Response of Zooplankton to Restoration and Climate Warming in Alte Donau

  • Katrin TeubnerEmail author
  • Monika Großschartner
  • Irene E. Teubner
Part of the Aquatic Ecology Series book series (AQEC, volume 10)


Lake restoration is commonly assessed by changes in water transparency, nutrients and biomass of phytoplankton, while information about changes in zooplankton that is triggered by lake management is often missing. In our 19-year study we used rotifers and crustaceans to document the effect of restoration measures on zooplankton in the oxbow lake Alte Donau, a former side-arm of the Danube River which is most popular for recreation and angler (cyprinid-dominated shallow water). The record covers four management periods: the period before restoration, the restoration (including years of chemical phosphate precipitation by Riplox treatment), the re-establishment of macrophytes and the sustained ‘stable conditions’. We found the highest abundance of all zooplankton in the first Riplox-year, with decreasing zooplankton abundance in following periods associated with the decline of phytoplankton. In the long term, the main compositional change related to a shift from a cladoceran-rotifer-rich to a copepod-rotifer-rich zooplankton assemblage. Thus, the large-bodied zooplankton shifted from a community composed of mainly filter-feeding herbivorous cladocerans under eutrophic algal-turbid conditions to mainly selective-feeding omnivorous and herbivorous copepods under mesotrophic transparent-water conditions. While the carbon ratio between zoo- and phytoplankton increased significantly during the first three periods and remained high under ‘stable conditions’, the mean body size of zooplankton did not exhibit a long-term trend. Short-term increases of large-bodied zooplankton coincided with an intermittent increase of calanoid copepod abundance (Eudiaptomus gracilis) during the chemical treatment concomitant with a drastic phytoplankton biomass reduction and the occurrence of large-bodied cladocerans (Simocephalus vetulus and Sida crystallina) in some years with re-established underwater vegetation. Besides the main response of zooplankton to the ‘bottom up’ control that was triggered by the reduction of phytoplankton food supply by one order of magnitude, we studied the zooplankton response to climate change. The impact of climate warming was evident from intra-annual coincidence of the climate signal (NAODJFM) and water temperature (WT) in winter and early spring, the increase of surface water temperature (SWT) by 1.52 °C per decade in April and the prolongation of the warm period (SWT > 22 °C) by 10.5 days per decade in summer. This prolongation of the warm season seemed to support the summer development of the medusa stage of freshwater jellyfish (Craspedacusta sowerbii). During the transition from spring to summer, the progressively earlier clear-water phase followed two trends. The first period with a 33-day earlier clear-water phase per decade coincided with pronounced ecosystem changes from a high to a low eutrophic state created by chemical restoration measures. The second period with a moderate earlier progression of 7 days per decade was accompanied by a further, slight TP decrease associated with the re-establishment of macrophytes. When comparing rotifers, cladocerans, calanoid and cyclopoid copepods, the latter group benefits most from seasonal temperature increases and climate warming.



We thank David Livingstone and Susanne Wilhelm for valuable comments on methods of climate research during European Union projects REFLECT ( and CLIME ( that were useful for analysing the climate impact in Alte Donau. We are grateful to Thorsten Blenckner, Rita Adrian, Alois Herzig and two other colleagues for critical comments improving the manuscript. We also thank Anne Mette Poulsen for improving the language style. We would like to thank all of the numerous collaborators and the Municipal Department for permission of publication. We further thank the ‘Wiener Fischereiausschuss’ (Austrian Fishery Association) for providing long-term fish catch records. The long-term lake measurements were financially supported by Municipal Department – 45 (Water Management – Vienna). ‘Österreichisches Komitee Donauforschung, Internationale Arbeitsgemeinschaft Donauforschung’ partly funded data assessment (K.T.). Further data evaluation (I.T.) was partly funded by the TU Wien Science award 2015 received by Wouter Dorigo (EOWAVE).


  1. Adrian R (1997) Calanoid–cyclopoid interactions: evidence from an 11-year field study in a eutrophic lake. Freshw Biol 38(2):315–325CrossRefGoogle Scholar
  2. Adrian R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Chang Biol 12(4):652–661CrossRefGoogle Scholar
  3. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54(6):2283–2297PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anneville O, Molinero JC, Souissi S, Balvay G, Gerdeaux D (2007a) Long-term changes in the copepod community of Lake Geneva. J Plankton Res 29(1):i49–i59CrossRefGoogle Scholar
  5. Anneville O, Kaiblinger C, Tadonléké RD, Druart JC, Dokulil MT (2007b) Contribution of long-term monitoring to the European Water Framework Directive implementation. In: Sengupta M, Dalwani R (eds), Proceedings Taal 2007. 12th World lake conference, pp 1122–1131Google Scholar
  6. Arndt H, Krocker M, Nixdorf B, Köhler A (1993) Long-term annual and seasonal changes of meta- and protozooplankton in Lake Müggelsee (Berlin): effects of eutrophication, grazing activities, and the impact of predation. Internationale Revue der gesamten Hydrobiologie und Hydrographie 78(3):379–402CrossRefGoogle Scholar
  7. Baranyi C, Hein T, Holarek C, Keckeis S, Schiemer F (2002) Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshw Biol 47(3):473–482CrossRefGoogle Scholar
  8. Behrendt H (1990) The chemical composition of phytoplankton and zooplankton in a shallow lake. Arch Hydrobiol 118:129–145Google Scholar
  9. Benndorf J (1987) Food web manipulation without nutrient control: a useful strategy in lake restoration? Swiss J Hydrol 49(2):237–248CrossRefGoogle Scholar
  10. Benndorf J, Kranich J, Mehner T, Wagner A (2001) Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long-term data from the biomanipulated Bautzen reservoir (Germany). Freshw Biol 46(2):199–211CrossRefGoogle Scholar
  11. Berger J, Schagerl M (2004) Allelopathic activity of Characeae. Biologia, Bratislava 59(1):9–15Google Scholar
  12. Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroth M, Wild A, Weigert A, Jäger CG, Striebel M (2007) Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150(4):643–654PubMedCrossRefPubMedCentralGoogle Scholar
  13. Berger SA, Diehl S, Stibor H, Sebastian P, Scherz A (2014) Separating effects of climatic drivers and biotic feedbacks on seasonal plankton dynamics: no sign of trophic mismatch. Freshw Biol 59(10):2204–2220CrossRefGoogle Scholar
  14. Berman T (1990) Microbial food-webs and nutrient cycling in lakes: changing perspectives. Large lakes. In: Tilzer MM, Serruya C (eds) Ecological structure and function. Springer, Berlin, pp 511–525Google Scholar
  15. Blenckner T (2005) A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 533(1–3):1–14CrossRefGoogle Scholar
  16. Blenckner T, Adrian R, Livingstone DM, Jennings E, Weyhenmeyer GA, George DG, Jankowski T, Järvinen M, Aonghusa CN, Nõges T, Straile D, Teubner K (2007) Large-scale climatic signatures in lakes across Europe: a meta-analysis. Glob Chang Biol 13:1314–1326CrossRefGoogle Scholar
  17. Böhm R (1998) Urban bias in temperature time series – a case study for the city of Vienna, Austria. Clim Change 38(1):113–128CrossRefGoogle Scholar
  18. Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29(2):293–301CrossRefGoogle Scholar
  19. Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska T (1976) A review of some problems in zooplankton production studies. Norwegian J Zool 24:419–456Google Scholar
  20. Brett MT, Kainz MJ, Taipale SJ, Seshan H (2009) Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc Natl Acad Sci 106(50):21197–21201PubMedCrossRefPubMedCentralGoogle Scholar
  21. Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150(3692):28–35CrossRefGoogle Scholar
  22. Burks R, Lodge DM, Jeppesen E, Lauridsen TL (2002) Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshw Biol 47(3):343–365CrossRefGoogle Scholar
  23. Burns CW (1968) The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested. Limnol Oceanogr 13(4):675–678CrossRefGoogle Scholar
  24. Burns CW (1969) Relation between filtering rate, temperature, and body size in four species of Daphnia. Limnol Oceanogr 14:693–700CrossRefGoogle Scholar
  25. Capblancq J (1990) Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments: an overview. Hydrobiologia 207(1):1–14CrossRefGoogle Scholar
  26. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22(2):361–369CrossRefGoogle Scholar
  27. Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370CrossRefGoogle Scholar
  28. Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639CrossRefGoogle Scholar
  29. Carter JL, Schindler DE (2012) Responses of zooplankton populations to four decades of climate warming in lakes of southwestern Alaska. Ecosystems 15(6):1010–1026CrossRefGoogle Scholar
  30. De Senerpont Domis LN, Elser JJ, Gsell AS, Huszar VLM, Ibelings BW, Jeppesen E, Kosten S, Mooij WM, Roland F, Sommer U, Van Donk E, Winder M, Lürling M (2013) Plankton dynamics under different climatic conditions in space and time. Freshw Biol 58(3):463–482CrossRefGoogle Scholar
  31. Deng J, Qin B, Paerl HW, Zhang Y, Ma J, Chen Y (2014) Earlier and warmer springs increase cyanobacterial (Microcystis spp.) blooms in subtropical Lake Taihu, China. Freshw Biol 59(5):1076–1085CrossRefGoogle Scholar
  32. Dokulil MT (2014) Impact of climate warming on European inland waters. Inland Waters 4(1):27–40CrossRefGoogle Scholar
  33. Dokulil MT (2015) Vegetative survival of Cylindrospermopsis raciborskii (cyanobacteria) at low temperature and low light. Hydrobiologia 764(1):241–247CrossRefGoogle Scholar
  34. Dokulil MT, Herzig A (2009) An analysis of long-term winter data on phytoplankton and zooplankton in Neusiedler See, a shallow temperate lake, Austria. Aquat Ecol 43(3):715–725CrossRefGoogle Scholar
  35. Dokulil MT, Mayer J (1996) Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algological Studies/Archiv für Hydrobiologie. Supplement Volumes 83:179–195Google Scholar
  36. Dokulil MT, Teubner K (2005) Do phytoplankton communities correctly track trophic changes? An assessment using directly measured and palaeolimnological data. Freshw Biol 50(10):1594–1604CrossRefGoogle Scholar
  37. Dokulil M, Teubner K (2011) Eutrophication and climate change: present situation and future scenarios. In: Ansari AA et al (eds) Eutrophication: causes, consequences and control. Springer, Dordrecht, pp 1–16Google Scholar
  38. Dokulil MT, Teubner K (2012) Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698(1):29–46CrossRefGoogle Scholar
  39. Dokulil M, Teubner K, Donabaum K (2010a) Fließende und stehende Abkömmlinge des Donaustroms: Die Alte Donau. In: Vom Agnesbründl zum Donaustrom: Wasser in der Stadt; Ökosystem Stadt – Die Naturgeschichte Wiens. (Hg. F Ehrendorfer & R Berger), 2. Band, BöhlauGoogle Scholar
  40. Dokulil M, Teubner K, Jagsch A, Nickus U, Adrian R, Straile D, Jankowski T, Herzig A, Padisák J (2010b) The impact of climate change on lakes in Central Europe. In: George DG (ed) The impact of climate change on European Lakes, Aquatic Ecology Series. Springer, Dordrecht, pp 387–410CrossRefGoogle Scholar
  41. Donabaum K, Schagerl M, Dokulil MT (1999) Integrated management to restore macrophyte domination. Hydrobiologia 395(396):87–97CrossRefGoogle Scholar
  42. Drenner RW, Strickler JR, O’Brien WJ (1978) Capture probability: the role of zooplankter escape in the selective feeding of planktivorous fish. J Fish Board Canada 35(10):1370–1373CrossRefGoogle Scholar
  43. Dunn OJ, Clark VA (1974) Applied statistics: analysis of variance and regression. Wiley, New York p 353Google Scholar
  44. Dupuis AP, Hann BJ (2009) Warm spring and summer water temperatures in small eutrophic lakes of the Canadian prairies: potential implications for phytoplankton and zooplankton. J Plankton Res 31(5):489–502CrossRefGoogle Scholar
  45. Eckert B, Walz N (1998) Zooplankton succession and thermal stratification in the polymictic shallow Müggelsee (Berlin, Germany): a case for the intermediate disturbance hypothesis? In: Rotifera VIII: a comparative approach. Springer, Dordrecht, pp 199–206CrossRefGoogle Scholar
  46. Elser JJ, Goldman CR (1991) Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnol Oceanogr 36(1):64–90CrossRefGoogle Scholar
  47. Ferrão Filho ADS, Demott WR, Tessier AJ (2005) Responses of tropical cladocerans to a gradient of resource quality. Freshw Biol 50(6):954–964CrossRefGoogle Scholar
  48. Folino-Rorem NC, Reid M, Peard T (2016) Culturing the freshwater hydromedusa, Craspedacusta sowerbii under controlled laboratory conditions. Invertebr Reprod Dev 60(1):17–27CrossRefGoogle Scholar
  49. Fritz GB, Schill RO, Pfannkuchen M, Brümmer F (2007) The freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 (Limnomedusa: Olindiidae) in Germany, with a brief note on its nomenclature. J Limnol 66(1):54–59CrossRefGoogle Scholar
  50. Füreder L, Ullrich-Schneider A, Scheurer T (2012) Alps freshwater, Europe. In: Climate and conservation: landscape and seascape science, planning, and action. Island Press/Center for Resource Economics, Washington, pp 129–143CrossRefGoogle Scholar
  51. Geller W, Müller H (1981) The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49(3):316–321PubMedCrossRefPubMedCentralGoogle Scholar
  52. George DG, Hewitt DP (1999) The influence of year-toyear variations in the winter weather on the dynamics of Daphnia and Eudiaptomus in Esthwaite water, Cumbria. Funct Ecol 13(1):45–54CrossRefGoogle Scholar
  53. George DG, Jarvinen M, Arvola L (2004) The influence of the North Atlantic Oscillation on the winter characteristics of Windermere (UK) and Paajarvi (Finland). Boreal Environ Res 9:389–400Google Scholar
  54. Gerdeaux D, Anneville O, Hefti D (2006) Fishery changes during re-oligotrophication in 11 peri-alpine Swiss and French lakes over the past 30 years. Acta Oecol 30(2):161–167CrossRefGoogle Scholar
  55. Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45(5):1058–1066CrossRefGoogle Scholar
  56. Gerten D, Adrian R (2002) Species-specific changes in the phenology and peak abundance of freshwater copepods in response to warm summers. Freshw Biol 47(11):2163–2173CrossRefGoogle Scholar
  57. Gibbs JW (1878) On the equilibrium of heterogeneous substances. Am J Sci s3-16(96):441–458CrossRefGoogle Scholar
  58. Gilbert JJ (1988) Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol Oceanogr 33(6):1286–1303CrossRefGoogle Scholar
  59. Gismervik I, Andersen T, Vadstein O (1996) Pelagic food webs and eutrophication of coastal waters: impact of grazers on algal communities. Mar Pollut Bull 33(1):22–35Google Scholar
  60. Gophen M (1976) Temperature effect on lifespan, metabolism, and development time of Mesocyclops leuckarti (Claus). Oecologia 25(3):271–277PubMedCrossRefPubMedCentralGoogle Scholar
  61. Grohs H (1998) Quallen in Oberösterreich – die Süßwassermeduse Craspedacusta sowerbyi (report from 1971). ÖKO·L 20(2):24–26Google Scholar
  62. Gudimova A, Ramina M, Labenckib T, Wellena C, Shelara M, Shimodaa Y, Boydb D, Arhonditsisa GB (2011) Predicting the response of Hamilton Harbour to the nutrient loading reductions: a modeling analysis of the “ecological unknowns”. J Great Lakes Res 37(3):494–506CrossRefGoogle Scholar
  63. Gulati RD, Van Donk E (2002) Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. In: Ecological restoration of aquatic and semi-aquatic ecosystems in the Netherlands (NW Europe). Springer, Dordrecht, pp 73–106CrossRefGoogle Scholar
  64. Haberman J, Virro T (2004) Zooplankton. In: Haberman J, Pihu E, Raukas A (eds) Lake Võrtsjärv. Estonian Encyclopedia Publishers, Tallinn, pp 233–251 ISBN: 9985-70-183-6Google Scholar
  65. He H, Hu E, Yu J, Luo X, Li K, Jeppesen E, Liu Z (2017) Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study. Environ Sci Pollut Res 24:5012–5018CrossRefGoogle Scholar
  66. Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment1. Limnol Oceanogr 33(4part2):796–822CrossRefGoogle Scholar
  67. Helsel DR, RM Hirsch (2002) Statistical methods in water resources in: hydrologic analysis and interpretation, techniques of water-resources investigations of the United States geological survey. pp 510Google Scholar
  68. Herzig A (1983a) Comparative studies on the relationship between temperature and duration of embryonic development of rotifers. Hydrobiologia 104(1):237–246CrossRefGoogle Scholar
  69. Herzig A (1983b) The ecological significance of the relationship between temperature and duration of embryonic development in planktonic freshwater copepods. Hydrobiologia 100(1):65–91CrossRefGoogle Scholar
  70. Hilt S, Gross EM (2008) Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic Appl Ecol 9:422–432CrossRefGoogle Scholar
  71. Hofmann G (1993) Aufwuchs-diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. PhD thesis, JW Goethe-University Frankfurt a Main, pp 196Google Scholar
  72. Huber V, Adrian R, Gerten D (2010) A matter of timing: heat wave impact on crustacean zooplankton. Freshw Biol 55(8):1769–1779Google Scholar
  73. Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic Oscillation. Science 291:603–605PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hurrell J, National Center for Atmospheric Research Staff (eds). Last modified 04 Sep (2015) The climate data guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based). Retrieved from
  75. Ibelings BW, Portielje R, Lammens EH, Noordhuis R, Van den Berg MS, Joosse W, Meijer ML (2007) Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10(1):4–16CrossRefGoogle Scholar
  76. IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group ii to the 5th assessment report of Intergovernmental Panel on Climate Change, Cambridge, pp 1–32Google Scholar
  77. Jankowski T, Strauss T, Ratte HT (2005) Trophic interactions of the freshwater jellyfish Craspedacusta sowerbii. J Plankton Res 27(8):811–823CrossRefGoogle Scholar
  78. Järvinen M, Salonen K (1998) Influence of changing food web structure on nutrient limitation of phytoplankton in a highly humic lake. Can J Fish Aquat Sci 55(12):2562–2571CrossRefGoogle Scholar
  79. Jennings E, Allott N, McGinnity P, Poole R, Quirke W, Twomey H, George G (2000) The North Atlantic Oscillation: effects on freshwater systems in Ireland. Biol Environ Proceedings of the Royal Irish Academy 100B(3):149–157Google Scholar
  80. Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45(2):201–218CrossRefGoogle Scholar
  81. Jeppesen E, Jensen JP, Søndergaard M (2002) Response of phytoplankton, zooplankton, and fish to re-oligotrophication: an 11 year study of 23 Danish lakes. Aquat Ecosyst Health Manage 5(1):31–43CrossRefGoogle Scholar
  82. Jeppesen E, Søndergaard M, Jensen JP (2003) Climatic warming and regime shifts in lake food webs—some comments. Limnol Oceanogr 48(3):1346–1349CrossRefGoogle Scholar
  83. Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Nõges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willèn E, Winder M (2005) Lake responses to reduced nutrient loading–an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50(10):1747–1771CrossRefGoogle Scholar
  84. Jeppesen E, Moss B, Bennion H, Carvalho L, De Meester L, Feuchtmayr H, Friberg N, Gessner MO, Hefting M, Lauridsen TL, Liboriussen L, Malmquist HJ, May L, Meerhoff M, Olafsson JS, Soons MB, Verhoeven JTA (2010a) Interaction of climate change and eutrophication. In: Kernan M, Battarbee R, Moss B (eds) Climate change impacts on freshwater ecosystems. Blackwell, Hoboken, pp 119–151CrossRefGoogle Scholar
  85. Jeppesen E, Meerhoff M, Holmgren K, González-Bergonzoni I, Teixeira-de Mello F, Declerck SAJ, De Meester L, Søndergaard M, Lauridsen TL, Bjerring R, Conde-Porcuna JM, Mazzeo N, Iglesias C, Reizenstein M, Malmquist HJ, Liu Z, Balayla D, Lazzaro X (2010b) Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646(1):73–90CrossRefGoogle Scholar
  86. Joehnk KD, Huisman JEF, Sharples J, Sommeijer BEN, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol 14(3):495–512CrossRefGoogle Scholar
  87. Jones A, Cannon RC (1986) The release of micro-algal photosynthate and associated bacterial uptake and heterotrophic growth. Br Phycol J 21(4):341–358CrossRefGoogle Scholar
  88. Kainz M, Arts MT, Mazumder A (2004) Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol Oceanogr 49(5):1784–1793CrossRefGoogle Scholar
  89. Kainz MJ, Ptacnik R, Rasconi S, Hager HH (2017) Irregular changes in lake surface water temperature and ice cover in subalpine Lake Lunz, Austria. Inland Waters 7:27CrossRefGoogle Scholar
  90. Karr JR (1998) Rivers as sentinels: using the biology of rivers to guide landscape management. River ecology and management: lessons from the Pacific Coastal ecoregion. Springer, pp 502–528Google Scholar
  91. Kasprzak P, Koschel R (2001) Lake trophic state, community structure and biomass of crustacean plankton. Int Ver Theoretische und Angewandte Limnologie Verhandlungen 27(2):773–777Google Scholar
  92. Köhler J, Hilt S, Adrian R, Nicklisch A, Kozerski HP, Walz N (2005) Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshw Biol 50(10):1639–1650CrossRefGoogle Scholar
  93. Kosten S, Huszar VL, Bécares E, Costa LS, Donk E, Hansson L-A, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, De Meestewr L, Moss B, Lürling M, Nõges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Chang Biol 18(1):118–126CrossRefGoogle Scholar
  94. Kronfelder M (1989) Weitere Vorkommen der Süsswassermeduse (Craspedacusta sowerbii LANKESTER) im Bayerischen Donauraum. Der Bayerische Wald 1:19–21Google Scholar
  95. Kurmayer R, Christiansen G, Chorus I (2003) The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee. Appl Environ Microbiol 69(2):787–795PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lair N (2005) Abiotic vs. biotic factors: lessons drawn from rotifers in the Middle Loire, a meandering river monitored from 1995 to 2002, during low flow periods. Hydrobiologia 546:457–472CrossRefGoogle Scholar
  97. Lampert W, Fleckner W, Rai H, Taylor BE (1986) Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol Oceanogr 31(3):478–490CrossRefGoogle Scholar
  98. Lazzaro X (1987) A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146:97–167CrossRefGoogle Scholar
  99. Lehtovaara A, Arvola L, Keskitalo J, Olin M, Rask M, Salonen K, Sarvala J, Tulonen T, Vuorenmaa J (2014) Responses of zooplankton to long-term environmental changes in a small boreal lake. Boreal Environ Res 19:97–112Google Scholar
  100. Livingstone DM (2003) Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Chang 57(1–2):205–225CrossRefGoogle Scholar
  101. Löffler H (ed) (1988) Alte Donau. Projektstudie im Auftrag der Wasserstraßendirektion. Eigenverlag, pp 272Google Scholar
  102. Loreau M (1995) Consumers as maximizers of matter and energy flow in ecosystems. Am Nat 145(1):2–42CrossRefGoogle Scholar
  103. MA23 (2015) Wien in Zahlen 2015, Magistrat der Stadt Wien,
  104. Markensten H, Moore K, Persson I (2010) Simulated lake phytoplankton com-position shifts toward cyanobacteria dominance in a future warmer climate. Ecol Appl 20(3):752–767PubMedCrossRefPubMedCentralGoogle Scholar
  105. Mayer J, Dokulil MT, Salbrechter M, Berger M, Posch T, Pfister G, Kirschner AKT, Velimirov B, Steitz A, Ulbricht T (1997) Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342(343):165–174CrossRefGoogle Scholar
  106. McCauley E (1984) The estimation of the abundance and biomass of Zooplankton in samples. p 228–265 In Downing JA. and Riegler FH (eds) A Manual on methods for the assessment of secondary productivity in fresh waters, Blackwell, OxfordGoogle Scholar
  107. McLeod AI (2015) Package ‘Kendall’.
  108. Mehner T, Padisak J, Kasprzak P, Koschel R, Krienitz L (2008) A test of food web hypotheses by exploring time series of fish, zooplankton and phytoplankton in an oligo-mesotrophic lake. Limnologica 38(3):179–188CrossRefGoogle Scholar
  109. Morabito G, Oggioni A, Caravati E (2005) Decadal trends of pelagic algal biomass capacities in Lago Maggiore (N. Italy). Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen 29(1):231–234Google Scholar
  110. Muggeo VMR (2008) Segmented: an R package to fit regression models with broken-line relationships. R News 8(1):20–25Google Scholar
  111. Muggeo VMR (2015) Package ‘segmented’ – R – CRAN
  112. Müller-Navarra D, Güss S, von Storch H (1997) Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Glob Chang Biol 3(5):429–438CrossRefGoogle Scholar
  113. Nickus U, Bishop K, Erlandsson M, Evans CD, Forsius M, Laudon H, Livingstone DM, Monteith D, Thies H (2010) Direct impacts of climate change on freshwater ecosystems. In: Kernan M, Battarbee R, Moss B (eds) Climate change impacts on freshwater ecosystems. Blackwell, Hoboken, pp 38–64CrossRefGoogle Scholar
  114. O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM, McIntyre PB, Kraemer BM, Weyhenmeyer GA, Straile D, Dong B, Adrian R, Allan MG, Anneville O, Arvola L, Austin J, Bailey JL, Baron JS, Brookes JD, de Eyto E, Dokulil MT, Hamilton DP, Havens K, Hetherington AL, Higgins SN, Hook S, Izmest’eva LR, Joehnk KD, Kangur K, Kasprzak P, Kumagai M, Kuusisto E, Leshkevich G, Livingstone DM, MacIntyre S, May L, Melack JM, Mueller-Navarra DC, Naumenko M, Nõges P, Nõges T, North RP, Plisnier P-D, Rigosi A, Rimmer A, Rogora M, Rudstam LG, Rusak JA, Salmaso N, Samal NR, Schindler DE, Schladow SG, Schmid M, Schmidt SR, Silow E, Soylu ME, Teubner K, Verburg P, Voutilainen A, Watkinson A, Williamson CE, Zhang G (2015) Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42:1–9CrossRefGoogle Scholar
  115. Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyrah J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34(2):96–112CrossRefGoogle Scholar
  116. Orcutt JD, Porter KG (1983) Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol Oceanogr 28(4):720–730CrossRefGoogle Scholar
  117. Pace ML (1986) An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol Oceanogr 31(1):45–55CrossRefGoogle Scholar
  118. Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecology Evol 14(12):483–488CrossRefGoogle Scholar
  119. Padisák J (1993) The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249(1–3):135–156CrossRefGoogle Scholar
  120. Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58PubMedCrossRefPubMedCentralGoogle Scholar
  121. Peterson TC (2003) Assessment of urban versus rural in situ surface temperatures in the contiguous United States: no difference found. J Clim 16(18):2941–2959CrossRefGoogle Scholar
  122. Peukert DE (2009) Circalunare Steuerung der Populationsdynamik der Süßwassermeduse Craspedacusta sowerbii (= sowerbyi) (Lankester, 1880). Lauterbornia 67:197–230Google Scholar
  123. Posch T, Köster O, Salcher MM, Pernthaler J (2012) Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat Clim Chang 2:809–813CrossRefGoogle Scholar
  124. Queimaliños CP, Modenutti BE, Balseiro EG (1998) Phytoplankton responses to experimental enhancement of grazing pressure and nutrient recycling in a small Andean lake. Freshw Biol 40(1):41–49CrossRefGoogle Scholar
  125. Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Christian Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Kirsten Thonicke K, Van der Velde M, Vicca S, ArianeWalz A, Wattenbach M (2013) Climate extremes and the carbon cycle. Nature 500(7462):287–295CrossRefGoogle Scholar
  126. Rigosi A, Carey CC, Ibelings BW, Brookes JD (2014) The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59(1):99–114CrossRefGoogle Scholar
  127. Ripl W (1976) Biochemical oxidation of polluted lake sediments with nitrate. A new restoration method. Ambio 5(3):112–135Google Scholar
  128. Ripl W (1995) Management of water cycle and energy flow for ecosystem control: the energy-transport-reaction (ETR) model. Ecol Model 78(1):61–76CrossRefGoogle Scholar
  129. Ripl W, Pokorny J, Scheer H (2007) Memorandum on climate change. The necessary reforms of society to stabilize the climate and solve the energy issues. In: Hazell P, Norris D (eds) Proceedings 1th natural sequence farming workshop, 2006, Bungendore, NSW, AustraliaGoogle Scholar
  130. Ronneberger D, Kasprzak P, Krienitz L (1993) Long-term changes in the rotifer fauna after biomanipulation in Haussee (Feldberg, Germany, Mecklenburg-Vorpommern) and its relationship to the crustacean and phytoplankton communities. In: Rotifer symposium VI. Springer, Dordrecht, pp 297–304CrossRefGoogle Scholar
  131. Rücker J, Nixdorf B, Deneke R, Kleeberg A, Mischke U (2003) Different reactions of lakes in the Scharmuetzelsee region (Brandenburg, Germany) to external load reduction. Wasser und Boden 55(4):4–10Google Scholar
  132. Ruttner-Kolisko A (1977) Suggestions for biomass calculation of plankton rotifers. Archiv für Hydrobiologie. Beihefte Ergebnisse der Limnologie 8:71–76Google Scholar
  133. Sand-Jensen K, Pedersen O (1999) Velocity gradients and turbulence around macrophyte stands in streams. Freshw Biol 42(2):315–328CrossRefGoogle Scholar
  134. Sapna S, Gray DK, Read JS, O’Reilly CM, Schneider P, Qudrat A, Gries C, Stefanoff S, Hampton SE, Hook S, Lenters JD, Livingstone DM, McIntyre PB, Adrian R, Allan MG, Anneville O, Arvola L, Austin J, Bailey J, Baron JS, Brookes J, Chen Y, Daly R, Dokulil M, Dong B, Ewing K, de Eyto E, Hamilton D, Havens K, Haydon S, Hetzenauer H, Heneberry J, Hetherington AL, Higgins SN, Hixson E, Izmest’eva LR, Jones BM, Kangur K, Kasprzak P, Köster O, Kraemer BM, Kumagai M, Kuusisto E, Leshkevich G, May L, MacIntyre S, Müller-Navarra D, Naumenko M, Nõges P, Nõges T, Niederhauser P, North RP, Paterson A, Plisnier P-D, Rigosi A, Rimmer A, Rogora M, Rudstam L, Rusak JA, Salmaso N, Samal NR, Schindler DE, Schladow G, Schmidt SR, Schultz T, Silow EA, Straile D, Teubner K, Verburg P, Voutilainen A, Watkinson A, Weyhenmeyer GA, Williamson CE, Woo KH (2015) A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci Data 2:150008CrossRefGoogle Scholar
  135. Sarma SSS, Nandini S, Gulati RD (2002) Cost of reproduction in selected species of zooplankton (rotifers and cladocerans). Hydrobiologia 481(1–3):89–99CrossRefGoogle Scholar
  136. Schabetsberger R, Luger MS, Drozdowski G, Jagsch A (2009) Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biol Invasions 11(6):1335–1345CrossRefGoogle Scholar
  137. Schaumburg J, Schranz C, Hofmann G, Stelzer D, Schneider S, Schmedtje U (2004) Macrophytes and phytobenthos as indicators of ecological status in German lakes – a contribution to the implementation of the water framework directive. Limnologica 34(4):302–314CrossRefGoogle Scholar
  138. Scheffer M, Van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584(1):455–466CrossRefGoogle Scholar
  139. Scheffer M, Straile D, Van Nes EH, Hosper H (2001) Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr 46:1780–1783CrossRefGoogle Scholar
  140. Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr 54(6):2349–2358CrossRefGoogle Scholar
  141. Schindler DW (2012) The dilemma of controlling cultural eutrophication of lakes. Proc R Soc Lond B Biol Sci 279:4322–4333CrossRefGoogle Scholar
  142. Schmid M, Köster O (2016) Excess warming of a Central European lake driven by solar brightening. Water Resour Res 52(10):8103–8116CrossRefGoogle Scholar
  143. Schriver PER, Bogestrand J, Jeppesen E, Søndergaard M (1995) Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshw Biol 33(2):255–270CrossRefGoogle Scholar
  144. Seebens H, Straile D, Hoegg R, Stich HB, Einsle U (2007) Population dynamics of a freshwater calanoid copepod: complex responses to changes in trophic status and climate variability. Limnol Oceanogr 52(6):2364–2372CrossRefGoogle Scholar
  145. Shapiro J, Wright DI (1984) Lake restoration by biomanipulation: round Lake, Minnesota, the first two years. Freshw Biol 14(4):371–383CrossRefGoogle Scholar
  146. Shatwell T, Köhler J, Nicklisch A (2008) Warming promotes cold-adapted phytoplankton in temperate lakes and opens a loophole for Oscillatoriales in spring. Glob Chang Biol 14(9):2194–2200CrossRefGoogle Scholar
  147. Sommer U, Stibor H (2002) Copepoda–Cladocera–Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17(2):161–174CrossRefGoogle Scholar
  148. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106(4):433–471Google Scholar
  149. Søndergaard M, Jensen PJ, Jeppesen E (2001) Retention and internal loading of phosphorus in shallow, eutrophic lakes. Sci World J 1:427–442CrossRefGoogle Scholar
  150. Søndergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, Lammens E, Portielje R (2007) Lake restoration: successes, failures and long-term effects. J Appl Ecol 44(6):1095–1105CrossRefGoogle Scholar
  151. Straile D (2002) North Atlantic oscillation synchronizes food-web interactions in central European lakes. Proc R Soc Lond B Biol Sci 269(1489):391–395CrossRefGoogle Scholar
  152. Straile D, Adrian R (2000) The North Atlantic oscillation and plankton dynamics in two European lakes – two variations on a general theme. Glob Chang Biol 6(6):663–670CrossRefGoogle Scholar
  153. Straile D, Livingstone DM, Weyhenmeyer GA, George DG (2003) The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In: Hurrell H, Kushnir Y, Visbeck M (eds) The North Atlantic Oscillation. Climatic significance and environmental impact. American Geophysical Union, Washington, pp 263–279CrossRefGoogle Scholar
  154. Tackx ML, De Pauw N, Van Mieghem R, Azémar F, Hannouti A, Van Damme S, Fiers F, Daro N, Meire P (2004) Zooplankton in the Schelde estuary, Belgium and the Netherlands. Spatial and temporal patterns. J Plankton Res 26(2):133–141CrossRefGoogle Scholar
  155. Tadonléké RD, Lazzaretto J, Anneville O, Druart JC (2009) Phytoplankton productivity increased in Lake Geneva despite phosphorus loading reduction. J Plankton Res 31(10):1179–1194CrossRefGoogle Scholar
  156. Tátrai I, Boros G, György ÁI, Mátyás K, Korponai J, Pomogyi P, Havasi M, Kucserka T (2009) Abrupt shift from clear to turbid state in a shallow eutrophic, biomanipulated lake. Hydrobiologia 620(1):149–161CrossRefGoogle Scholar
  157. Tavşanoğlu ÜN, Šorf M, Stefanidis K, Brucet S, Türkan S, Agasild H, Baho DL, Scharfenberger U, Hejzlar J, Papastergiadou E, Adrian R, Angeler DG, Zingel P, Çakiroğlu AI, Özem A, Drakare S, Søndergaard M, Jeppesen E, Beklioğlu M (2017) Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: a pan-European mesocosm experiment. Aquat Ecol 51(2):257–273CrossRefGoogle Scholar
  158. Teubner K (2000) Synchronised changes of planktonic cyanobacterial and diatom assemblages in North German waters reduce seasonality to two principal periods. Archiv für Hydrobiologie, Special Issues Adv Limnol 55:564–580Google Scholar
  159. Teubner K, Dokulil MT (2002) Ecological stoichiometry of TN:TP:SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages. Archiv für Hydrobiologie (now: Fundamental and Applied Limnology) 154(84):625–646CrossRefGoogle Scholar
  160. Teubner K, Teubner T (1998) Use of Triangular TN -TP-SRSi Diagrams to evaluate nutrient ratio dynamics structuring phytoplankton assemblage. J Lake Sci 10:393–341CrossRefGoogle Scholar
  161. Teubner K, Feyerabend R, Henning H, Nicklisch A, Woitke P, Kohl J-G (1999) Alternative blooming of Aphanizomenon flos-aquae or Planktothrix agardhii induced by the timing of the critical nitrogen-phosphorus-ratio in hypertrophic riverine lakes. Archiv für Hydrobiologie Special Issues Adv Limnol 54:325–344Google Scholar
  162. Teubner K, Crosbie N, Donabaum K, Kabas W, Kirschner A, Pfister G, Salbrechter M, Dokulil MT (2003) Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton. Limnol Oceanogr 48(3):1141–1149CrossRefGoogle Scholar
  163. Thies H, Nickus U, Mair V, Tessadri R, Tait D, Thaler B, Psenner R (2007) Unexpected response of high alpine lake waters to climate warming. Environ Sci Technol 41(21):7424–7429PubMedCrossRefGoogle Scholar
  164. Timms RM, Moss B (1984) Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol Oceanogr 29(3):472–486CrossRefGoogle Scholar
  165. Tittizer T, Schöll F, Banning M, Haybach A, Schleuter M (2000) Aquatische Neozoen im Makrozoobenthos der Binnenwasserstraßen Deutschland Mauch. Lauterbornia 39:1–72Google Scholar
  166. Tolotti M, Thies H, Nickus U, Psenner R (2012) Temperature modulated effects of nutrients on phytoplankton changes in a mountain lake. In: Phytoplankton responses to human impacts at different scales. Springer, Dordrecht, pp 61–75CrossRefGoogle Scholar
  167. Vadstein O (2000) Heterotrophic, planktonic bacteria and cycling of phosphorus. In: Schink B (ed) Advances in Microbial Ecology, vol 16. Kluwer, New York, pp 115–167CrossRefGoogle Scholar
  168. Van Donk E, Van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72(3):261–274CrossRefGoogle Scholar
  169. Van Donk E, Santamaría L, Mooij WM (2003) Climate warming causes regime shifts in lake food webs: a reassessment. Limnol Oceanogr 48(3):1350–1353Google Scholar
  170. Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301:505–507PubMedCrossRefGoogle Scholar
  171. Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Organisation for Economic Cooperation and Development, Paris, France (OECD) Paris, Technical Report DAS/CSI/6827Google Scholar
  172. Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54(6):2460–2468CrossRefGoogle Scholar
  173. Wagner C, Adrian R (2011) Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshw Biol 56(10):1949–1961CrossRefGoogle Scholar
  174. Wagner A, Benndorf J (2007) Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach. Oecologia 151(2):351–364PubMedCrossRefGoogle Scholar
  175. Wagner A, Hülsmann S, Horn W, Schiller T, Schulze T, Volkmann S, Benndorf J (2013) Food-web-mediated effects of climate warming: consequences for the seasonal Daphnia dynamics. Freshw Biol 58(3):573–587CrossRefGoogle Scholar
  176. Weyhenmeyer GA, Blenckner T, Pettersson K (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol Oceanogr 44(7):1788–1792CrossRefGoogle Scholar
  177. Wilhelm S, Adrian R (2008) Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw Biol 53(2):226–237Google Scholar
  178. Winder M, Schindler DE (2004a) Climatic effects on the phenology of lake processes. Glob Chang Biol 10(11):1844–1856CrossRefGoogle Scholar
  179. Winder M, Schindler DE (2004b) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85(8):2100–2106CrossRefGoogle Scholar
  180. Woolway RI, Cinque K, de Eyto E, DeGasperi CL, Dokulil MT, Korhonen J, Maberly SC, Marszelewski W, May L, Merchant CJ, Paterson AM, Riffler M, Rimmer A, Rusak JA, Schladow SG, Schmid M, Teubner K, Verburg P, Vigneswaran B, Watanabe S, Weyhenmeyer GA (2016) Lake surface temperatures. In: State of the climate in 2015 (eds Blunden J, Arndt DS). Bull Am Meteorol Soc 97(8):S17–S18Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept. of Limnology & Bio-OceanographyUniversity of ViennaWienAustria
  2. 2.DWS-Hydro-Ökologie GmbHViennaAustria
  3. 3.Department of Geodesy and Geoinformation, Faculty of Mathematics and GeoinformationVienna University of TechnologyViennaAustria

Personalised recommendations