Eutrophication, Management and Sustainable Development of Urban Lakes: General Considerations and Specific Solutions for Alte Donau – A Synthesis

  • Martin T. DokulilEmail author
  • Karl Donabaum
  • Karin Pall
  • Georg A. Janauer
  • Katrin Teubner
Part of the Aquatic Ecology Series book series (AQEC, volume 10)


Intensively used urban water bodies are vulnerable to eutrophication. The shallow lake Alte Donau (Vienna) can be seen as an example for the extent of anthropogenic influence. Human impacts paired with changes in environmental conditions gave way to eutrophication processes in Alte Donau. Due to the great public interest restoration concepts and subsequently management programs were established. This chapter provides a synthesis of the key aspects to evolve and implement a successful water management plan. An attempt is made to generalise our specific solutions to serve as a basis for the development of similar strategies for other urban lakes.


Restoration Groundwater Seepage Management Improvement Shallow lake 


  1. Bailey P, Boon P, Morris K (2002) Managing nutrients in floodplain wetlands and shallow lakes. River management technical update No. 2, Land & Water Australia, Canberra, 8ppGoogle Scholar
  2. Berg S, Jeppesen E, Sondergard M (1997) Pike (Esox lucius L.) stocking as a biomanipulation tool 1. Effects on the fish population in Lake Lyng, Denmark. Hydrobiologia 342–343:311–318CrossRefGoogle Scholar
  3. Berger J, Schagerl M (2003) Allelophytic activity of Chara aspera. Hydrobiologia 501:109–115CrossRefGoogle Scholar
  4. Birch S, McCaskie J (1999) Shallow urban lakes: a challenge for lake management. Hydrobiologia 95/396:365–377CrossRefGoogle Scholar
  5. Björk S (1978) Restoration of degraded lake ecosystems. Reports of the Institute of Limnology. University of Lund, 24ppGoogle Scholar
  6. Björk S (1994) Restoration of lakes through sediment removal – Lake Trummen, Sweden. In: Eiseltova M (ed) Restoration of lake ecosystems. A holistic approach, vol 32. IWRB Publications, Glaucester, UK, pp 130–140Google Scholar
  7. Bowmer KH, Mitchell DS, Short DL (1984) Biology of Elodea canadensis MICHX. and its management in Australian irrigation systems. Aquat Bot 18:231–238CrossRefGoogle Scholar
  8. Cappiella K, Schueler T (2001) Crafting a lake protection ordinance. Water Prot Tech 3:751–768Google Scholar
  9. Carvalho L (1994) Top-down control of phytoplankton in a shallow hypertrophic lake: little Mere (England). Hydrobiologia 275–276:53–63CrossRefGoogle Scholar
  10. Crisman TL, Mitraki C, Zalidis G (2005) Integrating vertical and horizontal approaches for management of shallow lakes and wetlands. Ecol Eng 24:379–389CrossRefGoogle Scholar
  11. Dokulil MT (2014a) Environmental impacts of tourism on lakes. In: Ansari AA, Gill SS (eds) Eutrophication: causes, consequences and control, vol 2. Springer, Dordrecht, NL, pp 81–88, ISBN 978-94-007-7813-9Google Scholar
  12. Dokulil MT (2014b) Old wine in new skins: eutrophication reloaded: global perspectives of potential amplification by climate warming altered hydrological cycle and human interference. In: Lambert A, Roux C (eds) Eutrophication: causes, economic implications and future challenges. Nova Publisher, Hauppauge, ISBN 978-1-62808-498-6Google Scholar
  13. Gassner H, Achleitner D, Bruschek G, Mayrhofer K, Frey I (2013) Leitfaden zur Erhebung der Biologischen Qualitätselemente – Teil B1 – Fische. BMFLUW, Vienna (ed.)
  14. Gassner H, Luger M, DAchleitner D, Pamminger-Lahnsteiner B (2014) Alte Donau (2013) – Standardisierte Fischbestandserhebung und Bewertung des fischökologischen Zustandes gemäß EU-WRRL. Bericht, 34 Seiten. Bundesamt für Wasserwirtschaft, Institut für Gewässerökologie, Fischereibiologie und Seenkunde, Scharfling,
  15. Gopal B, Goel U (1993) Competition and allelopathy in aquatic plant communities. Bot Rev 59:155–210CrossRefGoogle Scholar
  16. Gross E, Hilt S (2005) Probleme mit submersen Makrophyten in Flachseen Deutschlands.
  17. Hansel-Welch N, Butler MG, Carlson TJ, Hanson MA (2003) Changes in macrophyte community structure in Lake Christina (Minnesota), a large shallow lake, following biomanipulation. Aquat Bot 75:323–337CrossRefGoogle Scholar
  18. Hansson MA, Butler MG (1994) Responses of plankton, turbidity, and macrophytes to biomanipulation in a shallow prairie lake. Hydrobiologia 200–201:317–327Google Scholar
  19. Heintz HT (2004) Applying the concept of sustainability to water resources management. Water Resour Update 127:6–10Google Scholar
  20. Hilt S (2005) Schaffung von Bedingungen zur natürlichen Wiederansiedlung von submersen Makrophyten in Flachseen.
  21. IGB – Leibnitz-Institut für Gewässerökologie und Binnenfischerei (2005) Workshop des DGL<AK “Flachseen”, limnologische Station der TU München. _2005
  22. Irfanullah HM, Moss B (2004) Factors influencing the return of submerged plants to a clear-water, shallow temperate lake. Aquat Bot 80:177–191CrossRefGoogle Scholar
  23. Janauer GA (1995) Makrophytenmanagement in Donaualtarmen – Wissenschaftliche Zustandsanalyse und Managementkonzept (Macrophyte management in Danube oxbows. – Scientific status assessment and management concept). Technical Report, Verbundgesellschaft, Wien, 111ppGoogle Scholar
  24. Janauer GA, Pall K (1998) Donaualtarme als Lebensraum. Schriftenreihe der Forschung im Verbund 37, Österreichische Elektrizitätswirtschafts-Aktiengesellschaft, Wien, 46ppGoogle Scholar
  25. Janse JH, van Donk E, Aldenberg T (1998) A model study on the stability of the macrophyte-dominated state as affected by biological factors. Water Res 32:2696–2706CrossRefGoogle Scholar
  26. Körner S (2002) Submerse Makrophyten – wichtig für die Seentherapie in Deutschland? Wasser & Boden 9:38–41Google Scholar
  27. Lau SSS, Lane SN (2002) Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: the effect of low macrophyte abundance. Water Res 36:3593–3601CrossRefGoogle Scholar
  28. Löffler H (1988) Alte Donau. Projektstudie im Auftrag der Wasserstrassendirektion. Im Eigenverlag, Wien, 272 SGoogle Scholar
  29. Madsen JD, Adams MS, Ruffier P (1988) Harvest as a control for Sago Pondweed (Potamogeton pectinatus L.) in Badfish Creek, Wisconsin: frequency, efficiency and its impact on the stream community oxygen metabolism. J Aquat Plant Manag 26:20–25Google Scholar
  30. Morscheid H, Maehlmann J (2005) Künstliche (Wieder-)Ansiedlung von Makrophyten.
  31. NALMS – North American Lake Management Society (1988) Lake and reservoir restoration guidance manual EPA. 440/5-88-002Google Scholar
  32. Naselli-Flores L (2008) Urban Lakes: ecosystems at risk, worthy of the best care. In: Sengupta M, Dalwani R (eds) Proceedings of Taal2007: the 12thWorld Lake conference, pp 1333–1337Google Scholar
  33. Perrow MR, Meijer M-L, Dawidowicz P, Coops H (1997) Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342–343:355–365CrossRefGoogle Scholar
  34. Pieterse AH and Murphy KJ (1990) Aquatic weeds. The ecology and management of nuisance aquatic vegetation. Oxford University Press, Oxford, 593 ppGoogle Scholar
  35. Riis T, Hawes I (2002) Relationship between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquat Bot 74:133–148CrossRefGoogle Scholar
  36. Schueler T, Simpson J (2001) Why urban lakes are different. Water Prot Tech 3(4):747–750Google Scholar
  37. Singh KP (1982) Lake restoration methods and feasibility of water quality management. State Water Survey Division, Surface water section, University of Illinois, Report 301, 53ppGoogle Scholar
  38. Sorensen HA (1996) Managing urban lakes: an integrating experience. Water Resour Dev 12:437–446CrossRefGoogle Scholar
  39. Taylor T, Goldstein R (2010) Sustainable Water research management 3: case studies on new water paradigm. Report 1020587, Electronic Power Research Institute, Palo Alto, 172ppGoogle Scholar
  40. Traut AH, Hostetler ME (2004) Urban lakes and waterbirds: effects of shoreline development on avian distribution. Landsc Urban Plan 69:69–85CrossRefGoogle Scholar
  41. Van den Berg MS, Coops H, Meijer M-L, Scheffer M, Simons J (1998) Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluvemeer, The Netherlands. In: Jeppesen E, Sondergaard M, Sondergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 339–352CrossRefGoogle Scholar
  42. Van der Does J and Frinking LJ (1993) Restoration of Lake Geerplas by reduction of external phosphorus loading and dredging of phosphorus enriched upper sediment layer (Abstract) Verhandlungen Internationale Vereinigung Limnologie 25, 614Google Scholar
  43. Welch EB, Schrieve GD (1994) Alum treatment effectiveness and longevity in shallow lakes. Hydrobiologia 275:423–431CrossRefGoogle Scholar
  44. Wium-Andersen S (1987) Allelopathy among aquatic plants. Arch Hydrobiol 27:167–172Google Scholar
  45. Wychera U, Humpesch UH (2002) Translocation and growth experiments with the macrophyte Potamogeton lucens L. in Traunsee (Austria), with respect to industrial tailings. Water Air Soil Pollut Focus 2:109–116CrossRefGoogle Scholar
  46. Xu FL, Tao S, Xu ZR (1999) The restoration of riparian wetlands and macrophytes in Lake Chao, an eutrophic Chinese lake: possibilities and effects. Hydrobiologia 405:169–178CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DWS-Hydro-Ökologie GmbHWienAustria
  2. 2.Systema GmbHWienAustria
  3. 3.Dept. of Limnology & Bio-OceanographyUniversity of ViennaWienAustria

Personalised recommendations