Skip to main content

Overcoming the Variability of Fingertip Friction with Surface-Haptic Force-Feedback

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10894))

Abstract

Touch screens have pervaded our lives as the most widely used human-machine interface, and much research has focused recently on producing vivid tactile sensations on these flat panels. One of the main methods used for this purpose is based on ultrasonic vibration to controllably reduce the friction experienced by a finger touching a glass plate. Typically, these devices modulate the amplitude of the vibration in order to control the frictional force that the finger experiences without monitoring the actual output. However, since friction is a complex physical process, the open-loop transfer function is not stationary and varies with a wide range of external parameters such as the velocity of exploration or the ambient moisture. The novel interface we present here incorporates a force sensor which measures subtle changes of the frictional force on a wide frequency bandwidth including static forces. This force sensor is the basis for real time control of the frictional force of the finger, which reduces significantly the inherent variability of ultrasonic friction modulation while maintaining a noise level below human perception thresholds. The interface is able to render of precise and sharp frictional patterns directly on the user’s fingertip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shultz, C.D., Peshkin, M.A., Colgate, J.E.: The application of tactile, audible, and ultrasonic forces to human fingertips using broadband electroadhesion. In: 2017 IEEE World Haptics Conference (WHC), pp. 119–124. IEEE (2017)

    Google Scholar 

  2. Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2678–2688 (2007)

    Article  Google Scholar 

  3. Winfield, L., Glassmire, J., Colgate, J.E., Peshkin, M.: T-pad: Tactile pattern display through variable friction reduction. In: Proceedings of the Second Joint EuroHaptics Conference 2007 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2007, pp. 421–426. IEEE (2007)

    Google Scholar 

  4. Minsky, M., Ming, O.Y., Steele, O., Brooks Jr, F.P., Behensky, M.: Feeling and seeing: issues in force display. In: ACM SIGGRAPH Computer Graphics, vol. 24, pp. 235–241. ACM (1990)

    Article  Google Scholar 

  5. Robles-De-La-Torre, G., Hayward, V.: Force can overcome object geometry in the perception of shape through active touch. Nature 412(6845), 445–448 (2001)

    Article  Google Scholar 

  6. Sednaoui, T., Vezzoli, E., Dzidek, B., Lemaire-Semail, B., Chappaz, C., Adams, M.: Experimental evaluation of friction reduction in ultrasonic devices. In: 2015 IEEE World Haptics Conference (WHC), pp. 37–42. IEEE (2015)

    Google Scholar 

  7. Monnoyer, J., Diaz, E., Bourdin, C., Wiertlewski, M.: Optimal skin impedance promotes perception of ultrasonic switches. In: 2017 IEEE World Haptics Conference (WHC), pp. 130–135. IEEE (2017)

    Google Scholar 

  8. Tomlinson, S., Lewis, R., Carré, M.: The effect of normal force and roughness on friction in human finger contact. Wear 267(5), 1311–1318 (2009)

    Article  Google Scholar 

  9. Pasumarty, S.M., Johnson, S.A., Watson, S.A., Adams, M.J.: Friction of the human finger pad: influence of moisture, occlusion and velocity. Tribol. Lett. 44(2), 117 (2011)

    Article  Google Scholar 

  10. Meyer, D.J., Wiertlewski, M., Peshkin, M.A., Colgate, J.E.: Dynamics of ultrasonic and electrostatic friction modulation for rendering texture on haptic surfaces. In: 2014 IEEE Haptics Symposium (HAPTICS), pp. 63–67. IEEE (2014)

    Google Scholar 

  11. Wiertlewski, M., Friesen, R.F., Colgate, J.E.: Partial squeeze film levitation modulates fingertip friction. Proc. Natl. Acad. Sci. 113(33), 9210–9215 (2016)

    Article  Google Scholar 

  12. Vezzoli, E., Messaoud, W.B., Amberg, M., Giraud, F., Lemaire-Semail, B., Bueno, M.A.: Physical and perceptual independence of ultrasonic vibration and electrovibration for friction modulation. IEEE Trans. Haptics 8(2), 235–239 (2015)

    Article  Google Scholar 

  13. Smith, T.A., Gorlewicz, J.L.: HUE: a hybrid ultrasonic and electrostatic variable friction touchscreen. In: 2017 IEEE World Haptics Conference (WHC), pp. 635–640. IEEE (2017)

    Google Scholar 

  14. Wiertlewski, M., Leonardis, D., Meyer, D.J., Peshkin, M.A., Colgate, J.E.: A high-fidelity surface-haptic device for texture rendering on bare finger. In: Auvray, M., Duriez, C. (eds.) EUROHAPTICS 2014. LNCS, vol. 8619, pp. 241–248. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44196-1_30

    Chapter  Google Scholar 

  15. Vezzoli, E., Sednaoui, T., Amberg, M., Giraud, F., Lemaire-Semail, B.: Texture rendering strategies with a high fidelity - capacitive visual-haptic friction control device. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) EuroHaptics 2016. LNCS, vol. 9774, pp. 251–260. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42321-0_23

    Chapter  Google Scholar 

  16. Messaoud, W.B., Amberg, M., Lemaire-Semail, B., Giraud, F., Bueno, M.A.: High fidelity closed loop controlled friction in smarttac tactile stimulator. In: 2015 17th European Conference on Power Electronics and Applications (EPE 2015 ECCE-Europe), pp. 1–9. IEEE (2015)

    Google Scholar 

  17. Lotters, J.C., Olthuis, W., Veltink, P.H., Bergveld, P.: A sensitive differential capacitance to voltage converter for sensor applications. IEEE Trans. Instrum. Meas. 48(1), 89–96 (1999)

    Article  Google Scholar 

  18. Wiertlewski, M., Hudin, C., Hayward, V.: On the 1/f noise and non-integer harmonic decay of the interaction of a finger sliding on flat and sinusoidal surfaces. In: World Haptics Conference (WHC), pp. 25–30. IEEE (2011)

    Google Scholar 

  19. Bernard, C., Monnoyer, J., Wiertlewski, M.: Harmonious textures: the perceptual dimensions of synthetic sinusoidal gratings. In: Eurohaptics. Springer (2018, in press)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Julien Diperi for his assistance with the mechanical engineering and Stéphane Viollet for his thoughtful comments on the design of the controller. This research was part of the French Research Agency project iota (ANR-16-CE33-0002), with some additional support from the Openlab PSA-AMU “Automotive Motion Lab” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Huloux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huloux, N., Monnoyer, J., Boyron, M., Wiertlewski, M. (2018). Overcoming the Variability of Fingertip Friction with Surface-Haptic Force-Feedback. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93399-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93398-6

  • Online ISBN: 978-3-319-93399-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics