Advertisement

Digital Compensation and Mitigation of I/Q Gain and Phase Imbalance

  • David del Rio
  • Ainhoa Rezola
  • Juan F. Sevillano
  • Igone Velez
  • Roc Berenguer
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

Wideband mmW communication systems suffer from a series of imperfections that can greatly jeopardize the signal quality. One of the most detrimental effects is the frequency-selective I/Q imbalance, which is present in most wideband mmW transceivers. This chapter analyzes the frequency-selective I/Q imbalance in detail, explaining its mathematical fundamentals and outlining methods to detect and compensate for it.

References

  1. 1.
    A. Rezola, J. Sevillano, D. del Rio, I. Gurutzeaga, R. Berenguer, I. Velez, Frequency-selective iq imbalance compensation in zerosecond- if transmitters for wide-band mmw links, in 19th International Conference on Circuits, Systems, Communications and Computers, CSCC (2015)Google Scholar
  2. 2.
    W. Li, Y. Zhang, L.k. Huang, J. Cosmas, C. Maple, J. Xiong, Low cost estimation of iq imbalance for direct conversion transmitters, in 2014 IEEE International Symposium on Broadband Multi-media Systems and Broadcasting (2014), pp. 1–6.  https://doi.org/10.1109/BMSB.2014.6873469
  3. 3.
    W. Li, Y. Zhang, L.K. Huang, J. Cosmas, C. Maple, J. Xiong, Self-iq-demodulation based compensation scheme of frequency-dependent iq imbalance for wideband direct-conversion transmitters. IEEE Trans. Broadcast. 61(4), 666–673 (2015).  https://doi.org/10.1109/TBC.2015.2465138. ISSN: 0018-9316
  4. 4.
    M. Kim, Y. Maruichi, J.I. Takada, Parametric method of frequency dependent i/q imbalance compensation for wideband quadrature modulator. IEEE Trans. Microwave Theory Tech. 61(1), 270–280 (2013).  https://doi.org/10.1109/TMTT.2012.2228215. ISSN: 0018-9480
  5. 5.
    A. Khandelwal, A. Verma, A novel gain, phase and offset calibration scheme for wideband direct-conversion transmitters, in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring) (2015), pp. 1–5.  https://doi.org/10.1109/VTCSpring.2015.7145633
  6. 6.
    V. Rampa, I/q compensation of broadband direct-conversion transmitters. IEEE Trans. Wirel. Commun. 13(6), 3329–3342 (2014).  https://doi.org/10.1109/TWC.2014.041714.131185. ISSN: 1536-1276
  7. 7.
    K.S. Lorenz, J. Goodman, G. Stantchev, N.A. Pendergrass, Generalized transmitter compensation of frequency dependent i/q imbalance. IEEE Trans. Signal Process. 64(9), 2220–2231 (2016).  https://doi.org/10.1109/TSP.2016.2516966. ISSN: 1053-587X
  8. 8.
    L. Ding, Z. Ma, D.R. Morgan, M. Zierdt, G.T. Zhou, Compensation of frequency-dependent gain/phase imbalance in predistortion linearization systems. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(1), 390–397 (2008).  https://doi.org/10.1109/TCSI.2007.910545. ISSN: 1549-8328
  9. 9.
    J.J. de Witt, G.J. van Rooyen, A self-calibrating quadrature mixing front-end for sdr, in 2008 IEEE Radio and Wireless Symposium (2008), pp. 117–120.  https://doi.org/10.1109/RWS.2008.4463442
  10. 10.
    O. Myllari, L. Anttila, M. Valkama, Digital transmitter i/q imbalance calibration: real-time prototype implementation and performance measurement, in EUSIPCO (IEEE, 2010), pp. 537–541, http://dblp.uni-trier.de/db/conf/eusipco/eusipco2010.html#MyllariAV10
  11. 11.
    L. Anttila, M. Valkama, M. Renfors, Frequency-selective i/q mismatch calibration of wideband direct-conversion transmitters. IEEE Trans. Circuits Syst. II: Express. Briefs 55(4), 359–363 (2008).  https://doi.org/10.1109/TCSII.2008.919500. ISSN: 1549-7747
  12. 12.
    Z. Zhu, X. Huang, H. Leung, Joint i/q mismatch and distortion compensation in direct conversion transmitters. IEEE Trans. Wirel. Commun. 12(6), 2941–2951 (2013).  https://doi.org/10.1109/TCOMM.2013.050313.121256. ISSN: 1536-1276
  13. 13.
    Z. Zhu, X. Huang, Bias analysis of a gain/phase/dc-offset estimation technique for direct frequency conversion modulators, in Proceedings. (ICASSP ’05). 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3 (2005), pp. iii/825–iii/828.  https://doi.org/10.1109/ICASSP.2005.1415837
  14. 14.
    A. Rezola, J. Sevillano, D. del Rio, I. Gurutzeaga, R. Berenguer, I. Velez, Frequency-selective iq imbalance in zero-second-if transceivers for wide-band mmw links. Int. J. Commun. 9, 98–104 (2015). ISSN: 1998-4480Google Scholar
  15. 15.
    J. de Witt, Modelling, Estimation and Compensation of Imbalances in Quadrature Transceivers, Ph.D. thesis, Stellenbosch University (2011)Google Scholar
  16. 16.
  17. 17.
    A. Hakkarainen, I/Q Imbalance in Multiantenna Systems: Modeling, Analysis and RF-Aware Digital Beamforming , Ph.D. thesis, Tampere University of Technology (2017)Google Scholar
  18. 18.
    L. Antilla, Digital Front-End Processing with Widely-Linear Signal Models in Radio Devices, Ph.D. thesis, Tampere University of Technology (2011)Google Scholar
  19. 19.
    S. Sen, S.K. Devarakond, A. Chatterjee, Dsp assisted low cost iq mismatch measurement and compensation using built in power detector, in 2010 IEEE MTT- S International Microwave Symposium Digest (MTT) (2010), pp. 1–1.  https://doi.org/10.1109/MWSYM.2010.5517151
  20. 20.
    R. Marchesani, Digital precompensation of imperfections in quadrature modulators. IEEE Trans. Commun. 48(4), 552–556 (2000).  https://doi.org/10.1109/26.843122. ISSN: 0090-6778
  21. 21.
    W. Li, Y. Zhang, J. Wang, L.k. Huang, J. Xiong, C. Maple, Diode-based iq imbalance estimation in direct conversion transmitters. Electron. Lett. 50(5), 409–411 (2014).  https://doi.org/10.1049/el.2013.3819. ISSN: 0013-5194
  22. 22.
    A. Eroglu, Non-invasive quadrature modulator balancing method to optimize image band rejection. IEEE Trans. Circuits Syst. I: Regul. Pap. 61(2), 600–612 (2014).  https://doi.org/10.1109/TCSI.2013.2278333. ISSN: 1549-8328
  23. 23.
    J.J. de Witt, G.J. van Rooyen, Novel IQ imbalance and offset compensation techniques for quadrature mixing radio transceivers, in Southern African Telecommunication Networks Applications Conference (2006). isbn: 0-203-7043-2Google Scholar
  24. 24.
    J.J. deWitt, G.J. van Rooyen, A blind i/q imbalance compensation technique for direct-conversion digital radio transceivers. IEEE Trans. Veh. Technol. 58(4), 2077–2082 (2009).  https://doi.org/10.1109/TVT.2008.2005414. ISSN: 0018-9545
  25. 25.
    J. Cavers, M. Liao, Adaptive compensation for imbalance and offset losses in direct conversion transceivers. IEEE Trans. Veh. Technol. 42(4), 581–588 (1993).  https://doi.org/10.1109/25.260752. ISSN: 0018-9545
  26. 26.
    J.K. Cavers, New methods for adaptation of quadrature modulators and demodulators in amplifier linearization circuits. IEEE Trans. Veh. Technol. 46(3), 707–716 (1997).  https://doi.org/10.1109/25.618196. ISSN: 0018-9545
  27. 27.
    P. Rykaczewski, M. Valkama, M. Renfors, On the connection of i/q imbalance and channel equalization in direct-conversion transceivers. IEEE Trans. Veh. Technol. 57(3), 1630–1636 (2008).  https://doi.org/10.1109/TVT.2007.907312. ISSN: 0018-9545
  28. 28.
    M. Faulkner, T. Mattsson, Automatic adjustment of quadrature modulators. Electron. Lett. 27(3), 214–216 (1991).  https://doi.org/10.1049/el:19910139. ISSN: 0013-5194
  29. 29.
    Z. Zhu, X. Huang, M. Caron, H. Leung, Blind self-calibration technique for i/q imbalances and dc-offsets. IEEE Trans. Circuits Syst. I: Regul. Pap. 61(6), 1849–1859 (2014).  https://doi.org/10.1109/TCSI.2013.2290826. ISSN: 1549-8328
  30. 30.
    A. Nassery, S. Byregowda, S. Ozev, M. Verhelst, M. Slamani, Built-in self-test of transmitter i/q mismatch and nonlinearity using self-mixing envelope detector. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(2), 331–341 (2015).  https://doi.org/10.1109/TVLSI.2014.2308317. ISSN: 1063-8210
  31. 31.
    A. Nassery, S. Byregowda, S. Ozev, M. Verhelst, M. Slamani, Built-in-self test of transmitter i/q mismatch using self-mixing envelope detector in VLSI Test Symposium (VTS), 2012 IEEE 30th, 2012, pp. 56-61.  https://doi.org/10.1109/VTS.2012.6231080. ISSN: 1063-8210
  32. 32.
    M. Windisch, G. Fettweis, Adaptive i/q imbalance compensation in low-if transmitter architectures. 2004 IEEE 60th Veh. Technol. Conf. 2004. VTC2004-Fall 3, 2096–2100 (2004).  https://doi.org/10.1109/VETECF.2004.1400410
  33. 33.
    A. Rezola, J. Sevillano, R. Berenguer, I. Velez, M. Leyh, M. Lorenzo, A. Vargas, Non-frequency-selective i/q imbalance in zero-if transceivers for wide-band mmw links, in The Tenth International Conference on Wireless and Mobile Communications ICWMC (2014)Google Scholar
  34. 34.
    G. Fettweis, M. Lohning, D. Petrovic, M. Windisch, P. Zillmann, W. Rave, Dirty rf: A new paradigm, in 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2005, vol. 4 (2005). pp. 2347–2355.  https://doi.org/10.1109/PIMRC.2005.1651863
  35. 35.
    M. Valkama, M. Renfors, V. Koivunen, Advanced methods for i/q imbalance compensation in communication receivers. IEEE Trans. Signal Process. 49(10), 2335–2344 (2001).  https://doi.org/10.1109/78.950789. ISSN: 1053-587X
  36. 36.
    Z. Zhu, H. Leung, X. Huang, Challenges in reconfigurable radio transceivers and application of nonlinear signal processing for rf impairment mitigation. Circuits Syst. Mag. IEEE 13(1), 44–65 (2013).  https://doi.org/10.1109/MCAS.2012.2237143. ISSN: 1531-636X
  37. 37.
    T. Ohlemueller, M. Petri, Sample synchronization of multiple multiplexed da and ad converters in fpgas, in 2011 IEEE 14th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS) (2011), pp. 301–304.  https://doi.org/10.1109/DDECS.2011.5783100
  38. 38.
    G. Liu, Y. Lou, M. Gao, Y. Shi, A method of synchronization between high-speed dac chips, in 2009 First International Conference on Information Science and Engineering (2009), pp. 451–453.  https://doi.org/10.1109/ICISE.2009.64
  39. 39.
    Synchronization of Multiple AD9122 TxDAC Converters, Application Note 1093, Analog Devices (2010), http://www.analog.com/media/en/technical-documentation/application-notes/AN-1093.pdf
  40. 40.
    Maxim Integrated Products, Synchronizing Multiple High-Speed Multiplexed DACs for Transmit Applications, ser. Application Note 3901 (2006)Google Scholar
  41. 41.
    11-/14-Bit, 5.7 GSPS, RF Digital-to-Analog Converter, AD9119-AD9129, Analog Devices (2013), http://www.analog.com/media/en/technical-documentation/data-sheets/AD9119_9129.pdf
  42. 42.
    J. Jeong, A. Nassery, J. Kitchen, S. Ozev, Built-in self-test and digital calibration of zero-if rf transceivers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. PP(99), 1–13 (2016).  https://doi.org/10.1109/TVLSI.2015.2506547. ISSN: 1063-8210
  43. 43.
    A. Rezola, J.F. Sevillano, I. Gurutzeaga, D. del Rio, R. Berenguer, I. Velez, Built-in-self-calibration for i/q imbalance in wideband millimeter-wave gigabit transmitters. IEEE Trans. Microwave Theory Techn. 65(11), 4758–4769 (2017).  https://doi.org/10.1109/TMTT.2017.2712145. ISSN: 0018-9480
  44. 44.
    W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1992)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • David del Rio
    • 1
  • Ainhoa Rezola
    • 1
  • Juan F. Sevillano
    • 1
  • Igone Velez
    • 1
  • Roc Berenguer
    • 2
  1. 1.Ceit-IK4 Technology CenterDonostiaSpain
  2. 2.Tecnun-University of NavarraDonostiaSpain

Personalised recommendations