Skip to main content

The Mathematical Mind

  • Chapter
  • First Online:
Ahmes’ Legacy

Part of the book series: Mathematics in Mind ((MATHMIN))

  • 916 Accesses

Abstract

As argued throughout this book, puzzles have played as much a role as any other human artifact, mental tool, or device in human history as sparks for discovery. The Ahmes Papyrus is more than a source of ancient mathematics. It is the first text to show, rather conspicuously, that puzzles and mathematics have a common origin. As mentioned, each puzzle in the work is both a creative (dialectic) conundrum and a mini-treatise in mathematical thinking. This has been called “Ahmes’ legacy” in this book, which claims above all else that puzzles are mirrors of the inner workings of the mathematical mind. The classic puzzles of Ahmes, Alcuin, Fibonacci, Euler, Cardano, Lucas, Carroll, and many others are miniature models of that mind, showing how the flow of thought goes from experience, to imaginative hunches, and then on to a solution. Once the mathematical archetype is extracted from the solution via generalization, the puzzle becomes a kind of intellectual meme that makes its way into other mathematical minds to suggest new ways of doing mathematics. Mathematical cognition can thus be characterized as a blended form of imaginative-reflective thinking (Poe’s bi-part soul) that is sparked by the imagination’s interpretation of experiences via their serendipitous connectivity. This view is consistent with the neuroscientific work being conducted in so-called blending theory today (Fauconnier and Turner 2002, Danesi 2016), whereby the brain is seen as an organ that connects imaginative thoughts with each other in order to produce a new unit of thought. In effect, the meaning of something is not in its individual parts, but in the way they are connected or combined.

I know that two and two make four and should be glad to prove it too if I could—though I must say if by any sort of process I could convert 2 & 2 into five it would give me much greater pleasure.

—Lord Byron (1788–1824)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, Edwin (2002 [1884]). The Annotated Flatland: A Romance of Many Dimensions. Introduction and Notes by Ian Stewart. New York: Basic Books.

    Google Scholar 

  • Adam, John A. (2004). Mathematics in Nature: Modeling Patterns in the Natural World. Princeton: Princeton University Press.

    Google Scholar 

  • Alexander, James (2012). On the Cognitive and Semiotic Structure of Mathematics. In: M. Bockarova, M. Danesi, and R. Núñez (eds.), Semiotic and Cognitive Science Essays on the Nature of Mathematics, pp. 1–34. Munich: Lincom Europa.

    Google Scholar 

  • Al-Khalili, Jim (2012). Paradox: The Nine Greatest Enigmas in Physics. New York: Broadway.

    Google Scholar 

  • Andrews, William S. (1960). Magic Squares and Cubes. New York: Dover.

    MATH  Google Scholar 

  • Auble, Pamela, Franks, Jeffrey and Soraci, Salvatore (1979). Effort Toward Comprehension: Elaboration or Aha !?Memory & Cognition 7: 426–434.

    Article  Google Scholar 

  • Ascher, Marcia (1990). A River-Crossing Problem in Cross-Cultural Perspective. Mathematics Magazine 63: 26–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Averbach, Bonnie and Chein, Orin (1980). Problem Solving Through Recreational Mathematics. New York: Dover.

    MATH  Google Scholar 

  • Bachet, Claude-Gaspar (1984). Problèmes plaisans et délectables qui se font par les nombres. Lyon: Gauthier-Villars.

    Google Scholar 

  • Ball, W. W. Rouse (1972). Mathematical Recreations and Essays, 12th edition, revised by H. S. M. Coxeter. Toronto: University of Toronto Press.

    Google Scholar 

  • Banks, Robert S. (1999). Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Barwise, Jon and Etchemendy, John (1986). The Liar. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Bashmakova, Isabella G. (1997). Diophantus and Diophantine Equations. Washington, D.C.: Mathematical Association of America.

    MATH  Google Scholar 

  • Basin, S. L. (1963). The Fibonacci Sequence as It Appears in Nature. The Fibonacci Quarterly, 1 (1963), 53–64.

    MATH  Google Scholar 

  • Benjamin, Arthur, Chartrand, Gary, and Zhang, Ping (2015). The Fascinating World of Graph Theory. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Benson, Donald C. (1999). The Moment of Proof: Mathematical Epiphanies. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Bennett, G. T. (1910). The Eight Queens Problem. Messenger of Mathematics 39: 19.

    Google Scholar 

  • Bergin, Thomas G. and Fisch, Max (eds. and trans.) (1984). The New Science of Giambattista Vico. Ithaca: Cornell University Press.

    Google Scholar 

  • Berlinski, David (2013). The King of Infinite Space: Euclid and His Elements. New York: Basic Books.

    Google Scholar 

  • Biggs, N. L. (1979). The Roots of Combinatorics. Historia Mathematica 6: 109-136.

    Article  MathSciNet  MATH  Google Scholar 

  • Bohning, Gerry and Althouse, Jody K. (1997). Using Tangrams to Teach Geometry to Young Children. Early Childhood Education Journal 24: 239–242.

    Article  Google Scholar 

  • Bor, Daniel (2012). The Ravenous Brain: How the New Science of Consciousness Explains Our Insatiable Search for Meaning. New York: Basic Books.

    Google Scholar 

  • Borovkov, Alexander A. (2013). Probability Theory. New York: Springer.

    Book  MATH  Google Scholar 

  • Bronowski, Jacob (1973). The Ascent of Man. Boston: Little, Brown, and Co.

    Google Scholar 

  • Bronowski, Jacob (1977). The Ascent of Man. Boston: Little, Brown, and Co.

    Google Scholar 

  • Brooke, Maxey (1969). 150 Puzzles in Crypt-Arithmetic. New York: Dover.

    Google Scholar 

  • Bruno, Giuseppe, Genovese, Andrea, and Improta, Gennaro (2013). Routing Problems: A Historical Perspective. In: M. Pitici (ed.), The Best Writing in Mathematics 2012. Princeton: Princeton University Press.

    Google Scholar 

  • Burkholder, Peter (1993). Alcuin of York’s Propositiones ad acuendos juvenes: Introduction, Commentary & Translation. History of Science & Technology Bulletin, Vol. 1, number 2.

    Google Scholar 

  • Butterworth, Brian (1999). What Counts: How Every Brain is Hardwired for Math. Michigan: Free Press.

    MATH  Google Scholar 

  • Cantor, Georg (1874). Über eine Eigneschaft des Inbegriffes aller reelen algebraischen Zahlen. Journal für die Reine und Angewandte Mathematik 77: 258–262.

    Google Scholar 

  • Cardano, Girolamo (1663 [1961]). The Book on Games of Chance (Liber de ludo aleae). New York: Holt, Rinehart, and Winston.

    MATH  Google Scholar 

  • Carl Sagan (1985). Contact. New York: Pocket Books.

    Google Scholar 

  • Carroll, Lewis (1860). A Syllabus of Plane Algebraical Geometry. Oxford University Notes.

    Google Scholar 

  • Carroll, Lewis (1879). Euclid and His Modern Rivals. London: Macmillan.

    MATH  Google Scholar 

  • Carroll, Lewis (1880). Pillow Problems and a Tangled Tale. New York: Dover.

    Google Scholar 

  • Carroll, Lewis (1958a). The Game of Logic. New York: Dover.

    Google Scholar 

  • Carroll, Lewis (1958b). Mathematical Recreations of Lewis Carroll. New York: Dover.

    Google Scholar 

  • Cayley, Arthur (1854). On the Theory of Groups, as Depending on the Symbolic Equation θn = 1. Philosophical Magazine 7: 40–47

    Google Scholar 

  • Chaitin, Gregory J. (2006). Meta Math. New York: Vintage.

    MATH  Google Scholar 

  • Changeux, Pierre (2013). The Good, the True, and the Beautiful: A Neuronal Approach. New Haven: Yale University Press.

    Google Scholar 

  • Chase, Arnold B. (1979). The Rhind Mathematical Papyrus: Free Translation and Commentary with Selected Photographs, Transcriptions, Transliterations and Literal Translations. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Clark, Michael (2012). Paradoxes from A to Z. London: Routledge.

    Google Scholar 

  • Conrad, Axel, Hindrichs, Tanja, Morsy, Hussein, and Wegener, Ingo (1994). Solution of the Knight’s Hamiltonian Path Problem on Chessboards. Discrete Applied Mathematics 50: 125–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Conway, John Horton (2000). On Numbers and Games. Natick, Mass.: A. K. Peters.

    Google Scholar 

  • Cook, William J. (2014). In Pursuit of the Traveling Salesman Problem. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Costello, Matthew J. (1988). The Greatest Puzzles of All Time. New York: Dover.

    Google Scholar 

  • Crilly, Tony (2011). Mathematics. London: Quercus.

    MATH  Google Scholar 

  • Cutler, Bill (2003). Solution to Archimedes’ Loculus. http://www.billcutlerpuzzles.com.

  • Dalgety, James and Hordern, Edward (1999). Classification of Mechanical Puzzles and Physical Objects Related to Puzzles. In: Elwyn Berlekamp and Tom Rodgers (eds.), The Mathemagician and Pied Puzzler: A Collection in Tribute to Martin Gardner, pp. 175–186. Natick, Mass.: A. K. Peters.

    Google Scholar 

  • Danesi, Marcel (2002). The Puzzle Instinct: The Meaning of Puzzles in Human Life. Bloomington: Indiana University Press.

    Google Scholar 

  • Danesi, Marcel (2003). Second Language Teaching: A View from the Right Side of the Brain. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Danesi, Marcel (2016). Language and Mathematics: In Interdisciplinary Guide. Berlin: Mouton de Gruyter.

    Book  MATH  Google Scholar 

  • Danforth, Samuel (1647). MDCXLVII, an Almanac for the Year of Our Lord 1647. ProQuest 2011.

    Google Scholar 

  • Darling, David (2004). The Universal Book of Mathematics: From Abracadabra to Zeno’s Paradoxes. New York: John Wiley and Sons.De Bono, Edward (1970). Lateral Thinking: Creativity Step-by-Step. New York: Harper & Row.

    Google Scholar 

  • Davis, Paul J. and Hersh, Reuben (1986). Descartes’ Dream: The World according to Mathematics. Boston: Houghton Mifflin.

    MATH  Google Scholar 

  • Dawkins, Richard (1976). The Selfish Gene. Oxford: Oxford University Press.

    Google Scholar 

  • De Bono, Edward (1970). Lateral Thinking: Creativity Step-by-Step. New York: Harper & Row.

    Google Scholar 

  • De Grazia, Joseph (1981). Math Tricks, Brain Twisters & Puzzles. New York: Bell Publishing Company.

    Google Scholar 

  • Dehaene, Stanislas (1997). The Number Sense: How the Mind Creates Mathematics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Dehaene, Stanislas (2014). Consciousness and the Brain. New York: Penguin Books.

    Google Scholar 

  • De Morgan, Augustus (1872). A Budget of Paradoxes. Library of Alexandria.

    Google Scholar 

  • Derbyshire, John (2004). Prime Obsession: Bernhard Riemann and His Greatest Unsolved Problem in Mathematics. Washington: Joseph Henry Press.

    MATH  Google Scholar 

  • Devlin, Keith (2000). The Math Gene: How Mathematical Thinking Evolved and Why Numbers Are Like Gossip. New York: Basic.

    MATH  Google Scholar 

  • Devlin, Keith (2005). The Math Instinct. New York: Thunder’s Mouth Press.

    Google Scholar 

  • Devlin, Keith (2011). The Man of Numbers: Fibonacci’s Arithmetic Revolution. New York: Walker and Company.

    MATH  Google Scholar 

  • Dorrie, Heinrich (1965). 100 Great Problems in Elementary Mathematics. New York: Dover.

    Google Scholar 

  • Dudeney, Henry E. (1917). Amusements in Mathematics. New York: Dover.

    Google Scholar 

  • Dudeney, Henry E. (1958). The Canterbury Puzzles and Other Curious Problems. New York: Dover.

    Google Scholar 

  • Dudeney, Henry E. (2016, reprint). 536 Puzzles and Curious Problems. New York: Dover.

    Google Scholar 

  • Dunlap, Richard A. (1997). The Golden Ratio and Fibonacci Numbers. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Du Sautoy, Marcus (2004). The Music of the Primes: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: HarperCollins.

    Google Scholar 

  • Eco, Umberto (1983). The Name of the Rose New York: Picador.

    Google Scholar 

  • Eco, Umberto (1989). The Open Work. Cambridge: Harvard University Press.

    MATH  Google Scholar 

  • Eco, Umberto (1998). Serendipities: Language and Lunacy, translated by William Weaver. New York: Columbia University Press.

    Book  Google Scholar 

  • Elwes, Richard (2014). Mathematics 1001. Buffalo: Firefly.

    Google Scholar 

  • Erdös, Paul (1934). A Theorem of Sylvester and Schur. Journal of the London Mathematical Society 9: 282–288.

    Article  MathSciNet  MATH  Google Scholar 

  • Euclid (1956). The Thirteen Books of Euclid’s Elements, 3 Volumes. New York: Dover.

    MATH  Google Scholar 

  • Fauconnier, Gilles and Turner, Mark (2002). The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. New York: Basic.

    Google Scholar 

  • Fibonacci, Leonardo (2002). Liber Abaci, trans. by L. E. Sigler. New York: Springer.

    MATH  Google Scholar 

  • Flood, Robert and Wilson, Raymond (2011). The Great Mathematicians: Unravelling the Mysteries of the Universe. London: Arcturus.

    Google Scholar 

  • Fortnow, Lance (2013). The Golden Ticket: P, NP, and the Search for the Impossible. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Foulds, L. R. and Johnston, D. G. (1984). An Application of Graph Theory and Integer Programming: Chessboard Non-Attacking Puzzles. Mathematics Magazine 57: 95–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Frege, Gottlob (1879). Begiffsschrift eine der Aritmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Nebert.

    Google Scholar 

  • Freiberger, Marianne (2006). Flatland: A Review. Plus, https://plus.maths.org/content/flatland.

    Google Scholar 

  • Frey, Alexander H. and Singmaster, David (1982). Handbook of Cubic Math. Hillside, N.J.: Enslow.

    MATH  Google Scholar 

  • Gale, David (1979). The Game of Hex and Brouwer Fixed-Point Theorem. The American Mathematical Monthly 86: 818–827.

    Article  MathSciNet  MATH  Google Scholar 

  • Gardner, Martin (1970). The Fantastic Combinations of John Conway’s New Solitaire Game “Life”. Scientific American 223: 120–123.

    Article  Google Scholar 

  • Gardner, Martin (1979a). Chess Problems on a Higher Plane, Including Images, Rotations and the Superqueen. Scientific American 240: 18–22.

    Article  Google Scholar 

  • Gardner, Martin (1979b). Aha! Insight! New York: Scientific American.

    Google Scholar 

  • Gardner, Martin (1982). Gotcha! Paradoxes to Puzzle and Delight. San Francisco: Freeman.

    Google Scholar 

  • Gardner, Martin (1994). My Best Mathematical and Logic Puzzles. New York: Dover.

    MATH  Google Scholar 

  • Gardner, Martin (1997). The Last Recreations: Hydras, Eggs, and Other Mathematical Mystifications. New York: Copernicus.

    Book  MATH  Google Scholar 

  • Gardner, Martin (1998). A Quarter-Century of Recreational Mathematics. Scientific American 279: 68–75.

    Article  Google Scholar 

  • Gerdes, Paulus (1994). On Mathematics in the History of Sub-Saharan Africa,” Historia Mathematica 21: 23–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Gessen, Masha (2009). Perfect Rigor: A Genius and the Mathematical Breakthrough of the Century. Boston: Houghton Mifflin Harcourt.

    MATH  Google Scholar 

  • Gillings, Richard J. (1961). Think-of-a-Number: Problems 28 and 29 of the Rhind Mathematical Papyrus. The Mathematics Teacher 54: 97–102.

    Google Scholar 

  • Gillings, Richard J. (1962). Problems 1 to 6 of the Rhind Mathematical Papyrus. The Mathematics Teacher 55: 61–65.

    Google Scholar 

  • Gillings, Richard J. (1972). Mathematics in the Time of the Pharaohs. Cambridge, Mass.: MIT Press.

    MATH  Google Scholar 

  • Gödel, Kurt (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, Teil I. Monatshefte für Mathematik und Physik 38: 173-189.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg, E. and Costa, L. D. (1981). Hemispheric Differences in the Acquisition of Descriptive Systems. Brain and Language 14: 144–173.

    Article  Google Scholar 

  • Gosset, T. (1914). The Eight Queens Problem. Messenger of Mathematics 44: 48.

    MATH  Google Scholar 

  • Hadley, John and Singmaster, David (1992). Problems to Sharpen the Young. Mathematics Gazette 76: 102–126.

    Article  Google Scholar 

  • Haken, Wolfgang (1977). Every Planar Map Is Four-Colorable. Illinois Journal of Mathematics 21: 429–567.

    MathSciNet  MATH  Google Scholar 

  • Haken, Wolfgang and Appel, Kenneth (1977). The Solution of the Four-Color-Map Problem. Scientific American 237: 108–121.

    MathSciNet  Google Scholar 

  • Haken, Wolfgang and Appel, Kenneth (2002). The Four-Color Problem. In: D. Jacquette (ed.), Philosophy of Mathematics, pp. 193-208. Oxford: Blackwell.

    Google Scholar 

  • Hales, Thomas C. (1994). The Status of the Kepler Conjecture. The Mathematical Intelligencer 16: 47–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Hales, Thomas C. (2000). Cannonballs and Honeycombs. Notices of the American Mathematical Society 47: 440-449.

    MathSciNet  MATH  Google Scholar 

  • Hales, Thomas C. (2005). A Proof of the Kepler Conjecture. Annals of Mathematics. Second Series 62: 1065–1185.

    Article  MATH  Google Scholar 

  • Hales, Thomas C. and Ferguson, Samuel P. (2006). A Formulation of the Kepler Conjecture. Discrete & Computational Geometry 36: 21–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Hales, Thomas C. and Ferguson, Samuel P. (2011). The Kepler Conjecture: The Hales-Ferguson Proof. New York: Springer.

    Google Scholar 

  • Hannas, Linda (1972). The English Jigsaw Puzzle, 1760–1890. London: Wayland.

    Google Scholar 

  • Hannas, Linda (1981). The Jigsaw Book: Celebrating Two Centuries of Jigsaw-Puzzling Round the World. New York: Dial.

    Google Scholar 

  • Hayan Ayaz, Izzetoglu, Meltem, Shewokis, Patricia, and Onaral, Banu (2012). Tangram Solved? Prefrontal Cortex Activation Analysis during Geometric Problem Solving. IEEE Conference Proceedings: 4724–4727.

    Google Scholar 

  • Heath, Thomas L. (1958). The Works of Archimedes with the Method of Archimedes. New York: Dover.

    MATH  Google Scholar 

  • Hellman, Hal (2006). Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever. Hoboken: John Wiley.

    MATH  Google Scholar 

  • Hersh, Reuben (1998). What Is Mathematics, Really? Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Hersh, Reuben (2014). Experiencing Mathematics. Washington, DC: American Mathematical Society.

    MATH  Google Scholar 

  • Hesse, Hermann (1943). Magister Ludi (New York: Bantam).

    Google Scholar 

  • van Hiele, Pierre M. (1984). The Child’s Thought and Geometry. In: David Fuys, Dorothy Geddes, and Rosamond Tischler (eds.), English Translations of Selected Writings of Dina van Hiele-Geldof and P. M. van Hiele, pp. 243–252. Brooklyn: Brooklyn College of Education.

    Google Scholar 

  • Hilbert, David (1931). Die Grundlagen Der Elementaren Zahlentheorie. Mathematische Annalen 104: 485–494.

    Article  MathSciNet  MATH  Google Scholar 

  • Hinz, Andreas M., Klavzar, Sandi, Milutinovic, Uros, and Petr, Ciril (2013). The Tower of Hanoi: Myths and Maths. Basel: Birkhaüser.

    Book  MATH  Google Scholar 

  • Hofstadter, Douglas (1979). Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books.

    MATH  Google Scholar 

  • Hofstadter, Douglas and Sander, Emmanuel (2013). Surfaces and Essences: Analogy as the Fuel and Fire of Thinking. New York: Basic Books.

    Google Scholar 

  • Hooper, William (1782). Rational Recreations. London: L. Davis.

    Google Scholar 

  • Hovanec, Helene (1978). The Puzzlers’ Paradise: From the Garden of Eden to the Computer Age. New York: Paddington Press.

    Google Scholar 

  • Hudson, Derek (1954). Lewis Carroll: An Illustrated Biography. London: Constable.

    Google Scholar 

  • Huizinga, Johan (1938). Homo Ludens: A Study of the Play-Element in Human Culture. New York: Beacon Press.

    Google Scholar 

  • Hunter, J. A. H. (1965). Fun with Figures. New York: Dover.

    Google Scholar 

  • Isacoff, Stuart (2003). Temperament: How Music Became a Battleground for the Great Minds of Western Civilization. New York: Knopf.

    Google Scholar 

  • Izard, Veronique, Pica, Pierre, Pelke, Elizabeth S., and Dehaene, Stephen (2011). Flexible Intuitions of Euclidean geometry in an Amazonian Indigene Group. PNAS 108: 9782–9787.

    Article  Google Scholar 

  • Jung, Carl G. (1983). The Essential Jung. Princeton: Princeton University Press.

    Google Scholar 

  • Kant, Immanuel (2011 [1910]). Critique of Pure Reason, trans. J. M. D. Meiklejohn. CreateSpace Platform.

    Google Scholar 

  • Kasner, Edward and Newman, James R. (1940). Mathematics and the Imagination. New York: Simon and Schuster.

    Google Scholar 

  • Kershaw, Trina and Ohlsson, Stellan (2004). Multiple Causes of Difficulty in Insight: The Case of the Nine-Dot Problem. Journal of Experimental Psychology: Learning, Memory, and Cognition 30: 3–13.

    Google Scholar 

  • Kim, Scott (2016). What Is a Puzzle? scottkim.com.previewc40.carrierzone.com/thinkinggames/whatisapuzzle.

  • Klarner, David A. (1967). Cell Growth Problems. Canadian Journal of Mathematics 19: 851-863.

    Article  MathSciNet  MATH  Google Scholar 

  • Klarner, David A. (ed.) (1981). Mathematical Recreations: A Collection in Honor of Martin Gardner. New York: Dover.

    MATH  Google Scholar 

  • Kline, Morris (1985). Mathematics and the Search for Knowledge. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Knuth, Donald E. (1974). Surreal Numbers. Boston: Addison-Wesley.

    MATH  Google Scholar 

  • Kosslyn, Stephen M. (1983). Ghosts in the Mind’s Machine: Creating and Using Images in the Brain. New York: W. W. Norton.

    Google Scholar 

  • Kosslyn, Stephen M. (1994). Image and Brain. Cambridge, Mass.: MIT Press.

    Google Scholar 

  • Kraitchik, Maurice (1942). Mathematical Recreations. New York: W. W. Norton.

    MATH  Google Scholar 

  • Kuhn, Thomas S. (1970). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Kurzweil, Ray (2012). How to Create a Mind: The Secret of Human Thought Revealed. New York: Viking.

    Google Scholar 

  • Lakoff, George and Núñez, Rafael (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. New York: Basic Books.

    MATH  Google Scholar 

  • Li, Yan and Du, Shiran 1987. Chinese Mathematics: A Concise History, translated by J. H. Crossley and A. W-C. Lun. Oxford: Oxford University Press.

    Google Scholar 

  • Livio, Mario (2002). The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number. New York: Broadway Books.

    MATH  Google Scholar 

  • Loyd, Sam (1914). Cyclopedia of Tricks and Puzzles. New York: Dover.

    Google Scholar 

  • Loyd, Sam (1952). The Eighth Book of Tan. New York: Dover.

    Google Scholar 

  • Loyd, Sam (1959–1960). Mathematical Puzzles of Sam Loyd, 2 volumes, compiled by Martin Gardner. New York: Dover.

    Google Scholar 

  • Lucas, Edouard A. (1882–1894). Récreations mathématiques, 4 vols. Paris: Gauthier-Villars.

    MATH  Google Scholar 

  • Martin, Robert (2004). The St. Petersburg Paradox. In: The Stanford Encyclopedia. Stanford: Stanford University Press.

    Google Scholar 

  • Maor, Eli (1998). Trigonometric Delights. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Margalit, Avishai and Bar-Hillel, M. (1983). Expecting the Unexpected. Philosophia 13: 337–344.

    Article  Google Scholar 

  • Matthews, William H. (1970). Mazes & Labyrinths: Their History & Development. New York: Dover.

    Google Scholar 

  • Merton, Robert K. and Barber, Elinor (2003). The Travels and Adventures of Serendipity: A Study in Sociological Semantics and the Sociology of Science. Princeton: Princeton University Press.

    Google Scholar 

  • Morrow, Glenn R. (1970). A Commentary on the First Book of Euclid’s Elements. Princeton: Princeton University Press

    Google Scholar 

  • Nave, Ophir, Neuman, Yair, Howard, Newton, and Perslovsky, L. (2014). How Much Information Should We Drop to Become Intelligent? Applied Mathematics and Computation 245: 261–264.

    Article  Google Scholar 

  • Netz, Reviel and Noel, William (2007). The Archimedes Codex: Revealing the Secrets of the World’s Greatest Palimpsest. London: Weidenfeld & Nicholson.

    Google Scholar 

  • Neugebauer, Otto and Sachs, Joseph (1945). Mathematical Cuneiform Texts. New Haven: American Oriental Society.

    MATH  Google Scholar 

  • Neumann, John von (1958). The Computer and the Brain. New Haven: Yale University Press.

    Google Scholar 

  • Neuman, Yair (2007). Immune Memory, Immune Oblivion: A Lesson from Funes the Memorious. Progress in Biophysics and Molecular Biology 92: 258267.

    Google Scholar 

  • Neuman, Yair (2014). Introduction to Computational Cultural Psychology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nuessel, Frank (2013). The Representation of Mathematics in the Media. In: M. Bockarova, M. Danesi and R. Núñez (eds.), Semiotic and Cognitive Science Essays on the Nature of Mathematics, pp. 154-198. Munich: Lincom Europa.

    Google Scholar 

  • Northrop, Eugene (1944). Riddles in Mathematics. London: Penguin.

    MATH  Google Scholar 

  • Ogilvy, C. (1956). Excursions in Mathematics. New York: Dover.

    Google Scholar 

  • Olivastro, Dominic (1993). Ancient Puzzles: Classic Brainteasers and Other Timeless Mathematical Games of the Last 10 Centuries. New York: Bantam.

    Google Scholar 

  • O’Shea, Donal (2007). The Poincaré Conjecture. New York: Walker.

    MATH  Google Scholar 

  • Pappas, Theoni (1991). More Joy of Mathematics. San Carlos: Wide World Publishing.

    Google Scholar 

  • Peet, Thomas E. (1923). The Rhind Papyrus. Liverpool: University of Liverpool Press.

    MATH  Google Scholar 

  • Peirce, Charles S. (1931–1958). Collected Papers of Charles Sanders Peirce, ed. by C. Hartshorne, P. Weiss and A.W. Burks, vols. 1-8. Cambridge: Harvard University Press.

    Google Scholar 

  • Petkovic, Miodrag S. (2009). Famous Puzzles of Great Mathematicians. Providence, RI: American Mathematical Society.

    Book  MATH  Google Scholar 

  • Phillips, Hubert (1966). Caliban’s Problem Book. New York: Dover.

    Google Scholar 

  • Plato (2004). The Republic, ed. by C. D. C. Reeve. Indianapolis: Hackett.

    Google Scholar 

  • Plato (2006). Meno, ed. by Dominic Scott. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pohl, Ira (1967). A Method for Finding Hamiltonian Paths and Knight’s Tours. Communications of the ACM 10(7): 446–449.

    Article  Google Scholar 

  • Polya, George (1921). Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Mathematische Annalen 84: 149–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Posamentier, Alfred S. and Lehmann, Ingmar (2007). The (Fabulous) Fibonacci Numbers. Amherst: Prometheus.

    MATH  Google Scholar 

  • Pressman, Ian and Singmaster, David (1989). The Jealous Husbands and the Missionaries and Cannibals. The Mathematical Gazette 73: 73-81.

    Article  MathSciNet  Google Scholar 

  • Read, Ronald C. (1965). Tangrams: 330 Tangram Puzzles New York: Dover.

    Google Scholar 

  • Richards, Dana (1999). Martin Gardner: A “Documentary.” In: E. Berlekamp and T. Rodgers (eds.), The Mathemagician and Pied Puzzler: A Collection in Tribute to Martin Gardner, pp. 3-12. Natick, Mass.: A. K. Peters.

    Google Scholar 

  • Richeson, David S. (2008). Euler’s Gem: The Polyhedron Formula and the Birth of Topology. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Rockmore, Dan (2005). Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers. New York: Vintage.

    MATH  Google Scholar 

  • Roberts, Royston M. (1989). Serendipity: Accidental Discoveries in Science. New York: John Wiley.

    Google Scholar 

  • Robins, R. Gay and Shute, Charles C. D. (1987). The Rhind Mathematical Papyrus: An Ancient Egyptian Text. London: British Museum Publications Limited.

    MATH  Google Scholar 

  • Rosenhouse, Jason and Taalman, Laura (2011). Taking Sudoku Seriously. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Rucker, Rudy (1987). Mind Tools: The Five Levels of Mathematical Reality. Boston: Houghton Mifflin.

    MATH  Google Scholar 

  • Russell, Bertrand (1918). The Philosophy of Logical Atomism. London: Routledge.

    Google Scholar 

  • Russell, Bertrand and Whitehead, Alfred North (1913). Principia mathematica. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Sabbagh, Karl (2004). The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics. New York: Farrar, Strauss & Giroux.

    Google Scholar 

  • Schneider, Michael S. (1994). Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science. New York: Harper Collins.

    Google Scholar 

  • Schuh, Fred (1968). The Master Book of Mathematical Recreations. New York: Dover.

    MATH  Google Scholar 

  • Schwenk, Allen J. (1991). Which Rectangular Chessboards Have a Knight’s Tour? Mathematics Magazine 64: 325–332.

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro, Stuart C. (1998). A Procedural Solution to the Unexpected Hanging and Sorites Paradoxes. Mind 107: 751–761.

    Article  MathSciNet  Google Scholar 

  • Selvin, Steven (1975). A Problem in Probability (letter to the editor). American Statistician 29: 67.

    Article  Google Scholar 

  • Singmaster, David (1998). The History of Some of Alcuin’s Propositiones. In: P. L. Butzer, H. Th. Jongen, and W. Oberschelp (eds.), Charlemagne and His Heritage 1200 Years of Civilization and Science in Europe, Vol. 2, pp. 11–29. Brepols: Turnhout.

    Google Scholar 

  • Smolin, Lee (2013). Time Reborn: From the Crisis in Physics to the Future of the Universe. Boston: Houghton Mifflin Harcourt.

    Google Scholar 

  • Smullyan, Raymond (1978). What Is the Name of this Book? The Riddle of Dracula and Other Logical Puzzles. Englewood Cliffs, N.J.: Prentice-Hall.

    MATH  Google Scholar 

  • Smullyan, Raymond (1979). The Chess Mysteries of Sherlock Holmes. New York: Knopf.

    Google Scholar 

  • Smullyan, Raymond (1982). Alice in Puzzle-Land. Harmondsworth: Penguin.

    Google Scholar 

  • Smullyan, Raymond (1997). The Riddle of Scheherazade and Other Amazing Puzzles, Ancient and Modern. New York: Knopf.

    Google Scholar 

  • Spalinger, Anthony (1990). The Rhind Mathematical Papyrus as a Historical Document. Studien zur Altägyptischen Kultur 17: 295–337

    Google Scholar 

  • Sternberg, Robert J. (1985). Beyond IQ: A Triarchic Theory of Human Intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Stewart, Ian (1987). From Here to Infinity: A Guide to Today’s Mathematics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Stewart, Ian (2008). Taming the Infinite. London: Quercus.

    Google Scholar 

  • Stewart, Ian (2012). In Pursuit of the Unknown: 17 Equations That Changed the World. New York: Basic Books.

    MATH  Google Scholar 

  • Strohmeier, John and Westbrook, Peter (1999). Divine Harmony: The Life and Teachings of Pythagoras. Berkeley, CA: Berkeley Hills Books.

    Google Scholar 

  • Swetz, Frank J. and Kao, T. I. 1977. Was Pythagoras Chinese? An Examination of Right-Triangle Theory in Ancient China. University Park: Pennsylvania State University Press.

    MATH  Google Scholar 

  • Takagi, Shigeo (1999). Japanese Tangram: The Sei Shonagon Pieces. In: E. Berlekamp and T. Rodgers, (eds.), The Mathemagician and Pied Puzzler: A Collection in Tribute to Martin Gardner, pp. 97–98. Natick, Mass.: A. K. Peters.

    Google Scholar 

  • Tall, David (2013). How Humans Learn to Think Mathematically. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tarski, Alfred. (1933 [1983]). Logic, Semantics, Metamathematics, Papers from 1923 to 1938, John Corcoran (ed.). Indianapolis: Hackett Publishing Company.

    Google Scholar 

  • Taylor, Richard and Wiles, Andrew (1995). Ring-Theoretic Properties of Certain Hecke Algebras. Annals of Mathematics 141: 553–572.

    Article  MathSciNet  MATH  Google Scholar 

  • Thom, René (1975). Structural Stability and Morphogenesis: An Outline of a General Theory of Models. Reading: Benjamin.

    MATH  Google Scholar 

  • Trigg, Charles W. (1978). What Is Recreational Mathematics? Mathematics Magazine 51: 18–21.

    Article  MathSciNet  Google Scholar 

  • Turing, Alan (1936). On Computable Numbers with an Application to the Entscheidungs Problem. Proceedings of the London Mathematical Society 42: 230–265.

    MathSciNet  MATH  Google Scholar 

  • Tymoczko, Thomas (1979). The Four-Color Problem and Its Philosophical Significance. Journal of Philosophy 24: 57–83.

    Article  Google Scholar 

  • Uexküll, Jakob von (1909). Umwelt und Innenwelt der Tierre. Berlin: Springer.

    Google Scholar 

  • Vajda, Steven (1989). Fibonacci and Lucas Numbers, and the Golden Section, Chichester: Ellis Horwood.

    MATH  Google Scholar 

  • Verene, Donald P. (1981). Vico’s Science of Imagination. Ithaca: Cornell University Press.

    Google Scholar 

  • Vernadore, J. (1991). Pascal’s Triangle and Fibonacci Numbers. The Mathematics Teacher 84: 314-316.

    Google Scholar 

  • Visser, Beth A., Ashton, Michael C., and Vernon, Philip A. (2006.) g and the Measurement of Multiple Intelligences: A Response to Gardner. Intelligence 34: 507–510.

    Article  Google Scholar 

  • Vorderman, Carol (1996). How Math Works. Pleasantville: Reader’s Digest Association.

    Google Scholar 

  • Warner, George F. (ed.) (2015). The Voyage of Robert Dudley Afterwards Styled Earl of Warwick & Leicester and Duke of Northumberland. Amazon: Scholar’s Choice.

    Google Scholar 

  • Warnsdorf, H. C. von (1823). Des Rösselsprunges einfachste und allgemeinste Lösung. Schmalkalden: Varnhagen.

    Google Scholar 

  • Watkins, John J. (2004). Across the Board: The Mathematics of Chess Problems. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Wells, David (1992). The Penguin Book of Curious and Interesting Puzzles. Harmondsworth: Penguin.

    MATH  Google Scholar 

  • Wells, David (2005). Prime Numbers: the Most Mysterious Figures in Math. Hoboken: John Wiley.

    Google Scholar 

  • Wells, David (2012). Games and Mathematics: Subtle Connections. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Wildgen, Wolfgang and Brandt, Per Aage (2010). Semiosis and Catastrophes: René Thom’s Semiotic Heritage. New York: Peter Lang.

    Google Scholar 

  • Wiles, Andrew (1995). Modular Elliptic Curves and Fermat’s Last Theorem. Annals of Mathematics. Second Series 141: 443–551.

    Article  MathSciNet  MATH  Google Scholar 

  • Willerding, Margaret (1967). Mathematical Concepts: A Historical Approach. Boston: Prindle, Weber & Schmidt.

    Google Scholar 

  • Williams, Anne D. (2004). The Jigsaw Puzzle: Piecing Together a History. New York: Berkley Books.

    Google Scholar 

  • Wilson, Robin (2002). Four Colors Suffice: How the Map Problem Was Solved. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Wittgenstein, Ludwig (1922). Tractatus Logico-Philosophicus. London: Routledge and Kegan Paul.

    MATH  Google Scholar 

  • Zadeh, Lofti A. (1965). Fuzzy Sets. Information and Control 8: 338–353.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danesi, M. (2018). The Mathematical Mind. In: Ahmes’ Legacy. Mathematics in Mind. Springer, Cham. https://doi.org/10.1007/978-3-319-93254-5_5

Download citation

Publish with us

Policies and ethics