Skip to main content

Estimating the Direction of Force Applied to the Grasped Object Using the Surface EMG

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10894))

Abstract

In the passive haptic system and other VR fields, there is a great demand for measuring the direction and magnitude of various forces applied to a grasped object. To acquire this force, there are mainly two kinds of methods; one is directly measuring it by the sensor attached or embedded to the object surface or the glove type device, and the other is estimating it by measuring the change of the surface electromyography (sEMG) of the forearm. The former is used a lot but has problems that it is difficult to stick the sensor due to the object’s surface, and sensors prevent fingers and objects from touching directly. The latter approach has a potential to release us from above problems. However, most of their works focused on estimating a certain direction of force, like a grip force, thus, there is no research to estimate multidirectional loading forces.

To solve these problems, we propose a solution for estimating direction and magnitude of the force applied to the grasped object using sEMG of the forearm with the convolutional neural network (CNN), as the gesture recognition field uses. By constructing training system that can measure sEMG signals and the force applied to the grasped object, we trained a model, and this model realized over 95% accurate directional estimation and the estimation of force magnitude with less than 7% NRMSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tachi, S., Maeda, T., Hirata, R., Hoshino, H.A.: Construction method of virtual haptic space. In: Proceedings of the 4th International Conference on Artificial Reality and Tele-Existence, pp. 131–138 (1994)

    Google Scholar 

  2. Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F.: Passive real-world interface props for neurosurgical visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, vol. 452 (1994)

    Google Scholar 

  3. Azmandian, M., Hancock, M., Benko, H., Ofek, E., Wilson, A.D.: Haptic retargeting: dynamic repurposing of passive haptics for enhanced virtual reality experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1968–1979 (2016)

    Google Scholar 

  4. Ban, Y., Kajinami, T., Narumi, T., Tanikawa, T., Hirose, M.: Modifying an identified angle of edged shapes using pseudo-haptic effects. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 25–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31401-8_3

    Chapter  Google Scholar 

  5. Matsumoto, K., Ban, Y., et al.: Unlimited corridor: redirected walking techniques using visuo haptic interaction. In: ACM SIGGRAPH 2016 Emerging Technologies, p. 20 (2016)

    Google Scholar 

  6. Ban, Y., Narumi, T., et al.: Controlling perceived stiffness of pinched objects using visual feedback of hand deformation. In: Haptics Symposium (HAPTICS), pp. 557–562 (2014)

    Google Scholar 

  7. Kimura, T., Nojima, T.: Pseudo-haptic feedback on softness induced by grasping motion. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7283, pp. 202–205. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31404-9_36

    Chapter  Google Scholar 

  8. Kawamoto, H., Sankai, Y.: Power assist system HAL-3 for gait disorder person. In: Miesenberger, K., Klaus, J., Zagler, W. (eds.) ICCHP 2002. LNCS, vol. 2398, pp. 196–203. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45491-8_43

    Chapter  Google Scholar 

  9. Park, K.H., Lee, S.W.: Movement intention decoding based on deep learning for multiuser myoelectric interfaces. In: 2016 4th International Winter Conference Brain-Computer Interface (BCI), pp. 1–2 (2016)

    Google Scholar 

  10. Nitta, K., Sato, T., Koike, H., Nojima, T.: Photoelastic Ball: a touch detectable ball using photoelasticity. In: the 5th Augmented Human International Conference, vol. 16, pp. 1–8 (2014)

    Google Scholar 

  11. Sagisaka, T., Ohmura, Y., Nagakubo, A., Ozaki, K., Kuniyoshi, Y.: Development and applications of high-density tactile sensing glove. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 445–456. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31401-8_40

    Chapter  Google Scholar 

  12. Misener, D.L., Morin, E.L.: An EMG to force model for the human elbow derived from surface EMG parameters. In: IEEE 17th Annual Conference Engineering in Medicine and Biology Society, vol. 2, pp. 1205–1206 (1995)

    Google Scholar 

  13. Doheny, E.P., Lowery, M.M., FitzPatrick, D.P., O’Malley, M.J.: Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles. J. Electromyogr. Kinesiol. 18(5), 760–770 (2008)

    Article  Google Scholar 

  14. Jazlan, A., Sidek, S.N.: Development of a myoelectric interface for indirect hand grip force and wrist angle measurement/analysis. Int. J. Biomechatronics Biomed. Robot. 3(1), 42–53 (2014)

    Article  Google Scholar 

  15. Oboe, R., Tonin, A., Yu, K., et al.: Weight estimation system using surface EMG armband. In: 2017 IEEE International Conference Industrial Technology (ICIT), pp. 688–693 (2017)

    Google Scholar 

  16. Atzori, M., Cognolato, M., Müller, H.: Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Front. Neurorobot. 10, 9 (2016)

    Article  Google Scholar 

  17. Myo, Thalmic Labs Inc. (2013). https://www.myo.com/

  18. Englehart, K., Hudgins, B., et al.: Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys. 21(6), 431–438 (1999)

    Article  Google Scholar 

  19. LeCun, Y., Bengio, Y.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  20. Silver, D., et al.: NIPS Workshop on “Inductive Transfer: 10 Years Later. Whistler (2005)

    Google Scholar 

  21. Côté-Allard, U., et al.: Transfer Learning for sEMG Hand Gestures Recognition Using Convolutional Neural Networks, Systems, Man, and Cybernetics (SMC) (2017). https://doi.org/10.1109/smc.2017.8122854

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Ban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ban, Y. (2018). Estimating the Direction of Force Applied to the Grasped Object Using the Surface EMG. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93399-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93398-6

  • Online ISBN: 978-3-319-93399-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics