Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter presents various image transforms which are used in the present research work. This chapter also describes different encryption methods such as compressive sensing (CS)-based encryption and Arnold scrambling. Finally, some noise sequences used in the presented technique are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Jain A (1999) Fundamentals of digital image processing. Prentice Hall Inc, Upper Saddle River, NJ

    MATH  Google Scholar 

  2. Yan J (2009) Wavelet matrix. Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC

    Google Scholar 

  3. Vidakovic B (1999) Statistical modelling by wavelets. Wiley, New York, pp 115–116

    Book  Google Scholar 

  4. Hiena T, Nakaoa Z, Chen Y (2006) Robust multi-logo watermarking by RDWT and ICA. Signal Process 86:2981–2993

    Article  Google Scholar 

  5. Lagzian S, Soryani M, Fathy M (2011) A new robust watermarking scheme based on RDWT – SVD. Int J Intell Inf Process 2(1):22–29

    Google Scholar 

  6. Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. SIAM Mult Model Sim 5(3):861–889

    Article  MathSciNet  Google Scholar 

  7. Candes E, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise-C2 singularities. Commun Pure Appl Math 57:219–266

    Article  Google Scholar 

  8. Donoho D (2001) Ridge functions and orthonormal ridgelets. J Approx Theory 111(2):143–179

    Article  MathSciNet  Google Scholar 

  9. Do M, Vetterli M (2000) Orthonormal finite ridgelet transform for image compression. In: Proceedings of the international conference on image processing (ICIP ’00), pp 367–370

    Google Scholar 

  10. Candes E, Donoho D (2000) A surprisingly effective non-adaptive representation for objects with edges, curves and surfaces. Vanderbilt University Press, Nashville, TN

    Google Scholar 

  11. Candes E (1998) Ridgelets theory and application. Ph.D. Thesis, Department of Statistics, Stanford University, Stanford, CA

    Google Scholar 

  12. AlZubi S, Islam N, Abbod M (2011) Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. Int J Biomed Imaging 2011:18

    Article  Google Scholar 

  13. Candes E, Donoho D (1999) Ridgelets: a key to higher dimensional intermittency? Phil Trans R Soc A 357(1760):2495–2509

    Article  MathSciNet  Google Scholar 

  14. He J (2006) A characterization of inverse Radon transform on the Laguerre hypergroup. J Math Anal Appl 318(1):387–395

    Article  MathSciNet  Google Scholar 

  15. Dettori L, Semler L (2007) A comparison of wavelet, ridgelet and curvelet-based texture classification algorithms in computed tomography. Comput Biol Med 37(4):486–498

    Article  Google Scholar 

  16. Do M, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  Google Scholar 

  17. Da Cunha AL, Zhou J, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101

    Article  Google Scholar 

  18. Arnold VI, Avez A (1968) Ergodic problems in classical mechanics. Benjamin, New York

    MATH  Google Scholar 

  19. Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  20. Candes E, Wakin M (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  21. Rachlin Y, Baron D (2008) The secrecy of compressed sensing measurements. In: The 46th Annual Allerton conference on communication, control, and computing. IEEE, pp 813–817

    Google Scholar 

  22. Orsdemir A, Altun HO, Sharma G, Bocko MF (2008) On the security and robustness of encryption via compressed sensing. In: 2008 I.E. military communications conference. MILCOM 2008. IEEE, pp 1–7

    Google Scholar 

  23. Agrawal S, Vishwanath S (2011) Secrecy using compressive sensing. In: 2011 I.E. information theory workshop (ITW). IEEE, pp 563–567

    Google Scholar 

  24. Hossein SA, Tabatabaei AE, Zivic N (2012) Security analysis of the joint encryption and compressed sensing. In: 2012 20th telecommunications forum (TELFOR). IEEE, pp 799–802

    Google Scholar 

  25. Zhang Y, Zhang LY, Zhou J, Liu L, Chen F, He X (2016) A review of compressive sensing in information security field. IEEE Access 4:2507–2519

    Article  Google Scholar 

  26. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  Google Scholar 

  27. Borra S, Thanki R, Dey N, Borisagar K (2018) Secure transmission and integrity verification of color radiological images using fast discrete curvelet transform and compressive sensing. Smart Health.

    Google Scholar 

  28. Mancini C, Bruce R (2009) OP amps for everyone. Texas Instruments, pp 10–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thanki, R., Borra, S. (2019). Technical Information. In: Medical Imaging and its Security in Telemedicine Applications. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-93311-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93311-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93310-8

  • Online ISBN: 978-3-319-93311-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics