Advertisement

Design of High-Linearity Wideband Power Amplifiers

  • David del Rio
  • Ainhoa Rezola
  • Juan F. Sevillano
  • Igone Velez
  • Roc Berenguer
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

The power amplifier is usually the last active element in an RF transmitter front-end, and usually one of the most critical blocks. It is the main contributor to the front-end power consumption, and its linearity determines the overall performance of the communication link. This chapter will discuss considerations for the design of wideband mmW PAs, applying the concepts to the design of an E-band power amplifier for multi-Gbps spectrally efficient communication links. First, the most representative performance metrics will be described, and different design approaches and architectures for mmW PAs will be reviewed. Then, the design of the Eband PA will be presented, validating its performance with measurement results.

References

  1. 1.
    S.C. Cripps, R.F. Power, Amplifiers for Wireless Communications (Artech House Inc, Norwood, MA, USA, 1999). ISBN 0890069891Google Scholar
  2. 2.
    S.C. Cripps, Advanced Techniques in RF Power Amplifier Design (Artech House Inc, Norwood, MA, USA, 2002). ISBN 1580532829Google Scholar
  3. 3.
    H. Solar, R. Berenguer, Linear CMOS RF Power Amplifiers: A Complete Design Workflow (Springer, US, 2014). ISBN 978-1-4614-8656-5CrossRefzbMATHGoogle Scholar
  4. 4.
    A. Zhu, P. Draxler, Back to the future with PAs. IEEE Microwave Mag. 17(2), 16, 85 (2016).  https://doi.org/10.1109/MMM.2015.2501160CrossRefGoogle Scholar
  5. 5.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, Hoboken, NJ, 2005)Google Scholar
  6. 6.
    A. Shirvani, B.A. Wooley, Design and Control of RF Power Amplifiers (Springer, Boston, MA, USA, 2003)CrossRefGoogle Scholar
  7. 7.
    H. Solar, Design Techniques for Fully Integrated CMOS Power Amplifiers Applied to the IEEE 802.11a Standard, Ph.D. thesis, Tecnun School of Engineering, University of Navarra (2007)Google Scholar
  8. 8.
    P. Chevalier, G. Avenier, G. Ribes, A. Montagn’e, E. Canderle, D. C’eli, N. Derrier, C. Deglise, C. Durand, T. Qu’emerais, M. Buczko, D. Gloria, O. Robin, S. Petitdidier, Y. Campidelli, F. Abbate, M. Gros- Jean, L. Berthier, J. D. Chapon, F. Leverd, C. Jenny, C. Richard, O. Gourhant, C. De-Buttet, R. Beneyton, P. Maury, S. Joblot, L. Favennec, M. Guillermet, P. Brun, K. Courouble, K. Haxaire, G. Imbert, E. Gourvest, J. Cossalter, O. Saxod, C. Tavernier, F. Foussadier, B. Ramadout, R. Bianchini, C. Julien, D. Ney, J. Rosa, S. Haendler, Y. Carminati, B. Borot, A 55 nm triple gate oxide 9 metal layers 297 298 bibliography SiGe BiCMOS technology featuring 320 GHz \(f_{T}\)/370 GHz \(f_{MAX}\) HBT and high-q millimeter-wave passives, in 2014 IEEE Interna- tional Electron Devices Meeting (IEDM) (2014), pp. 3.9.1–3.9.3.  https://doi.org/10.1109/IEDM.2014.7046978
  9. 9.
    P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th edn. (Wiley, New York, 2001). ISBN 0-471-32168-0Google Scholar
  10. 10.
    I. Sarkas, S.T. Nicolson, A. Tomkins, E. Laskin, P. Chevalier, B. Sautreuil, S.P. Voinigescu, An 18-Gb/s, direct QPSK modulation SiGe BiCMOS transceiver for last mile links in the 70–80 GHz band. IEEE J. Solid-State Circuits 45(10), 1968–1980 (2010).  https://doi.org/10.1109/JSSC.2010.2058011. ISSN: 0018-9200CrossRefGoogle Scholar
  11. 11.
    Y. Zhao, E. Öjefors, K. Aufinger, T.F. Meister, U.R. Pfeiffer, A 160-GHz subharmonic transmitter and receiver chipset in an SiGe HBT technology. IEEE Trans. Microw. Theory Techn. 60(10), 3286–3299 (2012).  https://doi.org/10.1109/TMTT.2012.2209450. ISSN: 0018-9480CrossRefGoogle Scholar
  12. 12.
    B.H. Ku, O. Inac, M. Chang, H.H. Yang, G.M. Rebeiz, A high-linearity 76–85-GHz 16-element 8-transmit/8-receive phased- array chip with high isolation and flip-chip packaging. IEEE Trans. Microwave Theory Tech. 62(10), 2337–2356 (2014).  https://doi.org/10.1109/TMTT.2014.2341212. ISSN: 0018-9480CrossRefGoogle Scholar
  13. 13.
    N. Demirel, R.R. Severino, C. Ameziane, T. Taris, J.B. B’egueret, E. Kerherv’e, A. Mariano, D. Pache, D. Belot, Millimeter-wave chip set for 77–81 GHz automotive radar application, in 2011 IEEE 9th International New Circuits and Systems Conference (2011), pp. 253–256.  https://doi.org/10.1109/NEWCAS.2011.5981303
  14. 14.
    K. Datta, H. Hashemi, Performance limits, design and implementation of mm-wave SiGe HBT class-E and stacked class- E power amplifiers. IEEE J. Solid-State Circuits 49(10), 2150–2171 (2014).  https://doi.org/10.1109/JSSC.2014.2353800. ISSN: 0018-9200CrossRefGoogle Scholar
  15. 15.
    B. Sheinman, E. Bloch, N. Mazor, R. Levinger, R. Ben-Yishay, O. Katz, R. Carmon, A. Golberg, J. Vovnoboy, A. Bruetbart, M. Rachman, D. Elad, A 16.2 Gbps 60 GHz SiGe transmitter for outdoor wireless links, in 2016 IEEE Radio Frequency Integrated Cir- Bibliography 299 cuits Symposium (RFIC) (2016), pp. 43–46.  https://doi.org/10.1109/RFIC.2016.7508246
  16. 16.
    O. Katz, R. Ben-Yishay, R. Carmon, B. Sheinman, F. Szenher, D. Papae, D. Elad, A fully integrated SiGe E-BAND transceiver chipset for broadband point-to-point communication, in Radio and Wireless Symposium (RWS), 2012 IEEE (2012), pp. 431–434.  https://doi.org/10.1109/RWS.2012.6175323
  17. 17.
    R. Ben-Yishay, R. Carmon, O. Katz, B. Sheinman, D. Papae, F. Szenher, D. Elad, A millimeter-wave SiGe power amplifier with highly selective image reject filter, in 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS) (2011), pp. 1–5.  https://doi.org/10.1109/COMCAS.2011.6105852
  18. 18.
    Y. Zhao, J. Long, A. Wideband, dual-path, millimeter-wave power amplifier with 20 dBm output power and PAE above 15% in 130 nm SiGe-BiCMOS. IEEE J. Solid-State Circuits 47(9), 1981–1997 (2012).  https://doi.org/10.1109/JSSC.2012.2201275CrossRefGoogle Scholar
  19. 19.
    B. Razavi, Design of Analog CMOS Integrated Circuits, 1st edn. (McGraw-Hill Inc, New York, 2001)Google Scholar
  20. 20.
    A.S. Sedra, K.C. Smith, Microelectronic Circuits, 6th edn. (Oxford University Press, Oxford, 2009). ISBN 0195323033Google Scholar
  21. 21.
    K. Datta, H. Hashemi, High-breakdown, high-fmax multiport stacked-transistor topologies for the W-band power amplifiers. IEEE J. Solid-State Circuits 52(5), 1305–1319 (2017).  https://doi.org/10.1109/JSSC.2016.2641464. ISSN: 0018-9200CrossRefGoogle Scholar
  22. 22.
    U.R. Pfeiffer, D. Goren, A 20 dBm fully-integrated 60 GHz SiGe power amplifier with automatic level control. IEEE J. Solid-State Circuits 42(7), 1455–1463 (2007).  https://doi.org/10.1109/JSSC.2007.899116. ISSN: 0018-9200CrossRefGoogle Scholar
  23. 23.
    U.R. Pfeiffer, D. Goren, A 23-dBm 60-GHz distributed active transformer in a silicon process technology. IEEE Trans. Microwave Theory Tech. 55(5), 857–865 (2007).  https://doi.org/10.1109/TMTT.2007.895654. ISSN: 0018-9480CrossRefGoogle Scholar
  24. 24.
    N. Demirel, E. Kerherve, D. Pache, R. Plana, Design techniques and considerations for mm wave SiGe power amplifiers, in 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2009), pp. 37–41.  https://doi.org/10.1109/IMOC.2009.5427636
  25. 25.
    V. Giammello, E. Ragonese, G. Palmisano, A 15-dBm SiGe BiCMOS PA for 77-GHz automotive radar. IEEE Trans. Microwave Theory Tech. 59(11), 2910–2918 (2011).  https://doi.org/10.1109/TMTT.2011.2166802. ISSN: 0018-9480CrossRefGoogle Scholar
  26. 26.
    D. Parveg, D. Karaca, M. Varonen, A. Vahdati, K.A.I. Halonen, A 124-184 GHz amplifier using slow-wave transmission lines in 28- nm FDSOI CMOS process, in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications (2016), pp. 1–4.  https://doi.org/10.1109/GSMM.2016.7500297
  27. 27.
    B. Leite, E. Kerherve, J.-B. Begueret, D. Belot, Shielding structures for millimeter-wave integrated transformers, in 16th IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (2009), pp. 239–242.  https://doi.org/10.1109/ICECS.2009.5410980
  28. 28.
    D.A. Chan, M. Feng, W-Band monolithic CPW Wilkinson CMOS power amplifier, in 2011 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (2011), pp. 33–36.  https://doi.org/10.1109/PAWR.2011.5725385
  29. 29.
    C.Y. Law, A.V. Pham, A high-gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS, in 2010 IEEE International Solid-State Circuits Conference - (ISSCC) (2010), pp. 426–427.  https://doi.org/10.1109/ISSCC.2010.5433882
  30. 30.
    E. Öjefors, C. Stoij, B. Heinemann, H. Rücker, An 8-way power- combining E-band amplifier in a SiGe HBT technology, in 2014 9th European Microwave Integrated Circuit Conference (2014), pp. 45–48.  https://doi.org/10.1109/EuMIC.2014.6997787
  31. 31.
    Y.N. Jen, J.H. Tsai, T.W. Huang, H. Wang, Design and analysis of a 55–71-GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process. IEEE Trans. Microwave Theory Tech. 57(7), 1637–1646 (2009).  https://doi.org/10.1109/TMTT.2009.2021876. ISSN: 0018-9480CrossRefGoogle Scholar
  32. 32.
    D. Zhao, P. Reynaert, An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS. IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).  https://doi.org/10.1109/TMTT.2014.2379277. ISSN: 0018-9480CrossRefGoogle Scholar
  33. 33.
    M. Thian, M. Tiebout, V. Fusco, Holistic design of 8-way combining transformers in SiGe technology for use in millimetre-wave power amplifiers, in IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF) (2013), pp. 72–74.  https://doi.org/10.1109/SiRF.2013.6489436
  34. 34.
    W.H. Doherty, A new high efficiency power amplifier for modulated waves. Proc. Inst. Radio Eng. 24(9), 1163–1182 (1936).  https://doi.org/10.1109/JRPROC.1936.228468. ISSN: 0731-5996CrossRefGoogle Scholar
  35. 35.
    R. Pengelly, C. Fager, M. Ozen, Doherty’s legacy: a history of the doherty power amplifier from 1936 to the present day. IEEE Microwave Mag. 17(2), 41–58 (2016).  https://doi.org/10.1109/MMM.2015.2498081. ISSN: 1527- 3342CrossRefGoogle Scholar
  36. 36.
    S. Shopov, R.E. Amaya, J.W.M. Rogers, C. Plett, Adapting the doherty amplifier for millimetre-wave CMOS applications, in 2011 IEEE 9th International New Circuits and systems conference (2011), pp. 229–232.  https://doi.org/10.1109/NEWCAS.2011.5981297
  37. 37.
    E. Kaymaksut, D. Zhao, P. Reynaert, Transformer-based doherty power amplifiers for mm-wave applications in 40-nm CMOS. IEEE Trans. Microwave Theory Tech. 63(4), 1186–1192 (2015).  https://doi.org/10.1109/TMTT.2015.2409255. ISSN: 0018-9480CrossRefGoogle Scholar
  38. 38.
    H. Chireix, High power outphasing modulation. Proc. Inst. Radio Eng. 23(11), 1370–1392 (1935).  https://doi.org/10.1109/JRPROC.1935.227299. ISSN: 0731-5996CrossRefGoogle Scholar
  39. 39.
    T. Barton, Not just a phase: outphasing power amplifiers. IEEE Microwave Mag. 17(2), 18–31 (2016).  https://doi.org/10.1109/MMM.2015.2498078. ISSN: 1527- 3342CrossRefGoogle Scholar
  40. 40.
    D.Y.C. Lie, J. Tsay, T. Hall, T. Nukala, J. Lopez, Y. Li, Recent progress on high-efficiency CMOS and SiGe RF power amplifier design, in 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR) (2016), pp. 15–17.  https://doi.org/10.1109/PAWR.2016.7440130.302
  41. 41.
    K. Khalaf, V. Vidojkovic, K. Vaesen, M. Libois, G. Mangraviti, V. Szortyka, C. Li, B. Verbruggen, M. Ingels, A. Bourdoux, C. Soens, W.V. Thillo, J.R. Long, P. Wambacq, Digitally modulated CMOS polar transmitters for highly-efficient mm-wave wireless communication. IEEE J. Solid-State Circuits 51(7), 1579–1592 (2016).  https://doi.org/10.1109/JSSC.2016.2544784. ISSN: 0018-9200CrossRefGoogle Scholar
  42. 42.
    H. He, T. Ge, J. Chang, A review on supply modulators for envelope-tracking power amplifiers, in 2016 International Symposium on Integrated Circuits (ISIC) (2016), pp. 1–4.  https://doi.org/10.1109/ISICIR.2016.7829694
  43. 43.
    J.Y.C. Liu, R. Berenguer, M.C.F. Chang, Millimeter-wave self-healing power amplifier with adaptive amplitude and phase linearization in 65-nm CMOS. IEEE Trans. Microwave Theory Tech. 60(5), 1342–1352 (2012).  https://doi.org/10.1109/TMTT.2012.2189119. ISSN: 0018-9480CrossRefGoogle Scholar
  44. 44.
    A. Katz, J. Wood, D. Chokola, The evolution of PA linearization: from classic feedforward and feedback through analog and digital predistortion. IEEE Microwave Mag. 17(2), 32–40 (2016).  https://doi.org/10.1109/MMM.2015.2498079. ISSN: 1527-3342CrossRefGoogle Scholar
  45. 45.
    D. del Rio, I. Gurutzeaga, H. Solar, A. Beriain, R. Berenguer, Layout-aware design methodology for a 75 GHz power amplifier in a 55 nm SiGe technology. Integr. VLSI J. 52, 208–216 (2016).  https://doi.org/10.1016/j.vlsi.2015.07.010. ISSN: 0167-9260
  46. 46.
    D. Chowdhury, P. Reynaert, A. Niknejad, Design considerations for 60 GHz transformer-coupled CMOS power amplifiers. IEEE J. Solid-State Circuits 44(10), 2733–2744 (2009).  https://doi.org/10.1109/JSSC.2009.2028752. ISSN: 0018-9200CrossRefGoogle Scholar
  47. 47.
    T. Tired, H. Sjoland, C. Bryant, M. Tormanen, A 1V SiGe power amplifier for 81–86 GHz E-band, in NORCHIP (2013), pp. 1–4.  https://doi.org/10.1109/NORCHIP.2013.6702018
  48. 48.
    H. Uchida, K. Nakahara, N. Takeuchi, M. Matsunaga, Y. Itoh, Stabilization of millimeter-wave multistage amplifier using amplitudeand- phase setting circuits. Electron. Commun. Jpn. (Part II: Electronics) 84(12), 26–36 (2001), http://doi.wiley.com/10.1002/ecjb.1077.  https://doi.org/10.1002/ecjb.1077. ISSN: 8756663XCrossRefGoogle Scholar
  49. 49.
    M. Chang, G. Rebeiz, A wideband high-efficiency 79–97 GHz SiGe linear power amplifier with \({\>}90\) mW output, in BCTM 2008 Bipolar/BiC- MOS Circuits and Technology Meeting, 2008 (IEEE, 2008), pp. 69–72.  https://doi.org/10.1109/BIPOL.2008.4662714
  50. 50.
    R. Yishay, R. Carmon, O. Katz, B. Sheinman, D. Elad, A 20 dBm E-band power amplifier in SiGe BiCMOS technology, in 42nd European Microwave Conference (EuMC) (2012), pp. 1079–1082Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • David del Rio
    • 1
  • Ainhoa Rezola
    • 1
  • Juan F. Sevillano
    • 1
  • Igone Velez
    • 1
  • Roc Berenguer
    • 2
  1. 1.Ceit-IK4 Technology CenterDonostiaSpain
  2. 2.Tecnun-University of NavarraDonostiaSpain

Personalised recommendations