Advertisement

Design of Wideband Up-Converters with Self-healing Capabilities

  • David del Rio
  • Ainhoa Rezola
  • Juan F. Sevillano
  • Igone Velez
  • Roc Berenguer
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter deals with the design of up-conversion mixers for application in mmW transmitters. First, the operation principles, figures of merit and common implementations for mmW mixers are presented. Then, the principles of I/Q modulation are reviewed, and some common architectures are discussed. Afterwards, design examples of a 16-21-GHz I/Q upconverter and an E-band upconverter are given. These circuits are basic building blocks of double-conversion wideband mmW transmitters, and they are designed to meet the requirements of the wideband BiCMOS integrated transmitter described throughout this book.

References

  1. 1.
    B. Razavi, RF Microelectronics (Upper Saddle River, Prentice Hall, 1998)Google Scholar
  2. 2.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, Hoboken, 2005)Google Scholar
  3. 3.
    D. Misra, Radio-Frequency and Microwave Communication Circuits: Analysis and Design (Wiley, New York, 2004). ISBN: 9780471463979Google Scholar
  4. 4.
    A. Lisauskas, S. Boppel, M. Mundt, V. Krozer, H.G. Roskos, Subharmonic mixing with field-effect transistors: theory and experiment at 639 GHz high above fT. IEEE Sens. J. 13(1), 124–132 (2013), ISSN: 1530-437X.  https://doi.org/10.1109/JSEN.2012.2223668
  5. 5.
    B. Khamaisi, E. Socher, 130–320-GHz CMOS harmonic down- converters around and above the cutoff frequency. IEEE Trans. Microw. Theory Tech. 63(7), 2275–2288 (2015), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2015.2431671CrossRefGoogle Scholar
  6. 6.
    M. Kang, B. Kim, W. Byun, K. Kim, Compact E-band singlechip transmitter using 0.1 um GaAs pHEMT process, in 2014 9th European Microwave Integrated Circuit Conference (2014), pp. 285–288.  https://doi.org/10.1109/EuMIC.2014.6997848
  7. 7.
    P.-S. Wu, C.-S. Lin, T.-W. Huang, H. Wang, Y.-C. Wang, C.-S. Wu, A millimeter-wave ultra-compact broadband diode mixer using modified Marchand balun, in in European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005 (2005), pp. 349–352Google Scholar
  8. 8.
    J.-H. Chen, C.-C. Kuo, Y.-M. Hsin, H. Wang, A 15–50 GHz broadband resistive FET ring mixer using 0.18-\(\upmu \)m CMOS technology, in 2010 IEEE MTT-S International Microwave Symposium Digest (MTT) (2010), pp. 784–787.  https://doi.org/10.1109/MWSYM.2010.5517957
  9. 9.
    J.-H. Tsai, Design of 40–108-GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications. IEEE Trans. Microw. Theory Tech. 60(3), 670–678 (2012), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2011.2178258CrossRefGoogle Scholar
  10. 10.
    B. Sheinman, E. Bloch, N. Mazor, R. Levinger, R. Ben-Yishay, O. Katz, R. Carmon, A. Golberg, J. Vovnoboy, A. Bruetbart, M. Rachman, D. Elad, A 16.2 Gbps 60 GHz SiGe Transmitter for outdoor wireless links, in 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2016), pp. 43–46.  https://doi.org/10.1109/RFIC.2016.7508246
  11. 11.
    H. Wu, N.Y. Wang, Y. Du, M.C.F. Chang, A blocker-tolerant current mode 60-GHz receiver with 7.5-GHz bandwidth and 3.8-dB minimum NF in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 63(3), 1053–1062 (2015), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2015.2393310CrossRefGoogle Scholar
  12. 12.
    M. Ko, H. Rücker, W.Y. Choi, A 53-64-GHz SiGe up-conversion mixer with 4-GHz IF bandwidth, in 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF) (2010), pp. 73–76.  https://doi.org/10.1109/SMIC.2010.5422955
  13. 13.
    B. Sheinman, R. Carmon, R. Ben-Yishay, O. Katz, N. Mazor, R. Levinger, D. Elad, A. Golberg, A. Bruetbart, An active up conversion mixer covering the entire 71–86 GHz Eband range in SiGe Technology, in IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013), Tel Aviv, Israel (2013), pp. 1–4, ISBN: 9781467357562.  https://doi.org/10.1109/COMCAS.2013.6685262
  14. 14.
    N. Demirel, R.R. Severino, C. Ameziane, T. Taris, J.B. Bégueret, E. Kerhervé, A. Mariano, D. Pache, D. Belot, Millimeter-wave chip set for 77-81 GHz automotive radar application, in 2011 IEEE 9th International New Circuits and Systems Conference (2011), pp. 253–256.  https://doi.org/10.1109/NEWCAS.2011.5981303
  15. 15.
    D. Zhao, P. Reynaert, A 3 Gb/s 64-QAME-band direct-conversion transmitter in 40-nm CMOS, in IEEE Asian Solid-State Circuits Conference (A-SSCC) (2014), pp. 177–180.  https://doi.org/10.1109/ASSCC.2014.7008889
  16. 16.
    J.H. Tsai, Design of 1.2-V broadband high data-rate MMWCMOS I/Q modulator and demodulator using modified gilbert-cell mixer. IEEE Trans. Microw. Theory Tech. 59(5), 350–1360 (2011), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2011.2116035CrossRefGoogle Scholar
  17. 17.
    B.H. Ku, O. Inac, M. Chang, H.H. Yang, G.M. Rebeiz, A High-Linearity 76-85-GHz 16-Element 8-Transmit/8-Receive Phased- Array Chip With High Isolation and Flip-Chip Packaging. IEEE Trans. Microw. Theory Tech. 62(10), 2337–2356 (2014), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2014.2341212
  18. 18.
    J.P. Comeau, J.D. Cressler, A 28-GHz SiGe Up-Conversion Mixer Using a Series-Connected Triplet for Higher Dynamic Range and Improved IF Port Return Loss. IEEE J. Solid-State Circuits 41(3), 560–565 (2006), ISSN: 0018-9200.  https://doi.org/10.1109/JSSC.2005.864129CrossRefGoogle Scholar
  19. 19.
    Y. Zhao, E. Öjefors, K. Aufinger, T.F. Meister, U.R. Pfeiffer, A 160-GHz subharmonic transmitter and receiver chipset in an SiGe HBT technology. IEEE Trans. Microw. Theory Tech. 60(10), 3286–3299 (2012), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2012.2209450CrossRefGoogle Scholar
  20. 20.
    M. Camponeschi, A. Bevilacqua, M. Tiebout, A. Neviani, A X-band I/Q upconverter in 65 nm CMOS for high resolution FMCW radars. IEEE Microw. Wirel. Compon. Lett. 22(3), 141–143 (2012), ISSN: 1531-1309.  https://doi.org/10.1109/LMWC.2012.2184275
  21. 21.
    J. Antes, U.J. Lewark, A. Tessmann, S. Wagner, A. Leuther, T. Zwick, I. Kallfass, MMIC-based chipset for multi-gigabit satellite links in E-Band, in 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS) (2012), pp. 1–4.  https://doi.org/10.1109/ICWITS.2012.6417781
  22. 22.
    81 GHz to 86 GHz, E-Band I/Q Upconverter, HMC8119, Analog Devices. http://www.analog.com/media/en/technicaldocumentation/data-sheets/HMC8119.pdf
  23. 23.
    J.S. Syu, C. Meng, P.Y. Wu, High LO-to-RF isolation wideband gilbert upconversion micromixer using a phase-inverter rat- race coupler in 0.35 \(\upmu \)m SiGe HBT technology, in 2012 IEEE Radio and Wireless Symposium (2012), pp. 447–450.  https://doi.org/10.1109/RWS.2012.6175294
  24. 24.
    L. de Boer, M. Rodenburg, R. van Dijk, F.E. van Vliet, M. Geurts, A 10 GHz integrated single sideband upconverter in 0.25 \(\upmu \)m BiCMOS technology, in 2011 6th European Microwave Integrated Circuit Conference (2011), pp. 562–565Google Scholar
  25. 25.
    I. Sarkas, S.T. Nicolson, A. Tomkins, E. Laskin, P. Chevalier, B. Sautreuil, S.P. Voinigescu, An 18-Gb/s, direct QPSK modulation SiGe BiCMOS transceiver for last mile links in the 70–80 GHz band. IEEE J. Solid-State Circuits 45(10), 1968–1980 (2010), ISSN: 0018-9200.  https://doi.org/10.1109/JSSC.2010.2058011CrossRefGoogle Scholar
  26. 26.
    W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang, H. Wang, 1024- QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process. IEEE Trans. Microw. Theory Tech. 61(11), 3974–3985 (2013), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2013.2284473CrossRefGoogle Scholar
  27. 27.
    J. Kim, J.F. Buckwalter, A fully integrated Q-band bidirectional transceiver in 0.12 \(\upmu \)m SiGe BiCMOS technology, in 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2010), pp. 57–60.  https://doi.org/10.1109/BIPOL.2010.5667959
  28. 28.
    D. del Rio, I. Gurutzeaga, A. Rezola, J.F. Sevillano, I. Velez, S.E. Gunnarsson, N. Tamir, C.E. Saavedra, J.L. Gonzalez-Jimenez, A. Siligaris, C. Dehos, R. Berenguer, A wideband and high-linearity E-band transmitter integrated in a 55-nm SiGe technology for backhaul point-to-point 10-Gb/s links. IEEE Trans. Microw. Theory Tech. 65(8), 2990–3001 (2017), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2017.2664833
  29. 29.
    A.K. Gupta, J. Kim, P. Asbeck, J.F. Buckwalter, A 9 mW, QBand direct-conversion I/Q modulator in SiGe BiCMOS process. IEEE Microw. Wirel. Compon. Lett. 22(6), 327–329 (2012), ISSN: 1531-1309.  https://doi.org/10.1109/LMWC.2012.2197379CrossRefGoogle Scholar
  30. 30.
    S. Kulkarni, D. Zhao, P. Reynaert, Design of an optimal layout polyphase filter for millimeter-wave quadrature LO generation. IEEE Trans. Circuits Syst. II: Express Br. 60(4), 202–206 (2013), ISSN: 1549-7747.  https://doi.org/10.1109/TCSII.2013.2251946CrossRefGoogle Scholar
  31. 31.
    P.H. Tsai, C.C. Kuo, J.L. Kuo, S. Aloui, H. Wang, A 30- 65 GHz reduced-size modulator with low LO power using sub- harmonic pumping in 90-nm CMOS technology, in 2012 IEEE Radio Frequency Integrated Circuits Symposium (2012), pp. 491–494.  https://doi.org/10.1109/RFIC.2012.6242329
  32. 32.
    Single-Chip SiGe Transceiver Chipset for E-band Backhaul Applications from 71 to 76 GHz, BGT70, Application Note AN377, Infineon Technologies AG (2014), http://www.infineon.com/dgdl/Infineon--AN-v01_00-NA.pdf?fileId=5546d4624ad04ef9014aed1c0dc50a5f
  33. 33.
    A. Rezola, J.F. Sevillano, D. del Rio, I. Gurutzeaga, R. Berenguer, I. Velez, Frequency-selective IQ imbalance compensation in zero-second-IF transmitters for wide-band mmW Links, in 19th International Conference on Circuits, Systems, Communications and Computers (CSCC) (2015)Google Scholar
  34. 34.
    O. Mylläri, L. Anttila, M. Valkama, Digital transmitter I/Q imbalance calibration: real-time prototype implementation and performance measurement, in 2010 18th European Signal Processing Conference (2010), pp. 537–541Google Scholar
  35. 35.
    L. Qianqian, Z. Erhu, Y. Fang, L. Min, L. Lianbi, F. Song, I/Q mismatch calibration based on digital baseband. J. Semicond. 34(7), 075 007 (2013). http://stacks.iop.org/1674-4926/34/i=7/a=075007
  36. 36.
    M. Mailand, R. Richter, H.-J. Jentschel, IQ-imbalance and its compensation for non-ideal analog receivers comprising frequencyselective components. Adv. Radio Sci. 4, 189–195 (2006)CrossRefGoogle Scholar
  37. 37.
    A. Rezola, J.F. Sevillano, I. Gurutzeaga, D. del Rio, R. Berenguer, I. Velez, Built-in-self-calibration for I/Q imbalance in wideband millimeter-wave gigabit transmitters. IEEE Trans. Microw. Theory Tech. 65(11), 4758–4769 (2017), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2017.2712145CrossRefGoogle Scholar
  38. 38.
    P. Chevalier, G. Avenier, G. Ribes, A. Montagné, E. Canderle, D. Céli, N. Derrier, C. Deglise, C. Durand, T. Quémerais, M. Buczko, D. Gloria, O. Robin, S. Petitdidier, Y. Campidelli, F. Abbate, M. Gros- Jean, L. Berthier, J. D. Chapon, F. Leverd, C. Jenny, C. Richard, O. Gourhant, C. De-Buttet, R. Beneyton, P. Maury, S. Joblot, L. Favennec, M. Guillermet, P. Brun, K. Courouble, K. Haxaire, G. Imbert, E. Gourvest, J. Cossalter, O. Saxod, C. Tavernier, F. Foussadier, B. Ramadout, R. Bianchini, C. Julien, D. Ney, J. Rosa, S. Haendler, Y. Carminati, B. Borot, A 55 nm triple gate oxide 9 metal layers SiGe BiCMOS technology featuring 320 GHz fT/370 GHz fMAX HBT and high-Q millimeter-wave passives, in 2014 IEEE International Electron Devices Meeting (IEDM) (2014), pp. 3.9.1–3.9.3.  https://doi.org/10.1109/IEDM.2014.7046978
  39. 39.
    D.D. Rio, I. Gurutzeaga, A. Rezola, J.F. Sevillano, I. Velez, V. Puyal, J.L. Gonzalez-Jimenez, R. Berenguer, A 15–21 GHz I/Q upconverter with an on-chip linearization circuit for 10 Gbps mm-wave links. IEEE Microw. Wirel. Compon. Lett. 27(5), 512–514 (2017), ISSN: 1531-1309.  https://doi.org/10.1109/LMWC.2017.2690868
  40. 40.
    J.Y.C. Liu, R. Berenguer, M.C.F. Chang, Millimeter-wave self-healing power amplifier with adaptive amplitude and phase linearization in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 60(5), 1342–1352 (2012), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2012.2189119CrossRefGoogle Scholar
  41. 41.
    JA4220-AL SMT Mini Wideband RF Transformer, Document 748- 1, Coilcraft (2013), http://www.coilcraft.com/pdfs/ja4220.pdf
  42. 42.
    Fixed Radio Systems; Characteristics and requirements for point-to- point equipment and antennas; Part 2: Digital systems operating in frequency bands from 1 GHz to 86 GHz; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU (2017)Google Scholar
  43. 43.
    S. Kondo, T. Yamaguchi, Y. Tsukui, R. Minami, Y. Takeuchi, A. Musa, K. Okada, A. Matsuzawa, A 60-GHz CMOS direct-conversion transmitter with injection-locking I/Q calibration, in 2013 European Microwave Integrated Circuit Conference (2013), pp. 300–303Google Scholar
  44. 44.
    Y. Zhao, J. Long, A wideband, dual-path, millimeter-wave power amplifier with 20 dBm output power and PAE above 15% in 130 nm SiGe-BiCMOS. IEEE J. Solid-State Circuits 47(9), 1981–1997 (2012), ISSN: 0018-9200.  https://doi.org/10.1109/JSSC.2012.2201275CrossRefGoogle Scholar
  45. 45.
    V.K. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom, M. Urteaga, N. Parthasarathy, M. Seo, L. Samoska, A. Fung, M.J.W. Rodwell, G-Band (140-220 GHz) and W-Band (75-110 GHz) InP DHBT medium power amplifiers. IEEE Trans. Microw. Theory Tech. 53(2), 598–605 (2005), ISSN: 0018-9480.  https://doi.org/10.1109/TMTT.2004.840662CrossRefGoogle Scholar
  46. 46.
    J. Kim, J.F. Buckwalter, A fully integrated Q-band bidirectional transceiver in 0.12-um SiGe BiCMOS technology, in 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2010), pp. 57–60.  https://doi.org/10.1109/BIPOL.2010.5667959

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • David del Rio
    • 1
  • Ainhoa Rezola
    • 1
  • Juan F. Sevillano
    • 1
  • Igone Velez
    • 1
  • Roc Berenguer
    • 2
  1. 1.Ceit-IK4 Technology CenterDonostiaSpain
  2. 2.Tecnun-University of NavarraDonostiaSpain

Personalised recommendations