Advertisement

Effect of Front-End Imperfections on Wideband Millimeter-Wave Signals

  • David del Rio
  • Ainhoa Rezola
  • Juan F. Sevillano
  • Igone Velez
  • Roc Berenguer
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter will discuss the main impairments that affect the performance of wideband, high-speed mmW transceivers. Each impairment will be first introduced theoretically, and then its effect on a wideband mmW transceiver will be analyzed at system level. Numerical examples correspond to a reference E-band wideband transceiver, implemented using an FPGA for the baseband processing, commercial off-the-shelf DACs and baseband components, and specifically designed BiCMOS integrated circuits for the IF and mmW front-end blocks.

References

  1. 1.
  2. 2.
    Surface Mount RF transformer, JTX-2-10T, Mini-Circuits (2011), http://217.34.103.131/pdfs/JTX-2-10T.pdf
  3. 3.
    Wideband RF transformer, JA4220, Coilcraft (2013), http://www.coilcraft.com/pdfs/ja4220.pdf
  4. 4.
    A. Rezola, D. del Rio, J.F. Sevillano, M. Leyh, R. Berenguer, I. Velez, Impact of AC coupling on zero-if architectures for wide-band millimeter-wave gigabit transmitters, in European Wireless 2014; 20th European Wireless Conference (2014), pp. 1–6Google Scholar
  5. 5.
    S. Mirabbasi, K. Martin, Hierarchical QAM: a spectrally efficient DC-free modulation scheme. IEEE Commun. Mag. 38(11), 140–146 (2000).  https://doi.org/10.1109/35.883503. ISSN: 0163-6804
  6. 6.
    Z. Zhu, H. Leung, X. Huang, Challenges in reconfigurable radio transceivers and application of nonlinear signal processing for RF impairment mitigation. Circuits Syst. Mag. IEEE 13(1), 44–65 Firstquarter (2013).  https://doi.org/10.1109/MCAS.2012.2237143. ISSN: 1531-636X
  7. 7.
    D. del Rio, A. Rezola, R. Berenguer, I. Gurutzeaga, I. Velez, J.F. Sevillano, A wideband millimeter-wave up-conversion mixer for future backhaul e-band point-to-point links with a 0dbm 1-db compression point, in 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB) (2015), pp. 1–5.  https://doi.org/10.1109/ICUWB.2015.7324415
  8. 8.
    Fixed Radio Systems; Characteristics and requirements for point-to- point equipment and antennas; Part 2: Digital systems operating in frequency bands from 1 GHz to 86 GHz; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU (2017)Google Scholar
  9. 9.
    C. Dehos, M. des Noes, D. Morche, Sensitivity of MC-CDMA systems to carrier phase noise : a large system analysis, in 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 1 (2005), pp. 407–411.  https://doi.org/10.1109/PIMRC.2005.1651468
  10. 10.
    J. Samuel, P. Rosson, L. Maret, C. Dehos, A. Valkanas, Impact of RF impairments in cellular wireless metropolitan area networks, in 2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications (2008), pp. 766–769.  https://doi.org/10.1109/ISSSTA.2008.149
  11. 11.
    A. Rezola, J. Sevillano, I. Velez, Maiztasunarekiko independenteaden I/Q desorekaren azterketa banda zabaleko mikrouhin loturetan, in I. Ikergazte: Nazioarteko ikerketa euskaraz. Kongresuko artikulu-bilduma, Durango, Spain: Udako Euskal Unibertsitatea (2015), http://www.buruxkak.eus/liburua/i-ikergazte-nazioarteko-ikerketa-euskaraz-kongresuko-artikulubilduma/2343
  12. 12.
    A. Rezola, J. Sevillano, D. del Rio, I. Gurutzeaga, R. Berenguer, I. Velez, Frequency-selective IQ imbalance in zero-second-if transceivers for wide-band mmw links. Int. J. Commun. 9, 98–104 (2015). ISSN: 1998-4480Google Scholar
  13. 13.
    L. Antilla, Digital front-end processing with widely-linear signal models in radio devices, Ph.D. thesis, Tampere University of Technology (2011)Google Scholar
  14. 14.
    W. Li, Y. Zhang, L.K. Huang, J. Cosmas, C. Maple, J. Xiong, Low cost estimation of IQ imbalance for direct conversion transmitters, in 2014 IEEE International Symposium on Broadband Multi-Media Systems and Broadcasting (2014), pp. 1–6.  https://doi.org/10.1109/BMSB.2014.6873469
  15. 15.
    W. Li, Y. Zhang, L.K. Huang, J. Cosmas, C. Maple, J. Xiong, Self-IQ-demodulation based compensation scheme of frequency-dependent IQ imbalance for wideband direct-conversion transmitters. IEEE Trans. Broadcast. 61(4), 666–673 (2015).  https://doi.org/10.1109/TBC.2015.2465138. ISSN: 0018-9316
  16. 16.
    M. Kim, Y. Maruichi, J.I. Takada, Parametric method of frequencydependent I/Q imbalance compensation for wideband quadraturemodulator. IEEE Trans. Microw. Theory Tech. 61(1), 270–280 (2013).  https://doi.org/10.1109/TMTT.2012.2228215. ISSN: 0018-9480
  17. 17.
    A. Khandelwal, A. Verma, A novel gain, phase and offset calibration scheme for wideband direct-conversion transmitters, in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring) (2015), pp. 1–5.  https://doi.org/10.1109/VTCSpring.2015.7145633
  18. 18.
    V. Rampa, I/Q compensation of broadband direct-conversion transmitters. IEEE Trans. Wirel. Commun. 13(6), 3329–3342 (2014).  https://doi.org/10.1109/TWC.2014.041714.131185. ISSN: 1536-1276
  19. 19.
    K.S. Lorenz, J. Goodman, G. Stantchev, N.A. Pendergrass, Generalized transmitter compensation of frequency dependent I/Q imbalance. IEEE Trans. Signal Process. 64(9), 2220–2231 (2016).  https://doi.org/10.1109/TSP.2016.2516966. ISSN: 1053-587X
  20. 20.
    L. Ding, Z. Ma, D.R. Morgan, M. Zierdt, G.T. Zhou, Compensation of frequency-dependent gain/phase imbalance in predistortion linearization systems. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(1), 390–397 (2008).  https://doi.org/10.1109/TCSI.2007.910545. ISSN: 1549-8328
  21. 21.
    J.J. de Witt, G.J. van Rooyen, A self-calibrating quadrature mixing front-end for SDR, in Radio and Wireless Symposium (IEEE, 2008), pp. 117–120.  https://doi.org/10.1109/RWS.2008.4463442
  22. 22.
    O. Myllari, L. Anttila, M. Valkama, Digital transmitter I/Q imbalance calibration: real-time prototype implementation and performance measurement, in EUSIPCO (IEEE, 2010), pp. 537–541, http://dblp.uni-trier.de/db/conf/eusipco/eusipco2010.html#MyllariAV10
  23. 23.
    L. Anttila, M. Valkama, M. Renfors, Frequency-selective I/Q mismatch calibration of wideband direct-conversion transmitters. IEEE Trans. Circuits Syst. II: Express Br. 55(4), 359–363 (2008).  https://doi.org/10.1109/TCSII.2008.919500. ISSN: 1549-7747
  24. 24.
    Z. Zhu, X. Huang, H. Leung, Joint I/Q mismatch and distortion compensation in direct conversion transmitters. IEEE Trans. Wirel. Commun. 12(6), 2941–2951 (2013).  https://doi.org/10.1109/TCOMM.2013.050313.121256. ISSN: 1536-1276
  25. 25.
    Z. Zhu, X. Huang, Bias analysis of a gain/phase/dc-offset estimation technique for direct frequency conversion modulators, in 2005 Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05) vol. 3 (2005), iii/825-iii/828.  https://doi.org/10.1109/ICASSP.2005.1415837

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • David del Rio
    • 1
  • Ainhoa Rezola
    • 1
  • Juan F. Sevillano
    • 1
  • Igone Velez
    • 1
  • Roc Berenguer
    • 2
  1. 1.Ceit-IK4 Technology CenterDonostiaSpain
  2. 2.Tecnun-University of NavarraDonostiaSpain

Personalised recommendations