The Effect of Restoration Measures on the Benthic Invertebrates of a Danube Backwater (Alte Donau)

  • Berthold Janecek
  • Patrick Leitner
  • Otto Moog
  • Katrin TeubnerEmail author
Part of the Aquatic Ecology Series book series (AQEC, volume 10)


Benthic invertebrates were used as bioindicators to document the effect of restoration measures in the backwater Alte Donau in Vienna, a former side-arm of the Danube. The study covers four periods of lake management: (1): the mesotrophic year before eutrophication (1987), (2): the 2 years of chemical iron chloride treatment aimed at the phosphate precipitation in the water column and the oxidization of nitrate-treated sediment surface layers (1995–1996), (3): further 3 years of other lake management measures during the restoration period (1995–1999), and (4): an early stage of the re-establishment of underwater vegetation (2000, 2003). Over eight survey years from 1987 to 2003, about 330 benthic invertebrate taxa with three most abundant systematic groups were identified: 37 species of oligochaetes, 23 species of molluscs (18 gastropods and 5 bivalves), and 190 species of the chironomids and other dipterans. The trophic classification index that refers to a habitat quality score by chironomids indicates the year 1987 as mesotrophic (3.46, the index range for mesotrophic conditions is 2.50–3.49). In this year the chironomids and oligochaet species inhabited a variety of diverse habitats ranging from soft sediments (clay and mud), sand, gravel, pebbles and stones to dense stands of macrophytes. The biomonitoring record of 15 mollusc species was significantly higher in this mesotrophic reference year than in any other following survey year. The trophic classification index denotes 1995 as the most eutrophied year. With the restoration and the re-establishment of macrophytes the values of this index decreased but remained higher than during the mesotrophic condition. In the years 1995 and 1996, when the chemical treatment with iron chloride, slaked lime and calcium nitrate was applied and the macrophytes were rare, the biomass of chironomids and oligochaets was particularly low. Among the three important taxonomic groups, i.e. the chironomids, bivalves, and oligochaets, only the first two groups achieved relative biomass dominance. The relative importance of chironomids over oligochaets during these both years of the Riplox-treatment might rather mirror the losses of oligochaets being affected by nitrate exposure than the re-colonization by ‘new’ chironomid species in the sediment. In addition, in particular active filter feeders such as bivalves seemed to adjust well to the muddy sediment environment after chemical treatment. In the following years of the restoration and the early stage of macrophyte re-establishment, oligochaets and bivalves became the dominant groups mainly contributing to the macrozoobenthic biomass, while the biomass of chironomids remained relatively low. Different from the indication by enhanced water transparency and low phytoplankton biomass achieved by restoration measures in 2004, the shift towards a mesotrophic environment seemed to be retarded when assessing Alte Donau by the chironomid habitat quality score index. The main reason why the chironomid assemblage did not follow the other indicators of mesotrophic conditions in 2004 can be seen in the disruption of the sediment (e.g. by sedimentation of precipitation chemicals) and associated loss of underwater habitat structure due to still relatively low macrophyte biomass during the last invertebrate survey. The phytophilic chironomid species still had a low abundance when only about 50% of the macrophyte biomass was recorded if compared with the mesotrophic situation in 1987. Despite the wax and wane of benthic invertebrates described during the eight-year survey, invertebrate biomass is relatively high in the long-term average and thus characterises Alte Donau as a lowland environment along habitats from low- to high altitudes.


Oxbow lake Benthic fauna Bio-indicator Chironomids Pupal exuviae of chironomids Bivalves Oligochaets Re-colonization of sediment Lake restoration Phosphate precipitation Riplox 



During the 8 years of research many colleagues have contributed to the work. We want to thank Hasko Nesemann (Turbellaria, Hirudinea, Mollusca and Crustacea), Dr. Michal Horšak (some Mollusca), Dr. Elisabeth Haberlehner (Mollusca: 1987), Dr. Ferdinand Sporka (Oligochaeta), Dr. Christa Thurnherr (Hydracarina: 1987) and Dr. Wolfram Graf (Trichoptera) for their contribution to determining the species. The following colleagues who have not only supported in taxonomy but also contributed evaluating the results of the survey 1987 we also want to thank: Dr. Elisabeth Bauer (benthal fauna generally), Dr. B. Grasl (benthal), Dr. Alexander Schneider (phytal faunistics), Univ.-Prof. Dr. Johann Waringer (benthal- and phytal faunistics) and Dr. Harald Wintersberger (phytal faunistics). We further thank for field work Dipl. Ing. Reinhard Wimmer and Mag. Gabriele Weinzettl. Many thanks also to the colleagues contributing in the lab work: Dipl.-Ing. Dr. Gabriele Bannhofer, Dipl.-Ing. Karin Egger, Mag. Peter Hecher, cand. rer. nat. Verena Hirzinger, Dipl.-Ing. Mik Hochfellner, Dipl.-Ing. Catherine Hörl, Isabella Leeb, Univ.-Doz. Dr. Seval Muminović, Dipl.-Ing. Andreas Römer, cand. phil. Martin Seebacher and Dipl.-Ing. Susanne Steiner. Finally, we express our thanks for collecting pupal exuviae and identifying Ephemeroptera: Agnes und Lisa Beier, Dipl.-Ing. Rosemarie Forster, Mag. Thomas Geretschläger, Richard Petrik and Mirjam Suchomel; Dipl.-Ing. Dr. Astrid Schmidt-Kloiber.


  1. Bauer E, Waringer J (1987) Benthalfauna (pp 179–184). In: Löffler H (ed) Limnologische Projektstudie – Ökosystem Alte Donau. Scientific report, 272 ppGoogle Scholar
  2. Blenckner T, Adrian R, Livingstone DM, Jennings E, Weyhenmeyer GA, George DG, Jankowski T, Järvinen M, Aonghusa CN, Nõges T, Straile D, Teubner K (2007) Large-scale climatic signatures in lakes across Europe: a meta-analysis. Glob Chang Biol 13:1314–1326CrossRefGoogle Scholar
  3. Brettum P (1989) Algen als Indikatoren der Wasserqualität in norwegischen Binnengewässern. NIVA, TrondheimGoogle Scholar
  4. Brinkhurst RO (1974) The benthos of lakes. The MacMillan Press Ltd, London/Basingstoke 190 ppCrossRefGoogle Scholar
  5. Cai Y, Zhang Y, Wu Z, Chen Y, Xu J, Gong Z (2017) Composition, diversity, and environmental correlates of benthic macroinvertebrate communities in the five largest freshwater lakes of China. Hydrobiologia 788(1):85–98CrossRefGoogle Scholar
  6. Cheruvelil KS, Soranno PA, Madsen JD, Roberson MJ (2002) Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. J N Am Benthol Soc 21(2):261–277CrossRefGoogle Scholar
  7. Clements WH, Kiffney PM (1995) The influence of elevation on benthic community responses to heavy metals in Rocky Mountain streams. Can J Fish Aquat Sci 52(9):1966–1977CrossRefGoogle Scholar
  8. Cummings KS, Graf DL (2009) Mollusca: Bivalvia. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates. Academic, New York, pp 309–384Google Scholar
  9. Cyr H, Downing JA (1988) The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshw Biol 20(3):365–374CrossRefGoogle Scholar
  10. Dokulil M, Teubner K, Donabaum K (2010) Fließende und stehende Abkömmlinge des Donaustroms: Die Alte Donau. In: Vom Agnesbründl zum Donaustrom: Wasser in der Stadt; Ökosystem Stadt – Die Naturgeschichte Wiens. (Hg. F Ehrendorfer & R Berger), 2. Band, Böhlau VerlagGoogle Scholar
  11. Fittkau EJ (ed) (1992) (Chironomidae: REIFF, N., RISS, H.W. und ORENDT, C.) Biologische Trophieindikation im Litoral von Seen. Bayerisches Landesamt für Wasserwirtschaft, Informationsberichte, Heft 7/92:184 ppGoogle Scholar
  12. Gervais F (1998) Ecology of cryptophytes coexisting near freshwater chemocline. Freshw Biol 39(1):61–78CrossRefGoogle Scholar
  13. Graf W, Leitner P, Pletterbauer F (2015) Short overview on the benthic macroinvertebrate fauna of the Danube River. In: Liska I (ed) The Danube river basin. Springer, Berlin Heidelberg, pp 287–315CrossRefGoogle Scholar
  14. Graf W, Leitner P, Hanetseder I, Ittner LD, Dossi F, Hauer C (2016) Ecological degradation of a meandering river by local channelization effects: a case study in an Austrian lowland river. Hydrobiologia 772(1):145–160CrossRefGoogle Scholar
  15. Grieshaber MK, Hardewig I, Kreutzer U, Pörtner HO (1993) Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 125:43–147CrossRefGoogle Scholar
  16. Gundacker C (2000) Comparison of heavy metal bioaccumulation in freshwater molluscs of urban river habitats in Vienna. Environ Pollut 110(1):61–71CrossRefGoogle Scholar
  17. Haberlehner E (1986) Mollusken. In, H. Löffler, Limnologische Erhebungen im Bereich der geplanten Staustufe Wien. Neue Donau, Alte Donau, Ölhafen, Donau-Oder-Kanal (Unterer Abschnitt), Dcchant-Lacke Und Panozza-Lacke. – S. 136-138, Endbericht Im Auftrag der MA 18: WienGoogle Scholar
  18. Haberlehner E (1987) Mollusken (pp 138–147). In: Löffler H (ed) Limnologische Projektstudie – Ökosystem Alte Donau. Scientific report, 272 ppGoogle Scholar
  19. Hauer C, Leitner P, Unfer G, Pulg U, Habersack H, Graf W (2018) The role of sediment and sediment dynamics in the aquatic environment. In: Schmutz S, Sendzimir J (eds) Riverine ecosystem management, Aquatic ecology series, vol 8. Springer, ChamCrossRefGoogle Scholar
  20. Henderson PA (2003) Practical methods in ecology. Blackwell Science Ltd:163Google Scholar
  21. Hofmann G (1994) Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibl Diatomol 30:241Google Scholar
  22. Humpesch UH, Moog O (1994) Flora und Fauna der österreichischen Donau. Limnologie aktuell 2:81–107Google Scholar
  23. Hunting ER, Whatley MH, van der Geest HG, Mulder C, Kraak MHS, Breure AM, Admiraal W (2012) Invertebrate footprints on detritus processing, bacterial community structure, and spatiotemporal redox profiles. Freshwater Science 31(3):724–732CrossRefGoogle Scholar
  24. Jacobsen D, Schultz R, Encalada A (1997) Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshw Biol 38:247–261CrossRefGoogle Scholar
  25. Jähnig SC, Brabec K, Buffagni A, Erba S, Lorenz AW, Ofenböck T, Verdonschot PFM, Hering D (2010) A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. J Appl Ecol 47(3):671–680CrossRefGoogle Scholar
  26. Janecek B (1985) Beiträge zur Faunistik und Ökologie der Chironomidae (Diptera) des Gebhartsteiches, eines vom Menschen mäßig beeinflußten Karpfengewässers im nordwestlichen Waldviertel (Niederösterreich). Phd thesis, Wien, 370 ppGoogle Scholar
  27. Janecek B (1987) Chironomidae. In: Löffler H (ed, 1988) Limnologische Projektstudie – Ökosystem Alte Donau, Endbericht, 272 ppGoogle Scholar
  28. Janecek B (1995) Tanytarsus niger ANDERSEN (Diptera: Chironomidae) and the chironomid community in Gebhartsteich, a carp pond in Northern Austria. In: Cranston P (ed) Chironomids. From Genes to Ecosystems. CSIRO Australia, pp 281–296Google Scholar
  29. Janecek B (2000) Changes of chironomid communities during iron chloride treatment of Alte Donau, the largest stagnant water of Vienna (Austria). In: Hoffrichter O (ed.) Late 20th century research on Chironomidae: an Anthology from the 13th international symposium on Chironomidae, Shaker publisher, Aachen 2000: 449–461Google Scholar
  30. Janecek B (2005) Moosthierchen und Zuckmücken. Denisia 16, Neue Serie 28:305–324Google Scholar
  31. Janke H, Yamada T, Beraldo DAS, Botta CMR, Nascimento MRL, Mozeto AA (2011) Assessment of the acute toxicity of eutrophic sediments after the addition of calcium nitrate (Ibirité reservoir, Minas Gerais-SE Brazil): initial laboratory experiments. Braz J Biol 71(4):903–914CrossRefGoogle Scholar
  32. Jónasson PM, Thorhauge F (1972) Life cycle of Potamothrix hammoniensis (Tubificidae) in the profundal of a eutrophic lake. Oikos 23:151–158CrossRefGoogle Scholar
  33. Jones JI, Murphy JF, Collins AL, Sear DA, Naden PS, Armitage, PD (2012) The impact of fine sediment on Macro-Invertebrates. River Res Appl 28(8):1055–1071CrossRefGoogle Scholar
  34. Jungwirth M, Moog O, Winkler H (1980) Vergleichende Fischbestandsuntersuchungen an elf niederösterreichischen Fließgewässerstrecken.- Österr. Fischereigesellschaft; Festschrift 1880–1980:81–104Google Scholar
  35. Jungwirth M, Haidvogel G, Moog O, Muhar S, Schmutz S (2003) Angewandte Fischökologie an Fliessgewässern. UTB-Facultas, 547 pp ISBN 3-8252-2113Google Scholar
  36. Kajak Z, Dusoge K, Prejs A (1968) Application of the flotation technique to assessment of absolute numbers of benthos. Ekologia Polska – Seria a, To XVI, Warszawa, 29607-62QGoogle Scholar
  37. Kalugina NS (1975) A key to larvae of the genus Glyptotendipes (Diptera, Chironomidae) in water bodies of the Moscow district. Zoologicheskii zhurnal 54: 1830–1837 (in Russian, Janecek B translated to German (1981, unpublished)Google Scholar
  38. Karr JR (1991) Biological integrity: a long-neglected aspect of water resource management. Ecol Appl 1(1):66–84CrossRefGoogle Scholar
  39. Kirby LJ, Ringler NH (2015) Associations of epiphytic macroinvertebrates within four assemblages of submerged aquatic vegetation in a recovering urban lake. Northeast Nat 22(4):672–689CrossRefGoogle Scholar
  40. Krienitz L, Krienitz D, Dadheech PK, Hübener T, Kotut K, Luo W, Teubner K, Versfeld WD (2016) Food algae for lesser flamingos: a stocktaking. Hydrobiologia 775(1):21–50CrossRefGoogle Scholar
  41. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika 29:1–27CrossRefGoogle Scholar
  42. Langford TEL, Shaw PJ, Ferguson AJD, Howard SR (2009) Long-term recovery of macroinvertebrate biota in grossly polluted streams: re-colonisation as a constraint to ecological quality. Ecol Indic 9(6):1064–1077CrossRefGoogle Scholar
  43. Learner MA, Lochhead G, Hughes BD (1978) A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. Freshw Biol 8(4):357–375CrossRefGoogle Scholar
  44. Leitner P, Hauer C, Ofenböck T, Pletterbauer F, Schmidt-Kloiber A, Graf W (2015) Fine sediment deposition affects biodiversity and density of benthic macroinvertebrates: a case study in the freshwater pearl mussel river Waldaist (Upper Austria). Limnol-Ecol Manage Inland Waters 50:54–57CrossRefGoogle Scholar
  45. Löffler H et al (1988) Alte Donau – Projektstudie im Auftrag der Wasserstraßendirektion; Wien: 272 ppGoogle Scholar
  46. McCall PL, Fisher JB (1980) Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments. In: Brinkhurst RO, Cook DG (eds) Aquatic oligochaete biology. Springer/Plenum, New York, pp 253–317CrossRefGoogle Scholar
  47. McLachlan AJ (1974) Development of some lake ecosystems in tropical Africa, with special reference to the invertebrates. Biol Rev 49(3):365–397CrossRefGoogle Scholar
  48. Mengistou S (2016) Invertebrates of East African soda lakes. In: Schagerl M (ed) Soda Lakes of East Africa. Springer Publishers, Cham, pp 205–226Google Scholar
  49. Mermillod-Blondin F, Gérino M, Châtelliers MC, Degrange V (2002) Functional diversity among 3 detritivorous hyporheic invertebrates: an experimental study in microcosms. J N Am Benthol Soc 21(1):132–149CrossRefGoogle Scholar
  50. Merritt RW, Cummins KW (1996) An introduction to the aquatic insects of North America. Kendall Hunt, DubuqueGoogle Scholar
  51. Moog O (ed) (2002) Fauna Aquatica Austriaca. A comprehensive species Inventory of Austrian Aquatic Organisms with ecological notes. Edition 2002–Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, ViennaGoogle Scholar
  52. Moog O, Hartmann A (eds) (2017) Fauna Aquatica Austriaca, 3rd edn. A comprehensive species inventory of Austrian aquatic organisms with ecological notes; BMLFUW, Wien. ISBN: 978-3-85174-074-5Google Scholar
  53. Moog O, Brunner S, Humpesch H, Schmidt-Kloiber A (2000) The distribution of benthic invertebrates along the Austrian stretch of the river Danube and its relevance as an indicator of zoogeographical and water quality patterns – part 2. Large Rivers 11(4), Archiv für Hydrobiologie Supplement 115/4:473–509CrossRefGoogle Scholar
  54. Moog O, Chovanec A (2000) Assessing the ecological integrity of rivers: walking the line among ecological, political and administrative interests. Hydrobiologia 422:99–109CrossRefGoogle Scholar
  55. Moog O, Humpesch UH, Konar M (1995) The distribution of benthic invertebrates along the Austrian stretch of the river Danube and its relevance as an indicator of zoogeographic and water quality patterns. Archiv für Hydrobiologie Supplement 101(2):121–213Google Scholar
  56. Moog O, Schmutz S, Schwarzinger I (2018) Biomonitoring and bioassessment. In: Schmutz S, Sendzimir J (eds) Riverine ecosystem management. Aquatic ecology series, vol 8. Springer, ChamCrossRefGoogle Scholar
  57. Moog O, Stubauer I, Haimann M, Habersack H, Leitner P (2015) Effects of harbour excavating and dredged sediment disposal on the benthic invertebrate fauna of river Danube (Austria). Hydrobiologia:1–12. CrossRefGoogle Scholar
  58. Murphy JF, Jones JI, Pretty JL, Duerdoth CP, Hawczak A, Arnold A, Blackburn JH, Naden PS, Old G, Sear DA, Hornby D, Clarke RT, Collins AL (2015) Development of a biotic index using streammacroinvertebrates to assess stress from deposited fine sediment. Freshw Biol 60(10):2019–2036CrossRefGoogle Scholar
  59. Naden PS, Murphy JF, Old GH, Newman J, Scarlett P, Harman M, Duerdoth CP, Hawczak A, Pretty JL, Arnold A, Laizé C, Hornby DD, Collins AL, Sear DA, Jones JI (2016) Understanding the controls on deposited fine sediment in the streams of agricultural catchments. Sci Total Environ 547:366–381CrossRefGoogle Scholar
  60. Nogaro G, Mermillod-Blondin F, Francois-Carcaillet F, Gaudet JP, Lafont M, Gibert J (2006) Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshw Biol 51(8):1458–1473CrossRefGoogle Scholar
  61. Nogaro G, Mermillod-Blondin F, Valett MH, François-Carcaillet F, Gaudet JP, Lafont M, Gibert J (2009) Ecosystem engineering at the sediment–water interface: bioturbation and consumer-substrate interaction. Oecologia 161(1):125–138CrossRefGoogle Scholar
  62. Ripl W (1976) Biochemical oxidation of polluted lake sediment with nitrate: a new lake restoration method. Ambio 5(3):132–135Google Scholar
  63. Schmutz S, Moog O (2018) Dams: ecological impacts and management. In: Schmutz S, Sendzimir J (eds) Riverine ecosystem management. Aquatic ecology series, vol 8. Springer, ChamCrossRefGoogle Scholar
  64. Schneider A, Waringer J, Wintersberger H (1988) Phytal-Faunistik. In: Löffler H (ed) Limnologische Projektstudie – Ökosystem Alte Donau. Scientific report, 272 ppGoogle Scholar
  65. Schröder M, Kiesel J, Schattmann A, Jähnig SC, Lorenz AW, Kramm S, Keizer-Vlek H, Rolauffs P, Graf W, Leitner P, Hering D (2013) Substratum associations of benthic invertebrates in lowland and mountain streams. Ecol Indic 30:178–189CrossRefGoogle Scholar
  66. Orendt C (1993) Vergleichende Untersuchungen zur Ökologie litoraler, benthischer Chironomidae und anderer Diptera (Ceratopogonidae, Chaoboridae) in Seen des nördlichen Alpenvorlandes, mit einem Beitrag zur Eignung und Verwendung von Chironomiden als Trophie-Indikatoren. Phd thesis, München, 274 ppGoogle Scholar
  67. Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York, 488 ppGoogle Scholar
  68. Russev B (1985) Das Zoobenthos im österreichischen Donauabschnitt unter dem Einfluß der Stauanlagen. In: Naidenow W (ed) Die Auswirkungen der wasserbaulichen Maßnahmen und der Belastung auf das Plankton und das Benthos der Donau, p 151 Verlag der Bulgarischen Akademie der Wissenschaften) SofiaGoogle Scholar
  69. Stendera S, Adrian R, Bonada N, Cañedo-Argüelles M, Hugueny B, Januschke K, Pletterbauer F, Hering D (2012) Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: a review. Hydrobiologia 696(1):1–28CrossRefGoogle Scholar
  70. Sueitt APE, Yamada-Ferraz TM, Oliveira AF, Botta CMR, Fadini PS, Nascimento MRL, Faria BM, Mozeto AA (2015) Ecotoxicological risks of calcium nitrate exposure to freshwater tropical organisms: laboratory and field experiments. Ecotoxicol Environ Saf 117:155–163CrossRefGoogle Scholar
  71. Sundermann A, Antons C, Cron N, Lorenz AW, Hering D, Haase P (2011) Hydromorphological restoration of running waters: effects on benthic invertebrate assemblages. Freshw Biol 56(8):1689–1702CrossRefGoogle Scholar
  72. Teubner K, Crosbie N, Donabaum K, Kabas W, Kirschner A, Pfister G, Salbrechter M, Dokulil MT (2003a) Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton. Limnol Oceanogr 48 (3):1141–1149CrossRefGoogle Scholar
  73. Teubner K, Tolotti M, Greisberger S, Morscheid H, Dokulil MT, Morscheid H (2003b) Steady state phytoplankton in a deep pre-alpine lake: Species and pigments of epilimnetic versus metalimetic assemblages. Hydrobiologia 502:49–64CrossRefGoogle Scholar
  74. Wauer G, Gonsiorczyk T, Casper P, Koschel R (2005) P-immobilisation and phosphatase activities in lake sediment following treatment with nitrate and iron. Limnol-Ecol Manage Inland Waters 35(1):102–108CrossRefGoogle Scholar
  75. Wood PJ, Armitage PD (1997) Biological effects of fine sediment in the lotic environment. Environ Manag 21(2):203–217CrossRefGoogle Scholar
  76. Wolfram G (1996) Distribution and production of chironomids (Diptera: Chironomidae) in a shallow, alkaline lake (Neusiedler See, Austria). Hydrobiologia 318:103–115CrossRefGoogle Scholar
  77. Wolfram G, Donabaum K, Schagerl M, Kowarc VA (1999) The zoobenthic community of shallow salt pans in Austria – preliminary results on phenology and the impact of salinity on benthic invertebrates. Hydrobiologia 408/409:193–202Google Scholar
  78. Woolsey S, Capelli F, Gonser T, Hoehn E, Hostmann M, Junker B, Paetzold A, Roulier C, Schweizer S, Tiegs SD, Tockner K, Weber C, Peter A (2007) A strategy to assess river restoration success. Freshw Biol 52(4):752–769CrossRefGoogle Scholar
  79. Zotina T, Köster O, Jüttner F (2003) Photoheterotrophy and light-dependent uptake of organic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance. Freshw Biol 48(10):1859–1872CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Water, Atmosphere and EnvironmentInstitute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life SciencesViennaAustria
  2. 2.Dept. of Limnology & Bio-OceanographyUniversity of ViennaWienAustria

Personalised recommendations