Skip to main content

Genomic Designing for Climate Smart Finger Millet

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Cereal Crops

Abstract

Finger millet is a nutritious cereal crop mainly grown in eastern Africa and southern parts of India. The crop has an incredible ability to adapt to adverse agro-ecological conditions, and is therefore a favorite of smallholder farmers in the tropics, especially women. Finger millet grain is gluten free and exceptionally rich in micronutrients including calcium, folic acid and iron. Despite its unique quality, there has been limited research investment in finger millet resulting in the lack of genetic and genomic resources for more efficient breeding. The abundant genetic resources at the center of origin are yet to be fully exploited for crop improvement, and to date, very few pre-breeding programs exist. Several studies indicate the potential use of the secondary and tertiary gene pools to broaden the narrow genetic base that has been created by the inbreeding nature of the crop. The recent availability of draft whole genome sequences and a robust genetic linkage map, now make it possible to implement large-scale genomics-assisted breeding in finger millet. Comparative mapping with closely related and well-studied crops such as rice, provide an opportunity to understand the complex tetraploid genome more efficiently. With the increasing health awareness, and the growing middle class in Africa and Asia, there is likely to be a higher demand for the nutritious finger millet. Breeders will need to generate relevant populations and increase the yield of finger millet to its full potential in order to meet the demand. The current investment in the generation of genomic resources will need to be matched with investment in phenotyping and germplasm characterization to enable more efficient breeding in finger millet. We discuss the genetic and genomic resources available for finger millet and how they can be exploited to enhance its adaptability to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasha MB, Amani HE, Rashida MAA, Nahid AK (2017) Effects of intercropping pearl millet with some legumes on Striga Hermonthica emergence. SSRG Intl J Agri Environ Sci 4(6):65–72

    Google Scholar 

  • Agrawal R, Maheshwari A (2016) Genetic improvement in the genus Eleusine. In: Rajpal VR, Rama Rao S, Raina SN (eds) Gene pool diversity and crop improvement, sustainable development and biodiversity, vol 10. Springer International Publishing, Switzerland, pp 393–414

    Chapter  Google Scholar 

  • Alter S, Bader KC, Spannagl M, Wang Y, Bauer E, Schön C-C, Mayer KF (2015) DroughtDB: an expert-curated compilation of plant drought stress genes and their homologs in nine species. Database 2015:bav046. https://doi.org/10.1093/database/bav046

  • Anilkumar TB, Mantur SG, Madhukeshwara SS (2003) Diseases of finger millet. Project coordination cell. All India Coordinated Small Millets Improvement Project. ICAR, GKVK, Bangalore

    Google Scholar 

  • Arya L, Verma M, Gupta VK, Seetharam A (2013) Use of genomic and genic SSR markers for assessing genetic diversity and population structure in Indian and African finger millet (Eleusine coracana (L.) Gaertn.) germplasm. Plant Syst Evol 299:1395–1401

    Article  Google Scholar 

  • Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA (2016) Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol 36(2):353–367. https://doi.org/10.3109/07388551.2014.961403

  • Babu BK, Senthil N, Gomez SM, Biji KR, Rajendraprasad NS, Kumar SS, Babu RC (2007) Assessment of genetic diversity among finger millet (Eleusine coracana (L.) Gaertn.) accessions using molecular markers. Genet Resour Crop Evol 54:399–404

    Article  CAS  Google Scholar 

  • Babu TK, Thakur RP, Upadhyaya HD, Reddy PN, Sharma R, Girish AG et al (2013) Resistance to blast (Magnaporthe grisea) in a mini-core collection of finger millet germplasm. Eur J Plant Pathol 135:299–311

    Article  Google Scholar 

  • Babu BK, Dinesh P, Agrawal PK, Sood S, Chandrashekara C et al (2014a) Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs. PLoS ONE 9(6):e99182. https://doi.org/10.1371/journal.pone.0099182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu BK, Agrawal PK, Pandey D, Jaiswal JP, Kumar A (2014b) Association mapping of agro-morphological characters among the global collection of finger millet genotypes using genomic SSR markers. Mol Biol Rep 41:5287–5297. https://doi.org/10.1007/s11033-014-3400-6

    Article  CAS  Google Scholar 

  • Babu BK, Agrawal PK, Pandey D, Kumar A (2014c) Comparative genomics and association mapping approaches for opaque2 modifier genes in finger millet accessions using genic, genomic and candidate gene-based simple sequence repeat markers. Mol Breed 34:1261–1279. https://doi.org/10.1007/s11032-014-0115-2

    Article  CAS  Google Scholar 

  • Barbeau WE, Hilu K (1993) Protein, calcium, iron and amino acid content of selected wild and domesticated cultivars of Finger millet. Plant Foods Hum Nutr 43:97–104

    Article  CAS  PubMed  Google Scholar 

  • Bhatt D, Negi M, Sharma P, Saxena SC, Dobriyal AK, Arora S (2011) Responses to drought induced oxidative stress in five finger millet varieties differing in their geographical distribution. Physiol Mol Biol Plants 17:347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht MS, Mukai Y (2001) Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theor Appl Genet 102:825–832. https://doi.org/10.1007/s001220000497

    Article  CAS  Google Scholar 

  • Blackbourn HD, Barker PI, Huskisson NS, Battey NH (1992) Properties and partial protein-sequence of plant annexins. Plant Physiol 99:864–871

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, MD, pp 158–1249

    Google Scholar 

  • Carroll AD, Moyen C, Van Kesteren P, Tooke F, Battey NH, Brownlee C (1998) Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell 10:1267–1276

    Google Scholar 

  • Clark GB, Dauwalder M, Roux SJ (1992) Purification and immunolocalization of annexin-like protein in pea seedlings. Planta 187:1–9

    Google Scholar 

  • Butler EJ (1918) Fungi and diseases in plants. Thacker Spink and Co, Calcutta, India

    Google Scholar 

  • Coleman LC (1920) The cultivation of ragi in Mysore. Bull Dep Agri Gen Ser 11

    Google Scholar 

  • CROP TRUST (2012) Global strategy for the ex situ conservation of finger millet and its wild relatives. https://www.croptrust.org/resources/#ex-situ-conservation-strategies. Accessed 18th Dec 2018

  • Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genom 12:215. https://doi.org/10.1007/s10142-012-0284-1

    Article  CAS  Google Scholar 

  • Devarumath RM, Hiremath SC, Rao SR, Kumar A, Sheelavanthmath SS (2005) Genome interrelationship in the genus Eleusine (Poaceae) as revealed through heteroploid crosses. Caryologia 58:300–307

    Article  Google Scholar 

  • Dida MM, Devos KM (2006) Finger millet. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 1. Cereals and Millets. Springer, Berlin, Heidelberg, pp 333–343

    Google Scholar 

  • Dida MM, Srinivasachary Ramakrishna S, Bennetzen JL, Gale MD, Devos KM (2007) The genetic map of finger millet, Eleusine coracana. Theor Appl Genet 114:321–332

    Article  CAS  PubMed  Google Scholar 

  • Dida M, Wanyera N, Dunn M, Bennetzen J, Devos KM (2008) Population structure and diversity in finger millet germplasms. Trop Plant Biol 1:131–141

    Article  Google Scholar 

  • Dobinson KF, Harris RE, Hamer JE (1993) Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant Microbe-Interact 6:114–126

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi S, Upadhyaya H, Senthilvel S, Hash C, Fukunaga K, Diao X et al (2012) Millets: genetic and genomic resources. In: Janick J (ed) Plant breeding reviews, vol 35. Wiley, Hoboken, NJ, pp 247–375

    Google Scholar 

  • Ekwamu A (1991) Influence of head blast infection on seed germination and yield components of finger millet (Eleusine coracana L. Gaertn). Trop Pest Manage 37:122–123

    Article  Google Scholar 

  • FAO (2005) The state of food insecurity in the world: eradicating world hunger—key to achieving the millennium development goals. FAO, Rome, Italy

    Google Scholar 

  • Fernández-Aparicio R (2012) Innovations in parasitic weeds management in legume crops. A review. Agron Sustain Dev 433–449 (Springer/EDP Sciences/INRA)

    Google Scholar 

  • Gimode D, Odeny DA, de Villiers EP, Wanyonyi S, Dida MM, Mneney EE et al (2016) Identification of SNP and SSR markers in finger millet using next generation sequencing technologies. PLoS ONE 11(7):e0159437. https://doi.org/10.1371/journal.pone.0159437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576. https://doi.org/10.3389/fpls.2014.00576

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobena D, Shimels M, Richa PJ, Ruyter-Spirab C, Bouwmeester H et al (2016) Mutation in sorghum LOW GERMINATION STIMULANT1 alters strigolactones and causes Striga resistance. Proc Nat Acad Sci USA 114:4471–44716

    Article  CAS  Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157. https://doi.org/10.3389/fpls.2015.00157. PMID: 25852710

  • Hatakeyama M, Aluri S, Balachadran MT, Sivarajan SR, Patrignani A, Grüter S et al (2017) Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res 25:39–47

    Article  CAS  PubMed Central  Google Scholar 

  • Hittalmani S, Mahesh HB, Shirke MD, Biradar H, Uday G, Aruna YR et al (2017) Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18:465

    Google Scholar 

  • Hilu KW, De Wet JM (1976) Domestication of E. coracana. Econ Bot 30:199–208

    Article  Google Scholar 

  • Hilu KW, De Wet JMJ, Harlan JR (1979) Archaeobotanical studies of Eleusine coracana ssp. coracana (finger millet). Amer J Bot 66(3):330–333

    Google Scholar 

  • Hilu KW (1980) Eleusine tristachya (Lam.) Lam. Madroňo 27:177–178

    Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Hawaii

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Kenneth OR, LeRoy VP (1977) The Eleusines. A review of the world literature. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India

    Google Scholar 

  • Khan Z, Midega C, Pittchar J, Pickett J, Bruce T (2011) Push—pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Intl J Agri Sustain 9:162–170. https://doi.org/10.3763/ijas.2010.0558

    Article  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G et al (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150(3):1394–1410. https://doi.org/10.1104/pp.109.135228

  • Kotschi J (2006) Coping with climate change, and the role of agrobiodiversity. Conference on International Agricultural Research for Development. Tropentag, University of Bonn, October 11–13, 2006

    Google Scholar 

  • Krishnamurthy L, Upadhyaya HD, Purushothaman R, Gowda CLL, Kashiwagi J, Dwivedi SL et al (2014) The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm. Plant Sci 227:51–59. https://doi.org/10.1016/j.plantsci.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy L, Upadhyaya HD, Kashiwagi J, Purushothaman R, Dwivedi S, Vadez V (2016) Variation in drought-tolerance components and their interrelationships in the minicore collection of finger millet germplasm. Crop Sci 56:1914–1926

    Article  CAS  Google Scholar 

  • Kukreti A (2016) Improvement in seed performance, management of finger millet (Eleusine coracana (L.) Gaertn.) through bio-prospecting fluorescent Pseudomonas spp. with respect to their plant growth prom. Doctoral dissertation, College of Forestry, Ranichauri campus, VCSG Uttarakhand University of Horticulture and Forestry

    Google Scholar 

  • Kulkarni GS (1922) The “Murda” disease of chilli (Capsicum). Agri J India 22(1):51–54

    Google Scholar 

  • Kumar A, Metwal M, Kaur S, Gupta AK, Puranik S et al (2016) Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using Omics approaches. Front Plant Sci 7:934. https://doi.org/10.3389/fpls.2016.00934

  • Kuromori T, Miyaji T, Yabuuchi H et al (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107(5):2361–2366. https://doi.org/10.1073/pnas.0912516107

  • Kuromori T, Fujita M, Urano K, Tanabata T, Sugimoto E, Shinozaki K (2016) Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency. Plant Sci 251:75–81. https://doi.org/10.1016/j.plantsci.2016.02.019

  • Li J, Timko MP (2009) Gene-for-gene resistance in Striga-cowpea associations. Science 325:1094

    Article  CAS  PubMed  Google Scholar 

  • Lule D, de Villiers SM, Fetene M, Odeny DA, Rathore A, Das RR, Tesfaye K (2018) Genetic diversity and association mapping of Ethiopian and exotic finger millet accessions. Crop Pasture Sci 69(9):879–891. https://doi.org/10.1071/CP18175

    Article  Google Scholar 

  • McRae W (1920) Detailed administration report of the government mycologist for the year 1919–20. Madras Agric Dept, India

    Google Scholar 

  • Mehta P, Chakravarty S (1937) A new disease of Eleusine caracana. Mysore Agri J 28:783–790

    Google Scholar 

  • Meyer K, Leube M, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455

    Google Scholar 

  • Midega CAO, Khan ZR, Amudavi DM, Pittchar J, Pickett JA (2010) Integrated management of Striga hermonthica and cereal stemborers in finger millet (Eleusine coracana (L.) Gaertn.) through intercropping with Desmodium intortum. Intl J Pest Manage 56:145–151

    Article  Google Scholar 

  • Mirza N, Sharma N, Srivastava S, Kumar A (2015) Variation in popping quality related to physical, biochemical & nutritional properties of finger millet genotypes. Proc Natl Acad Sci India Sect Biol Sci 85:507–515

    Article  CAS  Google Scholar 

  • Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM (2008) Annexins: multifunctional components of growth and adaptation. J Exp Bot 59:533–544

    Google Scholar 

  • National Research Council (1996) Lost crops of Africa, Volume I, Grains. National Academy Press, Washington, DC

    Google Scholar 

  • Neshamba SM (2010) Variability for drought tolerance in finger millet [Eleusine coracana (L.) Gaertn] accessions from Zambia. MSc thesis, University of Zambia, Lusaka, Zambia

    Google Scholar 

  • Neves SS, Swire-Clark G, Hilu KW, Baird WV (2005) Phylogeny of Eleusine (Poaceae: Chloridoideae) based on nuclear ITS and plastid trnT-trnF sequences. Mol Phylogenet Evol 35:395–419

    Article  CAS  PubMed  Google Scholar 

  • Odhiambo J, Vanlauwe B, Tabu I, Kanampiu F, Khan Z (2011) In Vitro selection of soybean accessions for induction of germination of Striga hermonthica (Del.) Benth seeds and their effect on Striga hermonthica attachment on associated Maize. In: Bationo A, Waswa B, Okeyo J, Maina F, Kihara J (eds) Innovations as key to the green revolution in Africa. Springer, Dordrecht, Netherlands, pp 365–372

    Chapter  Google Scholar 

  • Onkware AO (1986) The response of finger millet (Eleusine coracana (L.) Gaertn) to salinity. MSc Thesis, University of Nairobi, Kenya

    Google Scholar 

  • Oswald A, Ransom JK (2001) Striga control and improved farm productivity using crop rotation. Crop Protec 20:113–120

    Article  Google Scholar 

  • Padulosi S, Mal B, Ravi SB, Gowda J, Gowda KTK, Shanthakumar G et al (2009) Food security and climate change: role of plant genetic resources of minor millets. Indian J Plant Genet Resour 22:1–16

    Google Scholar 

  • Panwar P, Jha AK, Pandey PK, Gupta AK, Kumar A (2011) Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana). Mol Biol Rep 38:3427–3436

    Article  CAS  PubMed  Google Scholar 

  • Parvathi M, Nataraja KN, Yashoda B, Ramegowda H, Mamrutha H, Rama N (2013) Expression analysis of stress responsive pathway genes linked to drought hardiness in an adapted crop, finger millet (Eleusine coracana). J Plant Biochem Biotechnol 22:193–201. https://doi.org/10.1007/s13562-012-0135-0

    Article  CAS  Google Scholar 

  • Philips SM (1972) A survey of Eleusine Gaertn. (Gramineae) in Africa. Kew Bull 27:251–270

    Article  Google Scholar 

  • Prabhukumar KM, Sunil CN, Kumar VVN, Bhavadas N, Chhabra T, Balachandran I (2017) Eleusine multiflora (Poaceae: Chloridoideae), a new record for India. Nelumbo 59:25–28

    Article  Google Scholar 

  • Pradhanang PM (1994) Quantification of the relationship between cercospora leaf spot disease (Cercospora eleusine) and yield loss of finger millet. Tech Paper-Lumle Agricultural Centre No. 94/3, pp 12

    Google Scholar 

  • Puranik S, Jha S, Srivastava PS, Sreenivasulu N, Prasad M (2011) Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. J Plant Physiol 168(3):280–287

    Article  CAS  PubMed  Google Scholar 

  • Purseglove JW (1972) Tropical crops: monocotyledons. Longman Group Limited, London, UK

    Google Scholar 

  • Qi P, Gimode D, Saha D, Schröder S, Chakraborty D, Wang X, Dida MM, Malmberg RL, Devos KM (2018) UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: finger millet as a case study. BMC Plant Biol 18:117. https://doi.org/10.1186/s12870-018-1316-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman H, Jagadeeshselvam N, Valarmathi R et al (2014) Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA sequencing. Plant Mol Biol 85:485–503

    Article  CAS  PubMed  Google Scholar 

  • Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnology 16(Suppl 1):35. https://doi.org/10.1186/s12896-016-0261-1

  • Ramakrishnan M, Ceasar SA, Duraipandiyan V et al (2015) Using molecular markers to assess the genetic diversity and population structure of finger millet (Eleusine coracana (L.) Gaertn.) from various geographical regions. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-015-0255-1

  • Ramakrishnan M, Ceasar SA, Duraipandiyan V, Vinod KK, Kalpana K, Al-Dhabi NA et al (2016) Tracing QTLs for leaf blast resistance and agronomic performance of finger millet (Eleusine coracana (L.) Gaertn.) genotypes through association mapping and in silico comparative genomics analyses. PLoS One 11(7):e0159264. https://doi.org/10.1371/journal.pone.0159264

  • Ramegowda V, Senthil-Kumar M, Nataraja KN, Reddy MK, Mysore KS et al (2012) Expression of a finger millet transcription factor, EcNAC1, in Tobacco confers abiotic stress-tolerance. PLoS One 7(7):e40397. https://doi.org/10.1371/journal.pone.0040397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy G, Upadhaya, HD, Gowda, CLL, Sube S (2009) Characterization of East African finger millet germplasm for qualitative and quantitative characters at ICRISAT. J SAT Agri Res 7–9. An open access journal published by ICRISAT

    Google Scholar 

  • Rodriguez P, Benning G, Grill E (1998) ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett 421:185–190

    Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salimath SS, Hiremath SC, Murthy HN (1995) Genome differentiation patterns in diploid species of Eleusine (Poaceae). Hereditas 122:189–195

    Article  Google Scholar 

  • Sharma D, Tiwari A, Sood S, Jamra G, Singh NK, Meher PK et al (2018) Genome wide association mapping of agro-morphological traits among a diverse collection of finger millet (Eleusine coracana L.) genotypes using SNP markers. PLoS One 13(8):e0199444

    Google Scholar 

  • Scholes JD, Press MC (2008) Striga infestation of cereal crops–an unsolved problem in resource-limited agriculture. Curr Opin Plant Biol 11:180–186

    Article  PubMed  Google Scholar 

  • Seetharam A, Riley KW, Harinarayana G (1986) Small millets in global agriculture. In: Proceedings of the first international small millets workshop, Oct 29–Nov 2, Bangalore, India

    Google Scholar 

  • Shailaja H, Thirumeni S (2007) Evaluation of salt-tolerance in finger millet (Eleusine coracana) genotypes at seedling stage. Indian J Agri Sci 77:672–674

    Google Scholar 

  • Shanmugapackiam S, Ragupathi N, Raguchander T (2015) Characterization of finger millet blast pathogen population of Magnaporthe grisea by DNA finger printing analysis. Int J Tropical Agric 33:1849–1853

    Google Scholar 

  • Singh RK, Singh VK, Raghavendrarao S, Phanindra MLV, Raman KV, Solanke AU et al (2015) Expression of finger millet EcDehydrin7 in transgenic tobacco confers tolerance to drought stress. Appl Biochem Biotechnol 177:207–216. https://doi.org/10.1007/s1201

    Article  CAS  PubMed  Google Scholar 

  • Srinivasachary DMM, Gale MD, Devos KM (2007) Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes. Theor Appl Genet 115:489–499

    Article  CAS  PubMed  Google Scholar 

  • Stireman JO, Dyer LA, Janzen DH, Singer MS, Lill JT, Marquis RJ, Barone JA (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci USA 102(48):17384–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X (2015) Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet 128(11):2213–2225

    Article  CAS  PubMed  Google Scholar 

  • Takan JP, Akello B, Esele P, Manyasa EO, Obilana AB, Audi PO (2004) Finger millet blast pathogen diversity and management in east Africa: a summary of project activities and outputs. Intl Sorghum Millets Newsl 45:66–69

    Google Scholar 

  • Takan JP, Chipili J, Muthumeenakshi S, Talbot NJ, Manyasa EO, Bandyopadhyay R et al (2012) Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction. Mol Biotechnol 50(2):145–158

    Article  CAS  PubMed  Google Scholar 

  • Toh S, Holbrook-Smith D, Stogios Onopriyenko O, Lumba S, Tsuchiya Y, Savchenko A, McCourt P (2015) Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Plant Sci 350:203–206

    CAS  Google Scholar 

  • Tyagi J, Varma A, Pudake RN (2017) Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur J Soil Biol 81:1–10

    Article  CAS  Google Scholar 

  • Umakanth B, Vishalakshi B, Sathish Kumar P, Rama Devi SJS, Bhadana VP, Senguttuvel P, Kumar S, Sharma SK, Sharma PK, Prasad MS, Madhav MS (2017) Diverse rice landraces of North-East India enables the identification of novel genetic resources for Magnaporthe resistance. Front Plant Sci 8:1500. https://doi.org/10.3389/fpls.2017.01500

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Gowda CLL, Pundir RPS, Reddy VG, Singh S (2006) Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genet Resour Crop Evol 53:679–685

    Article  Google Scholar 

  • Upadhyaya HD, Gowda CL, Reddy G (2007) Morphological diversity in finger millet germplasm introduced from Southern and Eastern Africa. SAT eJournal|ejournal.icrisat.org. 3(1)

    Google Scholar 

  • Upadhyaya HD, Sarma NDRK, Ravishankar CR, Albrecht T, Narasimhudu Y et al (2010) Developing a mini-core collection in finger millet using multi-location data. Crop Sci 50:1924–1931

    Article  Google Scholar 

  • Vavilov N (1951) The origin, variation, immunity and breeding of cultivated plants, pp 37–38. Ronald Press, New York, USA (Translated from the Russian by K. Starrchester)

    Google Scholar 

  • Verma G, Dhar YV, Srivastava D, Kidwai M, Chauhan PS, Bag SK et al (2017) Genome-wide analysis of rice dehydrin gene family: its evolutionary conservedness and expression pattern in response to PEG induced dehydration stress. PLoS ONE 12(5):e0176399. https://doi.org/10.1371/journal.pone.0176399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetriventhan M, Upadhyaya HD, Dwivedi SL, Pattanashetti SK, Kumar Singh S (2016) Finger and foxtail millets. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic Press, Cambridge, MA, USA, pp 291–319

    Chapter  Google Scholar 

  • Viji G, Gnanamanickam SS, Levy M (2000) DNA polymorphisms of isolates of Magnaporthe grisea from India that are pathogenic to finger millet and rice. Mycol Res 104:161–167

    Article  CAS  Google Scholar 

  • Wang G-L, Valent B (2017) Durable resistance to rice blast. Science 355:906–907

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu J.-K (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    Google Scholar 

  • Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD et al (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151. https://doi.org/10.1105/tpc.108.058263

  • Zheng W, Wang Y, Wang L, Ma Z, Zhao J, Wang P, Zhang L, Liu Z, Lu X (2016) Genetic mapping and molecular marker development for Pi65(t), a novel broad-spectrum resistance gene to rice blast using next-generation sequencing. Theor Appl Genet 129(5):1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Sun B, Xu X, Chen H, Zou L, Chen G et al (2016) Overexpression of AtEDT1/HDG11 in Chinese kale (Brassica oleracea var. alboglabra) enhances drought and osmotic stress tolerance. Front Plant Sci 7:1285. https://doi.org/10.3389/fpls.2016.01285

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damaris Achieng Odeny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odeny, D.A., Niazi, A., Tesfaye, K., Lule, D., Wanyonyi, S., Kunguni, J.S. (2020). Genomic Designing for Climate Smart Finger Millet. In: Kole, C. (eds) Genomic Designing of Climate-Smart Cereal Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-93381-8_7

Download citation

Publish with us

Policies and ethics