and the cognitive resources involved. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 95–98, March 2017

    Google Scholar 

  28. Oakley, I., Brewster, S., Gray, P.: Can you feel the force? an investigation of Haptic collaboration in shared editors. In: proceedings of EuroHaptics, pp. 54–59 (2001)

    Google Scholar 

  29. Rash, C.E., Russo, M.B., Letowski, T.R., Schmeisser, E.T.: Helmet-mounted displays: sensation, perception and cognition issues. Technical report, DTIC Document (2009)

    Google Scholar 

  30. Sallnäs, E.L., Rassmus-Gröhn, K., Sjöström, C.: Supporting presence in collaborative environments by haptic force feedback. ACM Trans. Comput.-Hum. Interact. (TOCHI) 7(4), 461–476 (2000)

    Article  Google Scholar 

  31. Sauro, J., Dumas, J.S.: Comparison of three one-question, post-task usability questionnaires. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2009)

    Google Scholar 

  32. Serrano, M., Ens, B.M., Irani, P.P.: Exploring the use of hand-to-face input for interacting with head-worn displays. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3181–3190. ACM (2014)

    Google Scholar 

  33. Smith, J., MacLean, K.: Communicating emotion through a haptic link: design space and methodology. Int. J. Hum.-Comput. Stud. 65(4), 376–387 (2007)

    Article  Google Scholar 

  34. Ternes, D., MacLean, K.E.: Designing large sets of Haptic icons with rhythm. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 199–208. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69057-3_24

    Chapter  Google Scholar 

  35. Van Erp, J.B., Toet, A.: Social touch in human-computer interaction. Front. Dig. Humanit. 2, 2 (2015)

    Google Scholar 

  36. Wobbrock, J.O., Myers, B.A., Aung, H.H.: The performance of hand postures in front-and back-of-device interaction for mobile computing. Int. J. Hum.-Comput. Stud. 66(12), 857–875 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CAPES and CNPq-Brazil for the financial support to the provision of post-graduate scholarship. The authors also thank the subjects whose participation made this study possible. We also acknowledge FAPERGS (project 17/2551-0001192-9) and CNPq-Brazil (project 311353/2017-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Adriel de Jesus Oliveira , Luciana Nedel or Anderson Maciel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Jesus Oliveira, V.A., Nedel, L., Maciel, A. (2018). Assessing Articulatory Modalities for Intercommunication Using Vibrotactile HMDs. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93399-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93398-6

  • Online ISBN: 978-3-319-93399-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics