Skip to main content

Vehicle-to-Infrastructure Communication

  • Chapter
  • First Online:
Intelligent Transport System in Smart Cities

Abstract

Vehicular ad hoc networks (VANETs) provide applications that focus on driver safety, traffic efficiency of vehicles on public roads, and the comfort and entertainment of passengers throughout their journey. Some of these applications require connections to the Internet via an access point (AP) at roadsides, such as a cell tower or Wi-Fi tower. A connection can generate an overhead of control messages and could suffer a change of AP that would impact application performance. Besides the interface connected to APs, vehicles are equipped with other network interfaces linked to various different technologies. Thus, a vehicular application can take advantage of the simultaneous use of these various network interfaces, thereby maximizing throughput and reducing latency. However, these additional interfaces can also serve as a connection to the APs located at roadsides. These multiple connections further increase the overhead of control messages and the time of change from one AP to another, thereby affecting the network throughput and, consequently, application performance. This chapter describes techniques and architectures that manage the communication among APs and vehicles to allow heterogeneous communications among several network technologies, such as wireless networks and cellular technology, reducing the impact of communication overhead on networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akan O, Akyildiz I (2004) ATL: an adaptive transport layer suite for next-generation wireless internet. IEEE J Sel Areas Commun 22(5):802–817

    Article  Google Scholar 

  2. Akyildiz I, Xie J, Mohanty S (2004) A survey of mobility management in next-generation all-ip-based wireless systems. IEEE Wirel Commun 11(4):16–28

    Article  Google Scholar 

  3. Bernardos CJ (2012) Proxy mobile IPv6 extensions to support flow mobility. draft-ietf-netext-pmipv6-flowmob-03

    Google Scholar 

  4. Bernardos CJ, Calderon M, Soto I (2012) PMIPv6 and network mobility problem statement. draft-bernardos-netext-pmipv6-nemo-ps-02

    Google Scholar 

  5. Bizanis N, Kuipers FA (2016) SDN and virtualization solutions for the internet of things: a survey. IEEE Access 4:5591–5606

    Article  Google Scholar 

  6. Chen C, Lin YT, Yen LH, Chan MC, Tseng CC (2016) Mobility management for low-latency handover in SDN-based enterprise networks. In: 2016 IEEE wireless communications and networking conference, pp 1–6

    Google Scholar 

  7. Choi HY, Min SG, Han YH (2011) PMIPv6-based flow mobility simulation in NS-3. In: 2011 Fifth international conference on Innovative Mobile and Internet Services in ubiquitous computing (IMIS), pp 475 –480

    Google Scholar 

  8. Correia S, Boukerche A, Meneguette RI (2017) An architecture for hierarchical software-defined vehicular networks. IEEE Commun Mag 55(7):80–86

    Article  Google Scholar 

  9. Eastwood L, Migaldi S, Xie Q, Gupta V (2008) Mobility using IEEE 802.21 in a heterogeneous IEEE 802.16/802.11-based, IMT-advanced (4G) network. IEEE Wirel Commun 15(2):26–34

    Article  Google Scholar 

  10. Fernandes S, Karmouch A (2013) Design and analysis of an IEEE 802.21-based mobility management architecture: a context-aware approach. Wirel Netw 19(2):187–205

    Article  Google Scholar 

  11. Gundavelli S, Leung K, Devarapalli V, Chowdhury K, Patil B (2008) Proxy mobile IPv6. http://tools.ietf.org/html/rfc5213

  12. Khan MA, Dang XT, Peters S (2016) Preemptive flow management in future SDNized wireless networks. In: 2016 IEEE 12th international conference on wireless and mobile computing, networking and communications (WiMob), pp 1–8

    Google Scholar 

  13. Khattab O, Alani O (2013) Survey on Media Independent Handover (MIH) approaches in heterogeneous wireless networks. In: IEEE 19th European wireless 2013 (EW 2013), pp 1–5

    Google Scholar 

  14. Kim J, Morioka Y, Hagiwara J (2012) An optimized seamless ip flow mobility management architecture for traffic offloading. In: Network Operations and Management Symposium (NOMS), 2012. IEEE, Piscataway, pp 229–236

    Google Scholar 

  15. Kolias C, Ahlawat S, Ashton C et al (2013) Openflow-enabled mobile and wireless networks. White Paper

    Google Scholar 

  16. Kreutz D, Ramos FM, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-defined networking: a comprehensive survey. Proc IEEE 103(1):14–76

    Article  Google Scholar 

  17. Ku I, Lu Y, Gerla M, Ongaro F, Gomes R, Cerqueira E (2014) Towards software-defined VANET: architecture and services. In: 2014 13th annual Mediterranean ad hoc networking workshop (MED-HOC-NET), pp 103–110

    Google Scholar 

  18. Kuklinski S, Li Y, Dinh KT (2014) Handover management in SDN-based mobile networks. In: 2014 IEEE Globecom Workshops (GC Wkshps), pp 194–200

    Google Scholar 

  19. Lampropoulos G, Salkintzis A, Passas N (2008) Media-independent handover for seamless service provision in heterogeneous networks. IEEE Commun Mag 46(1):64–71

    Article  Google Scholar 

  20. Lara A, Kolasani A, Ramamurthy B (2014) Network innovation using openflow: a survey. IEEE Commun Surv Tutorials 16(1):493–512

    Article  Google Scholar 

  21. Makaya C, Das S, Lin F (2012) Seamless data offload and flow mobility in vehicular communications networks. In: Wireless Communications and Networking Conference Workshops (WCNCW). IEEE, Piscataway, pp 338–343

    Google Scholar 

  22. McKeown N (2011) How SDN will shape networking

    Google Scholar 

  23. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74

    Article  Google Scholar 

  24. Melia T, Bernardos C, de la Oliva A, Giust F, Calderon M (2011) Ip flow mobility in PMIPv6 based networks: solution design and experimental evaluation. Wirel Pers Commun 61:603–627

    Article  Google Scholar 

  25. Meneguette RI, Bittencourt LF, Madeira ERM (2013) A seamless flow mobility management architecture for vehicular communication networks. J Commun Netw 15(2):207–216

    Article  Google Scholar 

  26. Márquez-Barja J, Calafate CT, Cano JC, Manzoni P (2011) An overview of vertical handover techniques: algorithms, protocols and tools. Comput Commun 34(8):985–997

    Article  Google Scholar 

  27. Nasser N, Hasswa A, Hassanein H (2006) Handoffs in fourth generation heterogeneous networks. IEEE Commun Mag 44(10):96–103

    Article  Google Scholar 

  28. Nunes BAA, Mendonca M, Nguyen XN, Obraczka K, Turletti T (2014) A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun Surv Tutorials 16(3):1617–1634

    Article  Google Scholar 

  29. Pfaff B, Lantz B, Heller B et al (2012) Openflow switch specification, version 1.3. 0. Open Networking Foundation, Menlo Park

    Google Scholar 

  30. Qureshi R, Dadej A, Fu Q (2007) Issues in 802.21 mobile node controlled handovers. In: Australasian telecommunication networks and applications conference, 2007, ATNAC 2007, pp 53–57

    Google Scholar 

  31. Sanchez MI, de la Oliva A, Mancuso V (2016) Experimental evaluation of an SDN-based distributed mobility management solution. In: Proceedings of the workshop on mobility in the evolving internet architecture. ACM, New York, pp 31–36

    Chapter  Google Scholar 

  32. Siddiqui F, Zeadally S (2006) Mobility management across hybrid wireless networks: trends and challenges. Comput Commun 29(9):1363–1385

    Article  Google Scholar 

  33. Soua R, Kalogeiton E, Manzo G, Duarte JM, Palattella MR, Di Maio A, Braun T, Engel T, Villas LA, Rizzo GA (2017) SDN coordination for CCN and FC content dissemination in VANETs. Springer, Cham, pp 221–233

    Google Scholar 

  34. Tantayakul K, Dhaou R, Paillassa B (2016) Impact of SDN on mobility management. In: 2016 IEEE 30th international conference on advanced information networking and applications, pp 260–265

    Google Scholar 

  35. Tsirtsis G, Soliman H, Montavont N, Giaretta G, Kuladinithi K (2011) Flow bindings in mobile IPv6 and network mobility (NEMO) basic support. IETF, Fremont; RFC 6089

    Google Scholar 

  36. Wang L, Lu Z, Wen X, Cao G, Xia X, Ma L (2016) An SDN-based seamless convergence approach of WLAN and LTE networks. In: 2016 IEEE information technology, networking, electronic and automation control conference, pp 944–947

    Google Scholar 

  37. Wasserman M, Seite P (2011) Current practices for multiple-interface hosts. IETF, Fremont; RFC 6419

    Google Scholar 

  38. Yap KK, Huang TY, Kobayashi M, Yiakoumis Y, McKeown N, Katti S, Parulkar G (2012) Making use of all the networks around us: a case study in android. In: Proceedings of the 2012 ACM SIGCOMM workshop on cellular networks: operations, challenges, and future design. ACM, New York, pp 19–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

I. Meneguette, R., E. De Grande, R., A. F. Loureiro, A. (2018). Vehicle-to-Infrastructure Communication. In: Intelligent Transport System in Smart Cities. Urban Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-93332-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93332-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93331-3

  • Online ISBN: 978-3-319-93332-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics