Advertisement

Towards a Better Understanding of Mathematical Understanding

  • Janet FolinaEmail author
Chapter
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 334)

Abstract

Please check if the identified section head levels are okay.

References

  1. Avigad, J. 2008. Understanding proofs. In The philosophy of mathematical practice, ed. Mancosu, 317–353. Oxford: Oxford University Press.CrossRefGoogle Scholar
  2. ———. 2010. Understanding, formal verification, and the philosophy of mathematics. Journal of Indian Council of Philosophical Research XXVII (1): 165–197.Google Scholar
  3. Benacerraf, P. 1965. What numbers could not be. Philosophical Review 74: 47–73 Reprinted in Benacerraf and Putnam eds., 1983, pp. 272–294.CrossRefGoogle Scholar
  4. Benacerraf, P., and H. Putnam. 1983. Philosophy of mathematics. Englewood Cliffs: Prentice-Hall.Google Scholar
  5. Bolzano, B. 1810/1996. Contributions to a better-grounded presentation of mathematics. In From Kant to Hilbert, a Source Book in the Foundations of Mathematics, ed. William Ewald, vol. 1, 174–224. Oxford: Clarendon Press.Google Scholar
  6. Brown, J.R. 2008. Philosophy of mathematics: A contemporary introduction to the world of proofs and pictures. New York: Routledge.Google Scholar
  7. Ewald, W., ed. 1996. From Kant to Hilbert, a source book in the foundations of mathematics (volumes I and II). Oxford: Clarendon Press.Google Scholar
  8. Feferman, S. 2012. And so on…: reasoning with infinite diagrams. Synthese 186: 371–386.CrossRefGoogle Scholar
  9. Frege, G. 1884. The foundations of arithmetic. Trans. J.L. Austin. Evanston: Northwestern University Press, 1968.Google Scholar
  10. Friedman, M. 1974. Explanation and scientific understanding. The Journal of Philosophy 71: 5–19.CrossRefGoogle Scholar
  11. Giaquinto, M. 2007. Visual thinking in mathematics: An epistemological study. Oxford: Oxford University Press.CrossRefGoogle Scholar
  12. Grosholz, E., and H. Breger, eds. 2000. The growth of mathematical knowledge. Kluwer: Boston.Google Scholar
  13. Hafner, J., and P. Mancosu. 2005. The varieties of mathematical explanation. In Visualization, explanation and reasoning styles in mathematics, ed. P. Mancosu et al., 215–250. Berlin: Springer.CrossRefGoogle Scholar
  14. Hardy, G.H. A mathematician’s apology (London 1941). References to the electronic version. http://www.math.ualberta.ca/mss/.
  15. Haylock, D., and A. Cockburn. 2008. Understanding mathematics for young children. Thousand Oaks: Sage Publications.Google Scholar
  16. Hellman, G. 1989. Mathematics without numbers. Oxford: Oxford University Press.Google Scholar
  17. Kitcher, P. 1989. Explanatory unification and the causal structure of the world. In Scientific explanation, ed. P. Kitcher and W.C. Salmon, 410–505. Minneapolis: University of Minnesota Press.Google Scholar
  18. Kitcher, P., and W. Salmon, eds. 1989. Scientific explanation. University of Minnesota Press: Minneapolis.Google Scholar
  19. Lange, M. 2009. Why proofs by mathematical induction are generally not explanatory. Analysis 69: 203–211.CrossRefGoogle Scholar
  20. Maclaurin, C. 1742. A Treatise of fluxions. Excerpted In: From Kant to Hilbert, a source book in the foundations of mathematics (volumes I and II), ed. W. Ewald (1996), 95–122. Oxford: Clarendon Press.Google Scholar
  21. Mancosu, P. 2000. On mathematical explanation. In The growth of mathematical knowledge, ed. E. Grosholz and H. Breger, 103–119. Dordrecht: Kluwer.CrossRefGoogle Scholar
  22. ———. ed. 2008. The philosophy of mathematical practice. New York: Oxford University Press.Google Scholar
  23. ———. Explanation in mathematics. In The Stanford Encyclopedia of Philosophy (Summer 2015 edn., ed. Edward N. Zalta). https://plato.stanford.edu/archives/sum2015/entries/mathematics-explanation/.
  24. Mancosu, P., K. Jorgensen, and S. Pedersen, eds. 2005. Visualization, explanation and reasoning styles in mathematics. Dordrecht: Springer.Google Scholar
  25. Michener, E.R. 1978, August. Understanding mathematics. A.I. Memo – 488, LOGO Memo – 50, MIT Artificial Intelligence Lab document.Google Scholar
  26. Nelsen, R.B. 1993. Proofs without words. Washington, DC: The Mathematical Association of America.Google Scholar
  27. Netz, R. 2005. The aesthetics of mathematics: a study. In Visualization, explanation and reasoning styles in mathematics, ed. P. Mancosu, K.F. Jørgensen, and S.A. Pedersen, 251–293. Dordrecht: Springer.CrossRefGoogle Scholar
  28. Poincaré H. 1900. Intuition and logic in mathematics. In: From Kant to Hilbert, a source book in the foundations of mathematics (volumes I and II), ed. W. Ewald (1996), 1012–1020. Oxford: Clarendon Press.Google Scholar
  29. ———. 1908. Science and method, authorized translation by G. B. Halsted in The foundations of science. Washington, DC: The University Press of America, 1982.Google Scholar
  30. Porteous, K. 2008. Understanding mathematics. Philosophy of Mathematics Education Journal, 23. http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome23/index.htm.
  31. Resnik, M. 1997. Mathematics as a science of patterns. Oxford: Oxford University Press.Google Scholar
  32. Rota, G. 1997. The phenomenology of mathematical beauty. Synthese 111: 171–182.CrossRefGoogle Scholar
  33. Šebestik, Jan. Bolzano’s logic. In The Stanford Encyclopedia of Philosophy (Spring 2016 edn., ed. Edward N. Zalta). https://plato.stanford.edu/archives/spr2016/entries/bolzano-logic/.
  34. Shapiro, S. 1997. Philosophy of mathematics: Structure and ontology. New York: Oxford University Press.Google Scholar
  35. ———. undated. Mathematical structuralism. The Internet Encyclopedia of Philosophy. ISSN 2161-0002. http://www.iep.utm.edu/.
  36. Steiner, M. 1978. Mathematical explanation. Philosophical Studies 34: 135–151.CrossRefGoogle Scholar
  37. Tappenden, J. 2005. Proof style and understanding in mathematics I: Visualization, unification and axiom choice. In Visualization, explanation and reasoning styles in mathematics (Synthese library, volume 327), ed. P. Mancosu, K.F. Jørgensen, and S.A. Pedersen, 147–214. Dordrecht: Springer.CrossRefGoogle Scholar
  38. Thurston, W. 1994. On proof and progress in mathematics. Bulletin of the American Mathematical Society 30 (2): 161–177.CrossRefGoogle Scholar
  39. ———. short essay in article. 2010. Mathematics meets fashion: Thurston’s concepts inspire designer. AMS News Releases, April 1.Google Scholar
  40. Wittgenstein, L. 1972. On certainty. New York: Harper and Row.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhilosophyMacalester CollegeSt. PaulUSA

Personalised recommendations